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Abstract

The energy of a graph is the sum of the absolute values of its eigenvalues. In
this article, an exact relation between the energy of extended bipartite double graph
and the energy of a graph together with some other graph parameters is given. As a
consequence, equienergetic, borderenergetic, orderenergetic and non-hyperenergetic
extended bipartite double graphs are presented. The obtained results generalize the
existing results on equienergetic bipartite graphs.

1 Introduction

All graphs in this article are simple, finite and undirected. The order and the size of
a graph G is the number of vertices and the number of edges in it. Let d; denotes the
degree of a vertex v; of a graph G. The eigenvalues of a graph G are the eigenvalues
of its adjacency matrix A(G). The eigenvalues of a graph G of order n are labeled
as Ay > Ay > --- > \,. The number of positive, negative and zero eigenvalues of G

are denoted by n*,n~ and n° respectively. The energy [8] of a graph G is defined as

E(G) = Y |A\j|- An equivalent expression to the energy of a graph G is as follows:
=1

n nt n-
E(G) :Z‘)\jl ZQZAJ :—22)\71—]'-%—1‘ (1)
=1 j=1 J=1
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This quantity is well studied and has applications in chemistry [9,12,13]. Two graphs
of same order with equal energies are called equienergetic graphs. There are numerous
papers which deals with equienergetic graphs available in the literature, see [2,14-18] and
references therein. But very few papers deals with equienergetic bipartite graphs [11].
This motivates us to study the equienergetic bipartite graphs. A graph of order n is
said to be orderenergetic if its energy is equal to its order n [1]. A graph of order n
is said to be non-hyperenergetic if £(G) < 2(n — 1) [19] and is called borderenergetic if
E(G) =2(n—1) [7]. The line graph L(G) of a graph G is the graph with vertex set same
as the edge set of G and two vertices in £(G) are adjacent if the corresponding edges in G
have a vertex in common. The k-th iterated line graph of G for k = 0,1,2, ... is defined as
LF(G) = L(LFY(G)), where L2(G) = G and LY(G) = L(G) [10]. As usual the graphs K,
and K, , denote the complete graph of order n and the complete bipartite graph of order
p + q respectively. For other terminology and results related to the spectra of graphs, we

follow [5].

Definition. [4] Let G be a graph with the vertex set V(G) = {vi,vq,...,v,}. The
extended bipartite double graph Ebd(G) of a graph G is the bipartite graph with its
partite sets X = {@1,2a,...,2,} and Y = {y1, 42, ..., yn} in which two vertices z; and y;

are adjacent if 7 = j or v; and v; are adjacent in G.

The Ebd(G) is also called as the extended double cover [3]. The extended bipartite
double graph Ebd(G) is one of the best tool to generate a bipartite graph from given any
graph G. If G is a graph of order n then Fbd(G) is of order 2n and, if G is an r-regular
graph then Ebd(G) is an (r + 1)-regular graph. The energy of Ebd(G) is studied in [6,11].

Theorem 1.1. [4] Let G be a graph of order n with eigenvalues A\;;, 1 < i < n. Then the
eigenvalues of extended bipartite double graph Ebd(G) are £(X\; +1), 1 <i <n. ]

Theorem 1.2. [15] Let G be a graph of order ng and size mg with d; +d; > 6 to each
edge e = vv; in G then the iterated line graphs LF(G) have all the negative eigenvalues
equal to —2 with the multiplicity my_1 — ni_q for k > 2. And all the iterated line graphs
LF(G) of such graphs G are mutually equienergetic with energy 4(ny — ng_1) for k > 2,

where ny, and my, are the order and the size of LF(G) respectively. ]
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2 Enmnergy of extended bipartite double graphs
In the following, an exact relation between the energy of Fbd(G) and the energy of G
together with other graph parameters is given.

Theorem 2.1. Let G be a graph of order n with eigenvalues A\, Aa, ..., N\,. Then

E(Bbd(G)) :2<7L+€(G)—2n’+2 3 (Aj+1)).

