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Abstract
In this paper we give various relations between the energy of graphs and other

graph parameters as Randić index, clique number, number of vertices and edges,
maximum and minimum degree etc. Moreover, new bounds for the energy of
complementary graphs are derived. Our results are based on the concept of ver-
tex energy developed by G. Arizmendi and O. Arizmendi in [Lin. Algebra Appl.
doi:10.1016/j.laa.2020.09.025].

1 Introduction

Let G = (V,E) be a simple undirected graph with vertex set V (G) = {v1, v2, . . . , vn}
and edge set E(G), |E(G)| = m. The adjacency matrix A = A(G) of the graph G is

the n × n matrix [aij] with aij = 1 if vi is connected to vj, and aij = 0 otherwise. The

eigenvalues λ1, λ2, . . . , λn of the graph G are the eigenvalues of its adjacency matrix A.

Since A is a symmetric matrix with zero trace, these eigenvalues are real and their sum

is equal to zero.

The energy of G, denoted by E(G), was for the first time defined by I. Gutman in [8]

as the sum of the absolute values of its eigenvalues. Hence,

E(G) =
n∑

i=1

|λi|. (1)
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The concept of the energy of graphs arose in theoretical chemistry, since it can be used

to approximate the total π-electron energy of a molecule. For details check [9–12,18]. The

first result concerning the energy of a graph with its order and size is the following upper

bound obtained in 1971 by McClelland [18]:

E(G) ≤
√
2mn. (2)

Since then, numerous other bounds for E(G) were published, see [5, 13, 14, 17]. In [15]

Koolen and Moulton improved the bound (2) as follows: If 2m > n and G is a graph with

n vertices and m edges, then

E(G) ≤ 2m

n
+

√√√√(n− 1)

(
2m−

(
2m

n

)2
)
. (3)

In [18], McClelland also obtained a lower bound involving the graph’s order n, its size

m, and the determinant of its adjacency matrix:

E(G) ≥
√
2m+ n(n− 1)| det(A)| 2n . (4)

Almost thirty years later, a simpler lower bound involving only the number of edges

m was obtained in [6]:

E(G) ≥ 2
√
m. (5)

In order to understand locally the properties of the graph, in [2] Arizmendi and Romero

introduced a vertex energy, a refinement of the graph energy.

Definition 1.1 The energy of the vertex vi with respect to G, which is denoted by EG(vi),

or simply E(vi), is given by

EG(vi) = |A(G)|ii, for i = 1, . . . , n (6)

where |A| = (AA∗)1/2 and A is the adjacency matrix of G.

Using the above definition the energy of a graph could be expressed as a sum of the vertex

energies of G, that is,

E(G) = E(v1) + . . .+ E(vn). (7)

This paper is inspired by the new bounds for the energy of a vertex, derived in [3, 4].

In [4] was proven that, if vi and vj are connected vertices of a simple (undirected) graph
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G, then E(vi)E(vj) ≥ 1 and E(vi) + E(vj) ≥ 2, while in [3] was proven that E(vi) ≤
√
deg(vi). Combining these inequalities with the inequalities between means, we derive

various bounds for the graph energy. Namely, in Section 2 we give new relationships

between the energy of a given graph and its Randić index, clique number, maximum and

minimum degree. In Section 3 we treat the energy of the complements of the graphs. We

show that some of our bounds are better than the existing bounds.

2 Bounds for the energy of graphs

2.1 New upper bounds

Let G be a graph on n vertices and let deg(v) be the degree of the vertex v. The Randić

index of G is defined as

R(G) =
∑

(u,v)∈E(G)

1√
deg(u) · deg(v)

.

Based on the concept of vertex energy in [4] G. Arizmendi and O. Arizmendi proved

E(G) ≥ 2R(G). (8)

Following the same methodology, in [21], Yan et al. give the following result:

Theorem 2.1 [21] Let G be a graph with Randić index R(G) and maximum degree ∆(G).

