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Abstract

The energy of graphs containing self-loops is considered. If the graph G of
order n contains σ self-loops, then its energy is defined as E(G) =

∑ |λi − σ/n|
where λ1, λ2, . . . , λn are the eigenvalues of the adjacency matrix of G. Some ba-
sic properties of E(G) are established, and several open problems pointed out or
conjectured.

1 Introduction

A graph is said to be simple (or schlicht) if it does not possess directed, weighted or

multiple edges, and self-loops [12,13,21]. Let G be a simple graph of order n, with vertex

set V = {v1, v2, . . . , vn}. Its adjacency matrix A(G) is a square symmetric matrix of

order n whose (i, j)-element is defined as

A(G)ij =





1 if the vertices vi and vj are adjacent,
0 if the vertices vi and vj are not adjacent,
0 if i = j.

Let λ1(G), λ2(G), . . . , λn(G) be the eigenvalues of A(G). Then the energy of G is

E(G) =
n∑

i=1

|λi(G)| . (1)
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The theory of graph energy is nowadays a well elaborated field of applied mathematics

and mathematical chemistry [14,18]. One should recall that the concept of graph energy

has a chemical origin and a chemical interpretation [8].

There are more than a thousand papers on graph energy and its variants [9, 10].

Practically all these papers are concerned with simple graphs. It is remarkable that

the energy of graph with self-loops has not been considered so far. This is addition-

ally surprising because graphs with self-loops (representing heteroatoms) are of evident

chemical significance, and were much studied in the past, including their spectral prop-

erties [1, 5, 6, 15, 16, 19].

Let S be a subset of V(G). The number of elements of S will be denoted by σ.

Let GS be the graph obtained from the simple graph G, by attaching a self-loop to

each of its vertices belonging to S. Then the adjacency matrix of GS is a symmetric

square matrix A(GS) of order n, whose (i, j)-element is defined as

A(GS)ij =





1 if the vertices vi and vj are adjacent,
0 if the vertices vi and vj are not adjacent,
1 if i = j and vi ∈ S,

0 if i = j and vi 6∈ S.

Let λ1(GS), λ2(GS), . . . , λn(GS) be the eigenvalues of A(GS). These all are real-

valued, and
n∑

i=1

λi(GS) = σ . (2)

Therefore, the energy of GS (in full analogy to the energy of any matrix with non-zero

diagonal [2, 3, 11]) has to be defined as

E(GS) =
n∑

i=1

∣∣∣λi(GS)−
σ

n

∣∣∣ (3)

In this paper, we begin to examine the properties of E(GS).

2 Basic properties of energy of graphs with self-loops

First we state an elementary result:

Lemma 1. (a) If σ = 0, then E(GS) = E(G).

(b) If σ = n, then E(GS) = E(G).
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Proof. Lemma 1(a) is trivially obvious, since for σ = 0, the graphs GS and G coincide.

Let In denote the unit matrix of order n. If σ = n, then A(GS) = A(G) + In.

Therefore, λi(GS) = λi(G) + 1 , i = 1, 2, . . . , n. Lemma 1(b) follows then from Eqs. (1)

and (3).

Lemma 1 immediately leads to the question: What is the relation between E(GS)

and E(G) in the case of 1 ≤ σ ≤ n − 1 ? Based on our numerical studies, we state the

following claim:

Conjecture 2. Let G be any simple graph of order n, and S any subset of its vertices,

1 ≤ σ ≤ n− 1. Then E(GS) > E(G).

If this conjecture is true, then we are faced with many further questions. For instance,

for a given graph (or class of graphs), for which S is the difference E(GS)−E(G) maximal?

Etc. etc.

Some simple examples, illustrating Conjecture 2 are collected in Table 1.

S E(GS)
∅ 4.4721
{v1} 4.7588
{v2} 4.6659
{v1, v2} 4.6056
{v1, v3} 4.9770
{v1, v4} 4.8284
{v2, v3} 4.8284
{v1, v2, v3} 4.7588
{v1, v2, v4} 4.6659
{v1, v2, v3, v4} 4.4721

Table 1. Energies of the path P4 with self-loops.

From Table 1 we see that the energy depends not only on the number of self-loops, but

also on their position. We, however, observe that the energies of some different graphs

coincide. This is the consequence of the following general result.

Theorem 3. Let G be a bipartite graph of order n, with vertex set V. Let S be a subset

of V. Then E(GS) = E(GV \S).

Proof. We prove Theorem 3 assuming that n is even. If n is odd, the proof would proceed

in a fully analogous manner.
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For the proof of Theorem 3, we need to recall details of the Sachs coefficient theorem

[1, 4, 7, 20].

Let φ(GS, λ) = det
[
λ In −A(GS)

]
be the characteristic polynomial of GS. We write

it in the form

φ(GS, λ) = φe(GS, λ) + φo(GS, λ) (4)

where

φe(GS, λ) =
∑

k≥0

c2k λ
n−2k and φo(GS, λ) =

∑

k≥0

c2k+1 λ
n−2k−1 .

Let Hk be the set of k-vertex subgraphs of GS whose components are cycles and/or

copies of P2 and/or isolated vertices with self-loops. According to the Sachs theorem,

ck =
∑

H∈Hk

(−1)p(H) 2c(H) (5)

where p(H) is the number of components of H and c(H) the number of cycles of H.