Aj€(—1,0)

Proof. Let Ay > Ay > -+ > Ay, and A} > A5 > --- > A be the eigenvalues of G and
Ebd(QG) respectively. By definition of energy of a graph, we have

E(EW(G ZP\*\—ZM +1\+Z|f)\ —1| by Theorem 1.1
‘ZZF“M_Q(Z( — )+ Z(HA]-))
Aj<—1 Aj>—1
zz(fm[x + 3 LA+ Y Aj+ZAj)
A<—1 AE(=1,0) 2;>0

where n,(I) denotes the number of eigenvalues of G which lies in the interval I and
na([An, —1]) = 0if A, > —1.
The energy of a graph G can be expressed as
ZIM— 2l D0 I N
Aj<-1 AjE(-1,0) 2,20

With this we have,

E(Eb(G)) = —2m (e, —1]) + 200 (LA +2 S Aj+2(5(c)f 3 IM)

Aj€(—1,0) Aj€(—1,0)
= 26(G) — 205 ([Ay —1]) + 2(n — (P, —1])) 43
Aj€(—1,0)
=28(G)+2n—Ama(An, —1)) +4 > N, (2)
A;€(—1,0)

The total number of eigenvalues n of a graph G can be expressed as
n = nx([Mn, =1]) + 72 ((=1,0)) + n° + n™.

Therefore

(A, =1]) =n —nt —n® —ny(=1,0) = n~ — ny((—1,0)). (3)
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Also, we have
SoHD= > A +aa((=1,0). (4)
Aj€(—1,0) Aj€(—1,0)
Using (3) and (4) in (2), we get
E(Eb(G)) = Q(n +EG) —m 2 Y (Nt 1)),
Aj€(=1,0)
which completes the proof. |
It is easy to observe that n= > >~ (A; +1) > 0 for any graph G. With this fact

Aj€(=1,0)
we have the following.

Corollary 2.2. Let G be a graph of order n. Then
E(EW(G)) < 2(n+ E(G)).

|
There are many graphs with no eigenvalues in the interval (—1,0), such as integral
graphs, all iterated line graphs £F(G) for k > 2 in Theorem 1.2 etc. If a graph has no

eigenvalue in the interval (—1,0) then we have the following.

Corollary 2.3. Let G be a graph of order n. Then G has no eigenvalue in the interval
(—1,0) if and only if
E(EW(G)) =2n+2E(G) —4n~.

Proof. Proof follows directly from the fact that >~ (A+1) = 0 if and only if G has no
AE(—1,0)
eigenvalue A in the interval (—1,0). |

Now it is easy to construct equienergetic bipartite graphs by using Theorem 2.1 with

the help of equienergetic graphs with no eigenvalues in the interval (—1,0) and having

the same number of negative eigenvalues.

Corollary 2.4. Let Gy and Ga be two equienergetic graphs of same order n with the

eigenvalues Xy > Ny > -+ > N and X{ > Xy > --- > A, and the number of negative

eigenvalues ny and ny respectively. Then Ebd(G1) and Ebd(Gs) are equienergetic if and
onlyifny — > (Nj+1)=n;— > (A +1).

X;€(~1,0) X/ e(-1,0)
In particular, if G and Gy have no eigenvalues in the interval (—1,0), then Ebd(G4) and

Ebd(G>) are equienergetic if and only if ny =n; .
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Proof. Proof follows directly from Theorem 2.1 by taking two equienergetic graphs of
same order and from the fact that > (A4 1) = 0 if and only if G has no eigenvalue
A in the interval (—1,0). e |
Example. The graphs £F(K,, ,0K,_1) and £L¥(K,,_1,-10K,) are integral equienergetic
graphs with the same number of negative eigenvalues for all n > 5,k > 0 [17], where O
denotes the Cartesian product. Therefore, by Corollary 2.4, Ebd(L*(K, ,0K,_;)) and
Ebd(L¥(K,1,,-10K,)) are equienergetic for all n > 5,k > 0.

Remark. Hou and Xu in [11] studied the spectra and the energy of Ebd(L*(G)), where
G is an r-regular graph of degree r > 3, and constructed a large pairs of non-trivial
equienergetic bipartite regular graphs Fbd ([,k (G)) for k > 2. The iterated line graphs
LF(G) for k > 2 in [11] are the part of iterated line graphs in Theorem 1.2. Ramane et al.
in [15] by using Theorem 1.2 constructed a large class of non-trivial equienergetic bipartite
graphs Ebd(L"(G)) for k > 2. It is noted that all these results become particular case of
Corollary 2.4.