Then E(G) ≤ 2
√
∆(G)R(G) and the equality holds if and only if G is the union of the

path P2.

In the first result of this paper we apply the same technique as in the proof of Theorem

2.1, restricted on the class of triangle-free graphs. Recall, an undirected graph in which no

three vertices form a triangle of edges is called triangle-free graph. It is well-known that, if

G is a triangle-free graph on n vertices and if e = (u, v) ∈ E(G), then deg(u)+deg(v) ≤ n.

This inequality is used in the following theorem.

Theorem 2.2 Let G be a triangle-free graph on n vertices. Then

E(G) ≤
√
2nR(G).
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Proof. We have

E(G) =
∑

v∈V (G)

E(v) =
∑

e=(u,v)∈E(G)

(
E(u)

deg(u)
+

E(v)

deg(v)

)

≤
∑

e∈E(G)

(√
deg(u)

deg(u)
+

√
deg(v)

deg(v)

)
=
∑

e∈E(G)

(
1√

deg(u)
+

1√
deg(v)

)

≤
∑

e∈E(G)

√
2

(
1

deg(u)
+

1

deg(v)

)
≤

√
2nR(G) .

Remark 2.3 If ∆(G) ≥ n
2
, then E(G) ≤

√
2nR(G) ≤ 2

√
∆(G)R(G), that is, the bound

in Theorem 2.2 is better than the bound in Theorem 2.1. Note that the molecular graphs

as one of the most studied graphs in chemical graph theory do not satisfy this condition

since ∆ ≤ 4.

A clique in a graph G is a complete subgraph of G. A clique is called maximum if it

has maximum cardinality. The clique number of a graph G, denoted ω(G), is the order

of a maximum clique of G. Caro [7] and Wei [20], showed that the degree sequence

d1 ≥ d2 ≥ . . . ≥ dn of a graph G of order n gives rise to a lower bound on the clique

number of G:

ω(G) ≥ 1

n− d1
+

1

n− d2
+ . . .+

1

n− dn
. (9)

In the next result we give a relation between the energy and the clique number of a

given graph.

Theorem 2.4 Let G be a graph with n vertices and clique number ω(G). Then

E(G) ≤ n

2

√
n · ω(G).

Proof. Let d1 ≥ . . . ≥ dn be the degree-sequence of G. From AM-GM, for each

i = 1, . . . , n we have
√

di
√
n− di ≤

di + n− di
2

=
n

2
.

Thus

E(G) ≤
√
d1 + . . .+

√
dn ≤ n

2

(
1√

n− d1
+ . . .+

1√
n− dn

)
.

Now, from AM-QM for the positive numbers 1√
n−d1

, . . . , 1√
n−dn

, and from (9) we get

E(G) ≤ n

2

(
1√

n− d1
+ . . .+

1√
n− dn

)
≤ n

2

√
n

(
1

n− d1
+ . . .+

1

n− dn

)
≤ n

2

√
n · ω(G).
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Remark 2.5 In [15], Koolen and Moulton showed that E(G) ≤ n
2
(1+

√
n). For ω(G) ≥ 2

and n > 5, we easily prove that n
2
(1 +

√
n) < n

2

√
n · ω(G). Thus, the bound in Theorem

2.4 is more useful in estimation of the clique number of a given graph through its order

and its energy. Based on Theorem 2.4, for a graph G on n vertices and energy E(G) it

holds

ω(G) ≥ 4E2(G)

n3
.

The first ’trivial’ upper bound for the energy of graph was obtained by McClelland [18],

E(G) ≤
√
2mn. We can come to this bound by using the upper bounds for the vertex

energy and by using the inequality between quadratic and arithmetic mean. We have

E(G) = E(v1) + . . .+ E(vn) ≤
√

d1 + . . .+
√
dn ≤

√
n(d1 + . . .+ dn) =

√
2mn.

