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Abstract

The energy of a graph is the sum of the absolute values of its eigenvalues. In
this article, an exact relation between the energy of extended bipartite double graph
and the energy of a graph together with some other graph parameters is given. As a
consequence, equienergetic, borderenergetic, orderenergetic and non-hyperenergetic
extended bipartite double graphs are presented. The obtained results generalize the
existing results on equienergetic bipartite graphs.

1 Introduction

All graphs in this article are simple, finite and undirected. The order and the size of

a graph G is the number of vertices and the number of edges in it. Let di denotes the

degree of a vertex vi of a graph G. The eigenvalues of a graph G are the eigenvalues

of its adjacency matrix A(G). The eigenvalues of a graph G of order n are labeled

as λ1 ≥ λ2 ≥ · · · ≥ λn. The number of positive, negative and zero eigenvalues of G

are denoted by n+, n− and n0 respectively. The energy [8] of a graph G is defined as

E(G) =
n∑

j=1

|λj|. An equivalent expression to the energy of a graph G is as follows:

E(G) =
n∑

j=1

|λj| = 2
n+∑

j=1

λj = −2
n−∑

j=1

λn−j+1. (1)
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This quantity is well studied and has applications in chemistry [9,12,13]. Two graphs

of same order with equal energies are called equienergetic graphs. There are numerous

papers which deals with equienergetic graphs available in the literature, see [2,14–18] and

references therein. But very few papers deals with equienergetic bipartite graphs [11].

This motivates us to study the equienergetic bipartite graphs. A graph of order n is

said to be orderenergetic if its energy is equal to its order n [1]. A graph of order n

is said to be non-hyperenergetic if E(G) ≤ 2(n − 1) [19] and is called borderenergetic if

E(G) = 2(n− 1) [7]. The line graph L(G) of a graph G is the graph with vertex set same

as the edge set of G and two vertices in L(G) are adjacent if the corresponding edges in G

have a vertex in common. The k-th iterated line graph of G for k = 0, 1, 2, . . . is defined as

Lk(G) ≡ L(Lk−1(G)), where L0(G) ≡ G and L1(G) ≡ L(G) [10]. As usual the graphs Kn

and Kp,q denote the complete graph of order n and the complete bipartite graph of order

p+ q respectively. For other terminology and results related to the spectra of graphs, we

follow [5].

Definition. [4] Let G be a graph with the vertex set V (G) = {v1, v2, . . . , vn}. The

extended bipartite double graph Ebd(G) of a graph G is the bipartite graph with its

partite sets X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} in which two vertices xi and yj

are adjacent if i = j or vi and vj are adjacent in G.

The Ebd(G) is also called as the extended double cover [3]. The extended bipartite

double graph Ebd(G) is one of the best tool to generate a bipartite graph from given any

graph G. If G is a graph of order n then Ebd(G) is of order 2n and, if G is an r-regular

graph then Ebd(G) is an (r+1)-regular graph. The energy of Ebd(G) is studied in [6,11].

Theorem 1.1. [4] Let G be a graph of order n with eigenvalues λi, 1 ≤ i ≤ n. Then the

eigenvalues of extended bipartite double graph Ebd(G) are ±(λi + 1), 1 ≤ i ≤ n. ■

Theorem 1.2. [15] Let G be a graph of order n0 and size m0 with di + dj ≥ 6 to each

edge e = vivj in G then the iterated line graphs Lk(G) have all the negative eigenvalues

equal to −2 with the multiplicity mk−1 − nk−1 for k ≥ 2. And all the iterated line graphs

Lk(G) of such graphs G are mutually equienergetic with energy 4(nk − nk−1) for k ≥ 2,

where nk and mk are the order and the size of Lk(G) respectively. ■
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2 Energy of extended bipartite double graphs

In the following, an exact relation between the energy of Ebd(G) and the energy of G

together with other graph parameters is given.