Corollary 2.5. Let G be a graph of order n. If E(G) < n — 1, then Ebd(G) is non-
hyperenergetic graph.

Proof. By Corollary 2.2 and the condition that £(G) < n — 1, we have
E(BW(G)) <2n+26(G) <2n+2(n—1)=2(2n—1),
which shows that the graph Ebd(G) is non-hyperenergetic. |

In the following we give a necessary and sufficient condition for a graph Ebd(G) to be

borderenergetic.

Corollary 2.6. Let G be a graph of order n. Then Ebd(G) is borderenergetic if and only
fEG)=n—-1+ 2(71’ - > (N 1)) In particular, if G has no eigenvalue in the

Aj€(—1,0)
interval (—1,0), then Ebd(G) is borderenergetic if and only if E(G) =n — 1+ 2n".
Proof. If G is a graph of order n then the order of Ebd(G) is 2n. If Ebd(G) borderenergetic
then E(Fbd(G)) = 2(2n — 1). Now proof follows directly from Theorem 2.1. |

Corollary 2.7. Let G be a graph of order n. Then Ebd(G) is orderenergetic if and only

if E(G) = Z(n’ - > N+ 1)) In particular, if G has no eigenvalue in the interval
Aj€(—1,0)

(—1,0), then Ebd(G) is orderenergetic if and only if G is union of complete graphs or
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empty graph.

Proof. If G is a graph of order n then the order of Ebd(G) is 2n. Now by the definition of
orderenergetic graph and the Theorem 2.1, Ebd(G) is orderenergetic if and only if £(G) =

2<n‘ - > N+ 1)) If G has no eigenvalue in the interval (—1,0), then Ebd(G) is
Aj€(—1,0)

orderenergetic if and only if £(G) = 2n~. But £(G) = 2n~ implies —2 Z An—jr1 = 20~
Jj=1
by (1), which gives — >~ \,_j41 = n~. This equality — > A,_j41 = n~ holds true only if
j i=1

J=1 J=
G is union of complete graphs or empty graph. |

The k-th iterated extended bipartite double graph of G for k = 0,1,2,... is defined
as Ebd*(G) = Ebd(Ebd*(Q)), where Ebd’(G) = G and Ebd'(G) = Ebd(G). In the
following, an exact relation between the energy of Ebd?*(G) and the energy of G together

with other graph parameters is given.
Theorem 2.8. Let G be a graph of order n with eigenvalues A, Ag, ..., A\n,. Then

5(Ebd2(c:)):4(n+5(a)—2n*+ 3 ()\]-—0—2))‘

Aj€(—2,0)

Proof. Let Ay > Ay > --- > )\, be the eigenvalues of G then by Theorem 1.1 the
eigenvalues of Ebd*(G) are £(\; +2) and £);,1 < j < n. Now proof follows similar to
that of proof of the Theorem 2.1. |

It is easy to observe that to each negative eigenvalue A; € (—2,0) we have 0 < \;+2 <

2, which gives 2n= — >~ (A; 4+ 2) > 0 for any graph G. Now with this fact we have
Aj€(=2,0)
the following.

Corollary 2.9. Let G be a graph of order n. Then
E(Eb?(@)) < 4(n+ E(Q)).

|
Theorem 1.2 ensures that there are many graphs with no eigenvalue in the interval

(—2,0). If a graph has no eigenvalue in the interval (—2,0), then we have the following.

Corollary 2.10. Let G be a graph of order n. If G has no eigenvalue in the interval
(—2,0), then

S(EW(G)) = 4(n + E(G) — 2n7) = 28(Ebd(G)).
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Proof. Proof follows directly from Theorem 2.8 and Theorem 2.1. ]

Again it is easy to construct equienergetic bipartite graphs by using Theorem 2.8 with
the help of equienergetic graphs with no eigenvalues in the interval (—2,0) and having
the same number of negative eigenvalues.

Corollary 2.11. Let Gy and G4 be two equienergetic graphs of same order n with the

eigenvalues X; > Xy > --- > X, and X > Xy > --- > X' and the number of negative

eigenvalues ny and ny respectively. Then Ebd?(Gy) and Ebd*(Gy) are equienergetic if

and only if 2ny — > ()\'7 +2)=2n; — > (/\;’ +2).
X;e(~2,0) A e(-2,0)
In particular, if Gy and Gy have no eigenvalues in the interval (—2,0), then Ebd?(G)

and Ebd?(Gs) are equienergetic if and only if ny = nj .