Now we extend this approach by fixing the maximum and the minimum degree of the

graph. In [1], Alawiah et al. gave an upper bound on the energy of graphs, in terms of

the size, maximum and minimum degree of the graph. In the following result we give a

shorter proof of this theorem based on the upper bounds for the vertex energy.

Theorem 2.6 [1] Let G be a non-empty graph with n vertices, m edges and maximum

degree ∆. Then

E(G) ≤
√
∆+

√
(n− 1)(2m−∆),

equality holds if and only if G ≡ n
2
K2 (n = 2m).

Proof. Without loss of generality we suppose that ∆ = d1 ≥ . . . ≥ dn is the degree

sequence of G. We have

E(G) = E(v1) + . . .+ E(vn) ≤
√
d1 + . . .+

√
dn =

√
∆+ (

√
d2 + . . .+

√
dn). (10)

From the inequality between quadratic and arithmetic means for the numbers
√
d2, . . . ,

√
dn we get √

d2 + . . .+
√
dn

n− 1
≤
√

d2 + . . .+ dn
n− 1

=

√
2m−∆

n− 1
. (11)

Now from (10) and (11) we get

E(G) ≤
√
∆+ (

√
d2 + . . .+

√
dn) ≤

√
∆+

√
(n− 1)(2m−∆) .

Additionally, in [1] is given an upper bound for E(G) for bipartite graphs, in terms of

order, size, maximum and minimum degree.
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Theorem 2.7 [1] Let G be a non-empty bipartite graph with n ≥ 2 vertices, m edges

and maximum vertex ∆. Then

E(G) ≤ 2
√
∆+

√
(n− 2)(2m− 2∆), (12)

equality holds if and only if one of the following statements holds

(1) G ∼= n
2
K2, (n = 2m);

(2) K1,r−1 ∪ (n− 1− rn−1)K1.

In the next theorem we give a similar bound as in Theorem 2.7. Note that our bound

concerns all graphs, not only bipartite.

Theorem 2.8 For a graph G with n vertices, m edges, maximum degree ∆ and minimum

degree δ it holds

E(G) ≤
√
∆+

√
δ +

√
(n− 2)(2m−∆− δ). (13)

Proof. We proceed similarly as in Theorem 2.6. Let ∆ = d1 ≥ . . . ≥ dn = δ be the

degree sequence of G. We get

E(G) ≤
√
d1 + . . .+

√
dn =

√
∆+

√
δ + (

√
d2 + . . .+

√
dn−1)

≤
√
∆+

√
δ +

√
(n− 2)(d2 + . . .+ dn−1)

=
√
∆+

√
δ +

√
(n− 2)(2m−∆− δ) .

Remark 2.9 Let us consider the function f(x) =
√
∆ +

√
x +

√
(n− 2)(2m−∆− x)

defined on the interval [δ,∆]. We calculate f
′
(x) = 1

2
√
x
− n−2

2
√

(n−2)(2m−∆−x)
. Thus f

′
(x) ≤

0 ⇔ x ∈ [2m−∆
n−1

,∆]. If δ ≥ 2m−∆
n−1

, then f is decreasing on the interval [δ,∆]. In this case

f(δ) ≥ f(∆), that is, the bound in (12) is better than the bound in (13).

2.2 New lower bounds

Theorem 2.10 Let G be a connected graph with n vertices, m edges and maximum degree

∆. Then

E(G) ≥ 2m

∆
. (14)



667

Proof. Let e = (vi, vj) ∈ E(G). Since E(vi) + E(vj) ≥ 2 we have

∑

e∈E(G)

(E(vi) + E(vj)) ≥ 2m ⇔ d1E(v1) + . . .+ dnE(vn) ≥ 2m. (15)

From (15) we get

E(G) = E(v1) + . . .+ E(vn) =
∆ · (E(v1) + . . .+ E(vn))

∆
≥ d1E(v1) + . . .+ dnE(vn)

∆
≥ 2m

∆
.