Theorem 2.1. Let G be a graph of order n with eigenvalues λ1, λ2, . . . , λn. Then

E(Ebd(G)) = 2
(
n+ E(G)− 2n− + 2

∑

λj∈(−1,0)

(λj + 1)
)
.

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn and λ∗
1 ≥ λ∗

2 ≥ · · · ≥ λ∗
n be the eigenvalues of G and

Ebd(G) respectively. By definition of energy of a graph, we have

E(Ebd(G)) =
n∑

j=1

|λ∗
j | =

n∑

j=1

|λj + 1|+
n∑

j=1

| − λj − 1| by Theorem 1.1

= 2
n∑

j=1

| − 1− λj| = 2
( ∑

λj≤−1

(−1− λj) +
∑

λj>−1

(1 + λj)
)

= 2
(
− nλ([λn,−1]) +

∑

λj≤−1

|λj|+ nλ((−1, λ1]) +
∑

λj∈(−1,0)

λj +
∑

λj≥0

λj

)
,

where nλ(I) denotes the number of eigenvalues of G which lies in the interval I and

nλ([λn,−1]) = 0 if λn ≥ −1.

The energy of a graph G can be expressed as

E(G) =
n∑

j=1

|λj| =
∑

λj≤−1

|λj|+
∑

λj∈(−1,0)

|λj|+
∑

λj≥0

λj.

With this we have,

E(Ebd(G)) = −2nλ([λn,−1]) + 2nλ((−1, λ1]) + 2
∑

λj∈(−1,0)

λj + 2
(
E(G)−

∑

λj∈(−1,0)

|λj|
)

= 2E(G)− 2nλ([λn,−1]) + 2
(
n− nλ([λn,−1])

)
+ 4

∑

λj∈(−1,0)

λj

= 2E(G) + 2n− 4nλ([λn,−1]) + 4
∑

λj∈(−1,0)

λj. (2)

The total number of eigenvalues n of a graph G can be expressed as

n = nλ([λn,−1]) + nλ((−1, 0)) + n0 + n+.

Therefore

nλ([λn,−1]) = n− n+ − n0 − nλ(−1, 0) = n− − nλ((−1, 0)). (3)
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Also, we have

∑

λj∈(−1,0)

(λj + 1) =
∑

λj∈(−1,0)

λj + nλ((−1, 0)). (4)

Using (3) and (4) in (2), we get

E(Ebd(G)) = 2
(
n+ E(G)− 2n− + 2

∑

λj∈(−1,0)

(λj + 1)
)
,

which completes the proof. ■

It is easy to observe that n− >
∑

λj∈(−1,0)

(λj + 1) > 0 for any graph G. With this fact

we have the following.

Corollary 2.2. Let G be a graph of order n. Then

E(Ebd(G)) < 2(n+ E(G)).

■
There are many graphs with no eigenvalues in the interval (−1, 0), such as integral

graphs, all iterated line graphs Lk(G) for k ≥ 2 in Theorem 1.2 etc. If a graph has no

eigenvalue in the interval (−1, 0) then we have the following.

Corollary 2.3. Let G be a graph of order n. Then G has no eigenvalue in the interval

(−1, 0) if and only if

E(Ebd(G)) = 2n+ 2E(G)− 4n−.

Proof. Proof follows directly from the fact that
∑

λ∈(−1,0)

(λ+1) = 0 if and only if G has no

eigenvalue λ in the interval (−1, 0). ■

Now it is easy to construct equienergetic bipartite graphs by using Theorem 2.1 with

the help of equienergetic graphs with no eigenvalues in the interval (−1, 0) and having

the same number of negative eigenvalues.

Corollary 2.4. Let G1 and G2 be two equienergetic graphs of same order n with the

eigenvalues λ
′
1 ≥ λ

′
2 ≥ · · · ≥ λ

′
n and λ

′′
1 ≥ λ

′′
2 ≥ · · · ≥ λ

′′
n , and the number of negative

eigenvalues n−
1 and n−

2 respectively. Then Ebd(G1) and Ebd(G2) are equienergetic if and

only if n−
1 − ∑

λ
′
j∈(−1,0)

(λ
′
j + 1) = n−

2 − ∑
λ
′′
j ∈(−1,0)

(λ
′′
j + 1).