Proof. Proof directly follows from Theorem 2.8 by taking two equienergetic graphs of

same order. ]
In the following we present another large class of equienergetic bipartite graphs.

Proposition 2.12. Let G be a graph of order ng and size mo with d;+d; > 6 to each edge
e =v; in G. Then the graphs Ebd*(L*(G)) of such graphs G are mutually equienergetic
for k> 2.

Proof. If G is a graph of order ng and size mo with d; +d; > 6 to each edge e = v;v; then
by Theorem 1.2, the iterated line graphs £*(G) of such graphs G have all the negative
eigenvalues equal to —2 with the multiplicity my_1 — ng_1 for £ > 2 and are mutually

equienergetic. Thus proof follows by the Corollary 2.11. ]

3 Conclusion

In this article, the energy of extended bipartite double graphs is studied. It is characterized
to construct a class of equienergetic bipartite graphs. Also the energy of second iterated
extended bipartite double graphs is obtained. It is worthwhile to investigate the following

problem.

e Find the energy relations between a graph G and its iterated extended bipartite

double graphs and characterize various energy types.



660

References

[1] S. Akbari, M. Ghahremani, I. Gutman, F. Koorepazan-Moftakhar, Orderenergetic
graphs, MATCH Commun. Math. Comput. Chem. 84 (2020) 325-334.

[2] A.Alj, S. Elumalai, T. Mansour, M. A. Rostami, On the complementary equienergetic
graphs, MATCH Commun. Math. Comput. Chem. 83 (2020) 555-570.

[3] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986) 83-96.

[4] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer—
Verlag, Berlin, 1989.

[5] D. Cvetkovié¢, P. Rowlinson, S. Simi¢, An Introduction to the Theory of Graph Spectra,
Cambridge Univ. Press, Cambridge, 2009.

[6] H. A. Ganie, S. Pirzada, A. Ivdnyi, Energy, Laplacian energy of double graphs and
new families of equienergetic graphs, Acta Univ. Sap. Inf. 6 (2014) 89-117.

[7] S. Gong, X. Li, G. Xu, I. Gutman, B. Furtula, Borderenergetic graphs, MATCH
Commun. Math. Comput. Chem. 74 (2015) 321-332.

[8] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forsch. Graz 103 (1978)
1-22.

[9] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer—
Verlag, Berlin, 1986.

[10] F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.

[11] Y. Hou, L. Xu, Equienergetic bipartite graphs, MATCH Commun. Math. Comput.
Chem. 57 (2007) 363-370.

[12] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.

[13] H. S. Ramane, Energy of graphs, in: M. Pal, S. Samanta, A. Pal (Eds.): Handbook of
Research on Advanced Applications of Graph Theory in Modern Society, IGI Global,
Hershey, 2019, pp. 267-296.

[14] H. S. Ramane, K. Ashoka, B. Parvathalu, D. Patil, I. Gutman, On complementary
equienergetic strongly regular graphs, Discr. Math. Lett. 4 (2020) 50-55.

[15] H. S. Ramane, B. Parvathalu, D. Patil, K. Ashoka, Iterated line graphs with only
negative eigenvalues —2, their complements and energy, in preparation.

[16] H. S. Ramane, B. Parvathalu, D. Patil, K. Ashoka, Graphs equienergetic with their
complements, MATCH Commun. Math. Comput. Chem. 82 (2019) 471-480.

[17] H.S. Ramane, D. Patil, K. Ashoka, B. Parvathalu, Equienergetic graphs using Carte-
sian product and generalized composition, Sarajevo J. Math. 17 (2021) 7-21.

[18] S. K. Vaidya, K. M. Popat, On equienergetic, hyperenergetic and hypoenergetic
graphs, Kragujevac J. Math. 44 (2020) 523-532.

[19] H. B. Walikar, I. Gutman, P. R. Hampiholi, H. S. Ramane, Non-hyperenergetic

graphs, Graph Theory Notes New York 41 (2001) 14-16.