Remark 2.11 If m ≥ ∆2, then E(G) ≥ 2m
∆

≥ 2m√
m

= 2
√
m. In this case the bound (14)

is better than the bound (5).

Remark 2.12 The bound in (14) straightforwardly follows from E(vi) ≥ di
∆
, a result

obtained in [3]. However, we decided to provide a different proof in order to present new

relation between the vertex-degrees and vertex-energies.

Theorem 2.13 Let G be a graph such that each vertex is contained in at least one tri-

angle. If n is the order of G, ∆ is the maximum degree and t is the number of triangles

in the graph, then

E(G) ≥ 36t2

n∆2(∆− 1)2
.

Proof. Let V (G) = {v1, . . . , vn} be the vertex set, d1, . . . , dn be the degree sequence of

G and let for each i = 1, . . . , n the vertex vi be contained in ti triangles. Let T (G) be the

set of all triangles in G and let (vi, vj, vk) be a triangle of G. Since (vi, vj), (vi, vk) and

(vj, vk) are edges we get E(vi) ·E(vj) ≥ 1, E(vi) ·E(vk) ≥ 1 and E(vj) ·E(vk) ≥ 1, which

implies E(vi)E(vj)E(vk) ≥ 1. Thus and from Cauchy-Schwarz inequality we have

E(G) = E(v1) + . . .+ E(vn) =
∑

(vi,vj ,vk)∈T (G)

(
E(vi)

ti
+

E(vj)

tj
+

E(vk)

tk

)
≥

≥
∑

(vi,vj ,vk)∈T (G)

3 3
√
E(vi)E(vj)E(vk)

3
√
titjtk

≥
∑

(vi,vj ,vk)∈T (G)

9

ti + tj + tk
≥ 9t2

t21 + . . .+ t2n
.

Since ti ≤
(
di
2

)
≤ ∆2−∆

2
we get E(G) ≥ 36t2

n∆2(∆−1)2
.

We finish this section with a lower bound for the energy of hamiltonian graphs.

Theorem 2.14 If G is a hamiltonian graph on n vertices, then E(G) ≥ n.
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Proof. Let V (G) = {v1, . . . , vn} be the vertex set of G. Since G is a hamiltonian graph,

there exists a permutation of V (G), say {v′
1, . . . , v

′
n}, such that v

′
1 − v

′
2 − . . .− v

′
n − v

′
1 is

an n- cycle. Hence, for each i = 1, . . . , n holds

E(v
′
i) + E(v

′
i+1) ≥ 2. (16)

Using the inequalities in (16), for the energy of G we get

E(G) = E(v
′
1) + . . .+ E(v

′
n) =

1

2
((E(v1)

′
+ E(v

′
2)) + . . .+ (E(v

′
n) + E(v

′
1))) ≥ n .

3 Energy of complement of a graph

The complement of a graph G is the graph G with vertex set V (G) = V (G) and two

vertices are adjacent in G if and only if they are not adjacent in G. More about the

energy of the complementary graphs can be found in [19, 22]. The following two well-

known results, obtained by Zhoe and Gutman, concern the bounds of E(G) + E(G).

Theorem 3.1 [22] Let G be a graph with n vertices. Then

E(G) + E(G) ≥ 2(n− 1)

with equality if and only if G is the complete graph Kn or its complement, the empty graph

(the n-vertex graph without edges).

Theorem 3.2 [22] Let G be a graph with n vertices. Then

E(G) + E(G) <
√
2n+ (n− 1)

√
n− 1.

As in the previous section, the results in this section rely on the bounds of the vertex

energy. In the next two results we give new bounds on E(G) + E(G).

Theorem 3.3 Let G be a graph on n vertices. Then

E(G) + E(G) ≤ n
√
2(n− 1).