In particular, if G1 and G2 have no eigenvalues in the interval (−1, 0), then Ebd(G1) and

Ebd(G2) are equienergetic if and only if n−
1 = n−

2 .
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Proof. Proof follows directly from Theorem 2.1 by taking two equienergetic graphs of

same order and from the fact that
∑

λ∈(−1,0)

(λ + 1) = 0 if and only if G has no eigenvalue

λ in the interval (−1, 0). ■

Example. The graphs Lk(Kn,n□Kn−1) and Lk(Kn−1,n−1□Kn) are integral equienergetic

graphs with the same number of negative eigenvalues for all n ≥ 5, k ≥ 0 [17], where □
denotes the Cartesian product. Therefore, by Corollary 2.4, Ebd(Lk(Kn,n□Kn−1)) and

Ebd(Lk(Kn−1,n−1□Kn)) are equienergetic for all n ≥ 5, k ≥ 0.

Remark. Hou and Xu in [11] studied the spectra and the energy of Ebd
(
L2(G)

)
, where

G is an r-regular graph of degree r ≥ 3, and constructed a large pairs of non-trivial

equienergetic bipartite regular graphs Ebd
(
Lk(G)

)
for k ≥ 2. The iterated line graphs

Lk(G) for k ≥ 2 in [11] are the part of iterated line graphs in Theorem 1.2. Ramane et al.

in [15] by using Theorem 1.2 constructed a large class of non-trivial equienergetic bipartite

graphs Ebd
(
Lk(G)

)
for k ≥ 2. It is noted that all these results become particular case of

Corollary 2.4.

Corollary 2.5. Let G be a graph of order n. If E(G) ≤ n − 1, then Ebd(G) is non-

hyperenergetic graph.

Proof. By Corollary 2.2 and the condition that E(G) ≤ n− 1, we have

E(Ebd(G)) < 2n+ 2E(G) ≤ 2n+ 2(n− 1) = 2(2n− 1),

which shows that the graph Ebd(G) is non-hyperenergetic. ■

In the following we give a necessary and sufficient condition for a graph Ebd(G) to be

borderenergetic.

Corollary 2.6. Let G be a graph of order n. Then Ebd(G) is borderenergetic if and only

if E(G) = n− 1 + 2
(
n− − ∑

λj∈(−1,0)

(λj + 1)
)
. In particular, if G has no eigenvalue in the

interval (−1, 0), then Ebd(G) is borderenergetic if and only if E(G) = n− 1 + 2n−.

Proof. If G is a graph of order n then the order of Ebd(G) is 2n. If Ebd(G) borderenergetic

then E(Ebd(G)) = 2(2n− 1). Now proof follows directly from Theorem 2.1. ■

Corollary 2.7. Let G be a graph of order n. Then Ebd(G) is orderenergetic if and only

if E(G) = 2
(
n− − ∑

λj∈(−1,0)

(λj + 1)
)
. In particular, if G has no eigenvalue in the interval

(−1, 0), then Ebd(G) is orderenergetic if and only if G is union of complete graphs or
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empty graph.

Proof. If G is a graph of order n then the order of Ebd(G) is 2n. Now by the definition of

orderenergetic graph and the Theorem 2.1, Ebd(G) is orderenergetic if and only if E(G) =

2
(
n− − ∑

λj∈(−1,0)

(λj + 1)
)
. If G has no eigenvalue in the interval (−1, 0), then Ebd(G) is

orderenergetic if and only if E(G) = 2n−. But E(G) = 2n− implies −2
n−∑
j=1

λn−j+1 = 2n−

by (1), which gives −
n−∑
j=1

λn−j+1 = n−. This equality −
n−∑
j=1

λn−j+1 = n− holds true only if

G is union of complete graphs or empty graph. ■

The k-th iterated extended bipartite double graph of G for k = 0, 1, 2, . . . is defined

as Ebdk(G) ≡ Ebd(Ebdk−1(G)), where Ebd0(G) ≡ G and Ebd1(G) ≡ Ebd(G). In the

following, an exact relation between the energy of Ebd2(G) and the energy of G together

with other graph parameters is given.