Since GS is bipartite, all its cycles (if any) are of even size. Therefore, all subgraphs

contained in H2k must possess and even number (or zero) of vertices with self-loops. All

components of H2k+1 must possess an odd number of vertices with self-loops.

Let G−
S be the graph obtained from GS by changing the signs of all its self-loops from

+1 to -1. Then by the Sachs formula (5),

φ(G−
S , λ) = φe(GS, λ)− φo(GS, λ) .

Let ξ be a zero of the polynomial φ(GS, λ). Then in view of Eq. (4),

φe(GS, ξ) = −φo(GS, ξ) .

In addition,

φe(GS, ξ) = φe(GS,−ξ) and − φo(GS, ξ) = φo(GS,−ξ)

implying

φe(GS,−ξ)− φo(GS,−ξ) = 0 i.e., φ(G−
S ,−ξ) = 0 .

We thus conclude that if λ1(GS), λ2(GS), . . . , λn(GS) are the eigenvalues of GS, then

−λ1(GS),−λ2(GS), . . . ,−λn(GS) are the eigenvalues of G−
S .

Consider now the characteristic polynomial of GV \S.
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Let A(GS) = A(G) + JS and A(GV \S) = A(G) + JV \S, with JS + JV \S = In. Then

φ(GV \S, λ) = det
[
λ In −A(G)− JV \S

]
= det

[
λ In −A(G)− In + JS

]

= det
[
(λ− 1) In − (A(G)− JS)

]
= det

[
(λ− 1) In −A(G−

S

]

from which it follows

φ(GV \S, λ) = φ(G−
S , λ− 1) .

This means that the eigenvalues λi(GV \S) , i = 1, 2, . . . , n, coincide with λi(G
−
S ) + 1 , i =

1, 2, . . . , n. Bearing this in mind, we have

E(GV \S) =
n∑

i=1

∣∣∣∣λi(GV \S)−
n− σ

n

∣∣∣∣ =
n∑

i=1

∣∣∣λi(GV \S)− 1 +
σ

n

∣∣∣

=
n∑

i=1

∣∣∣λi(G
−
S ) + 1− 1 +

σ

n

∣∣∣ =
n∑

i=1

∣∣∣−λi(GS) +
σ

n

∣∣∣ =
n∑

i=1

∣∣∣λi(GS)−
σ

n

∣∣∣ .

Theorem 3 follows now by Eq. (3).

The equality E(GS) = E(GV \S) does not hold if the graph G is not bipartite. The

simplest example showing this is the triangle with one self-loop (whose energy is 4.1618)

and with two self-loops (whose energy is 4.1308).

3 McClelland–type bound for the energy of graphs
with self-loops

In this section we obtain a McClelland–type upper bound [17] for the energy of graphs

with self-loops. In order to achieve this goal, we first establish a few auxiliary results.

Lemma 4. Let GS be a graph of order n, with m edges, and σ self-loops. Let λ1, λ2, . . . , λn

be its eigenvalues. Then
n∑

i=1

λ2
i = 2m+ σ .

Proof.
n∑

i=1

λ2
i =

n∑

i=1

[
A(GS)

2
]
ii
=

n∑

i=1

[(
A(G) + JS

)2]
ii

=
n∑

i=1

[
A(G)2 +A(G)JS + JS A(G) + J2

S

]
ii
.
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By direct calculation it is easy to shown that
n∑

i=1

[
A(G)2

]
ii
= 2m ,

n∑

i=1

[
A(G)JS

]
ii
=

n∑

i=1

[
JS A(G)

]
ii
= 0 ,

n∑

i=1

[
J2
S

]
ii
= σ

from which Lemma 4 follows.

Lemma 5. With the same notation as in Lemma 4,
n∑

i=1

∣∣∣λi −
σ

n

∣∣∣
2

= 2m+ σ − σ2

n

Proof.
n∑

i=1

∣∣∣λi −
σ

n

∣∣∣
2

=
n∑

i=1

(
λ2
i − 2λi

σ

n
+

σ2

n2

)
=

n∑

i=1

λ2
i − 2

σ

n

n∑

i=1

λi +
σ2

n

and Lemma 5 follows by using Lemma 4 and formula (2).

Theorem 6. Let GS be a graph of order n, with m edges, and σ self-loops. Then

E(GS) ≤
√
n

(
2m+ σ − σ2

n

)
. (6)

Proof. The expression
n∑

i=1

n∑

j=1

(∣∣∣λi −
σ

n

∣∣∣−
∣∣∣λj −

σ

n

∣∣∣
)2

is evidently non-negative. Expanding it we get

n
n∑

i=1

∣∣∣λi −
σ

n

∣∣∣
2

+ n
n∑

j=1

∣∣∣λj −
σ

n

∣∣∣
2

− 2
n∑

i=1

∣∣∣λi −
σ

n

∣∣∣
n∑

j=1

∣∣∣λj −
σ

n

∣∣∣

which by Lemma 5 and Eq. (3) yields

2n

(
2m+ σ − σ2

n

)
− 2E(GS)

2 ≥ 0

from which Theorem 6 directly follows.

As expected, formula (6) reduces to the original McClelland bound [17] for σ = 0,

but also for σ = n, in harmony with Lemma 1(b).
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