Proof. Let d1, . . . , dn be the degree sequence for the graph G. Clearly, n−d1−1, . . . , n−
dn − 1 is the degree sequence for the graph G. We have

E(G) + E(G) ≤ (
√
d1 + . . .+

√
dn) + (

√
n− d1 − 1 + . . .+

√
n− dn − 1). (17)
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Now, from the inequality between arithmetic and quadratic mean for the numbers
√
di

and
√
n− 1− di we get

√
di +

√
n− 1− di ≤

√
2(di + n− 1− di) =

√
2(n− 1). (18)

The relations in (17) and (18) yield

E(G) + E(G) ≤ n
√
2(n− 1).

Remark 3.4 Doing elementary transformations we obtain that for 1 ≤ n ≤ 7 it holds

n
√
2(n− 1) <

√
2n+ (n− 1)

√
n− 1, that is, for 1 ≤ n ≤ 7 the bound in Theorem 3.3 is

better than the bound in Theorem 3.2.

In the next result we use the first Zagreb index of G, which is defined as M1(G) =

d21 + . . .+ d2n.

Theorem 3.5 Let G be a graph with n vertices and m edges. If M1(G) is the first Zagreb

index of G, then

E(G) + E(G) ≥ n2(n− 1)2

2M1(G)− 4m(n− 1) + n(n− 1)2
.

Proof. In [4] was proven that E(G) ≥ 2R(G) and E(G) ≥ 2R(G). Thus

E(G) + E(G) ≥ 2(R(G) +R(G))

= 2


 ∑

e=(vi,vj)∈E(G)

1√
didj

+
∑

e=(vk,vl)∈E(G)

1√
(n− 1− dk)(n− 1− dl)


 .

From AM-GM for di and dj, and for n− 1− dk and n− 1− dl, respectively, we obtain

E(G) + E(G) ≥ 4


 ∑

e=(vi,vj)∈E(G)

1

di + dj
+

∑

e=(vk,vl)∈E(G)

1

(n− 1− dk) + (n− 1− dl)


 .

Now, from Cauchy-Schwarz inequality we get

E(G) + E(G) ≥ 4 · (1 + 1 + . . .+ 1)2

d21 + . . .+ d2n + (n− 1− d1)2 + . . .+ (n− 1− dn)2

=
4
(

n(n−1)
2

)2

2(d21 + . . .+ d2n)− 4m(n− 1) + n(n− 1)2

=
n2(n− 1)2

2M1(G)− 4m(n− 1) + (n− 1)2n
.
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Theorem 3.6 Let G be a graph with n vertices, m edges and minimum degree δ. Then

√
n(n2 − 2m− n) ≥ E(G) ≥ n2 − n− 2m

n− 1− δ
.

Proof. Let d1 ≥ d2 ≥ . . . ≥ dn = δ be the degree sequence of G. We observe that G has
n(n−1)

2
−m = n2−n−2m

2
edges. Let e = (vi, vj) ∈ E(G). Then E(vi) +E(vj) ≥ 2. Applying

the same idea as in Theorem 2.10 we have
∑

e∈E(G)

(E(vi)+E(vj)) ≥ n2−n−2m ⇔ (n−1−d1)E(v1)+ . . .+(n−1−dn)E(vn) ≥ n2−n−2m.

(19)

Since n− 1− δ is the maximum degree of G, from (19) we have

E(G) =
(n− 1− δ)(E(v1) + . . .+ E(vn))

n− 1− δ

≥ (n− 1− d1)E(v1) + . . .+ (n− 1− dn)E(vn)

n− 1− δ
≥ n2 − n− 2m

n− 1− δ
.

The upper bound for E(G) is derived as follows

E(G) ≤
√
n− 1− d1 + . . .+

√
n− 1− dn ≤

√
n((n− 1− d1) + . . .+ (n− 1− dn))

=
√
n(n2 − n− 2m) .
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