Theorem 2.8. Let G be a graph of order n with eigenvalues λ1, λ2, . . . , λn. Then

E(Ebd2(G)) = 4
(
n+ E(G)− 2n− +

∑

λj∈(−2,0)

(λj + 2)
)
.

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of G then by Theorem 1.1 the

eigenvalues of Ebd2(G) are ±(λj + 2) and ±λj , 1 ≤ j ≤ n. Now proof follows similar to

that of proof of the Theorem 2.1. ■

It is easy to observe that to each negative eigenvalue λj ∈ (−2, 0) we have 0 < λj+2 <

2, which gives 2n− − ∑
λj∈(−2,0)

(λj + 2) > 0 for any graph G. Now with this fact we have

the following.

Corollary 2.9. Let G be a graph of order n. Then

E(Ebd2(G)) < 4(n+ E(G)).

■
Theorem 1.2 ensures that there are many graphs with no eigenvalue in the interval

(−2, 0). If a graph has no eigenvalue in the interval (−2, 0), then we have the following.

Corollary 2.10. Let G be a graph of order n. If G has no eigenvalue in the interval

(−2, 0), then

E(Ebd2(G)) = 4(n+ E(G)− 2n−) = 2E(Ebd(G)).
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Proof. Proof follows directly from Theorem 2.8 and Theorem 2.1. ■

Again it is easy to construct equienergetic bipartite graphs by using Theorem 2.8 with

the help of equienergetic graphs with no eigenvalues in the interval (−2, 0) and having

the same number of negative eigenvalues.

Corollary 2.11. Let G1 and G2 be two equienergetic graphs of same order n with the

eigenvalues λ
′
1 ≥ λ

′
2 ≥ · · · ≥ λ

′
n and λ

′′
1 ≥ λ

′′
2 ≥ · · · ≥ λ

′′
n , and the number of negative

eigenvalues n−
1 and n−

2 respectively. Then Ebd2(G1) and Ebd2(G2) are equienergetic if

and only if 2n−
1 − ∑

λ
′
j∈(−2,0)

(λ
′
j + 2) = 2n−

2 − ∑
λ
′′
j ∈(−2,0)

(λ
′′
j + 2).

In particular, if G1 and G2 have no eigenvalues in the interval (−2, 0), then Ebd2(G1)

and Ebd2(G2) are equienergetic if and only if n−
1 = n−

2 .

Proof. Proof directly follows from Theorem 2.8 by taking two equienergetic graphs of

same order. ■

In the following we present another large class of equienergetic bipartite graphs.

Proposition 2.12. Let G be a graph of order n0 and size m0 with di+dj ≥ 6 to each edge

e = vivj in G. Then the graphs Ebd2(Lk(G)) of such graphs G are mutually equienergetic

for k ≥ 2.

Proof. If G is a graph of order n0 and size m0 with di + dj ≥ 6 to each edge e = vivj then

by Theorem 1.2, the iterated line graphs Lk(G) of such graphs G have all the negative

eigenvalues equal to −2 with the multiplicity mk−1 − nk−1 for k ≥ 2 and are mutually

equienergetic. Thus proof follows by the Corollary 2.11. ■

3 Conclusion

In this article, the energy of extended bipartite double graphs is studied. It is characterized

to construct a class of equienergetic bipartite graphs. Also the energy of second iterated

extended bipartite double graphs is obtained. It is worthwhile to investigate the following

problem.

• Find the energy relations between a graph G and its iterated extended bipartite

double graphs and characterize various energy types.
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