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Abstract 

Fullerenes graphs are 3-connected, 3-regular planar graphs with faces including 

only pentagons and hexagons. If � be a graph with a perfect matching, a subgraph 

� of � is a nice subgraph if  � − �(�) has a perfect matching. In this paper, we 

show that in every fullerene graph arising from smaller fullerenes via chamfer 

transformation, each pair of pentagons is a nice subgraph. 

 

1 Introduction 
 

     The first fullerene molecule was discovered in 1985 [9], and since then, the fullerenes have 

been objects of interest to scientists all over the world. Many mathematical properties of 

fullerene molecules can be studied using mathematical methods. It follows from the Euler 

formula that there must be exactly 12 pentagons in every fullerene graph, while there is no 

condition on the number of hexagons. The number of vertices in fullerenes is necessarily even, 

and the existence of such graphs on n vertices was established for all even � ≥  20 except � =

22 in a classical paper by Grünbaum and Motzkin [7]. A classical survey of early results on 

fullerene graphs is [6], and for a more recent comprehensive review, we refer the reader to [11]. 

We denote respectively by (�) and �(�) the set of edges and vertices of a graph �.  
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One of the most important structures in the chemical study of fullerenes is the Kekulé 

structure, which is defined as perfect matching in graph theory. In [4, 5] the reader can read 

more about perfect matching in fullerene graphs.  

 All nice subgraphs must have an even number of vertices. In section 3 we discuss the case 

where the nice subgraph includes two pentagons. 

 

2 Definitions and auxiliary Results 
 

 

   Many fullerene graphs arise from smaller fullerene graphs by applying some transformation. 

The number of vertices in the resulting graph is usually an integer multiple of the number of 

vertices of starting graph. The best known such transformation is the leapfrog transformation 

that can be thought of as truncation of the dual. [6] 

 One of the less known but still very useful is known as chamfer, resulting in fullerene graphs 

with four times the number of vertices. We refer the reader to [8] to read more about these 

transformations and other transformations. We will continue this section with how to work 

chamfer transformation. Consider the Fullerene graph �, where in each face of  � we draw a 

similar face. These faces are shown in Fig 1. Then connect each vertex of the original fullerene 

with three vertices of newly inscribed polygons, one vertex in each of the faces with which they 

are incident (bold full lines in Fig. 1). 

 

Figure 1. Chamfer transformation.  
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Finally, erase the edges of the original fullerene. The resulting graph has only pentagonal and 

hexagonal faces. The number of pentagonal faces is exactly twelve. The number of vertices is 

four times the number of vertices in the original fullerene. As the resulting graph is clearly 

planar, cubic, and 3 connected, it is a fullerene graph. The resulting fullerene is called 

chamfered fullerene. 

 

Theorem 1.[1] Let � be a leapfrog fullerene. Then, any two pentagons in � form a nice 

pair. 

In [1] it is proven that all pairs of pentagons in Leapfrog Fullerenes are nice. We extened this 

result for chamfered fullerenes (Fullerenes obtained the chamfering transformation from 

smaller fullerenes) after the fashion of [1].  

 

3 Main Results 
 

       In [2] is shown that in all isolated pentagon (IP) fullerenes on 100 vertices at most, all pairs 

of pentagons are nice. From this, we can conclude the following statement 

 

Proposition 2. All pairs of pentagons in Chamfered  fullerenes ��� and ��� are nice. 
 

Theorem 3. Let � be a chamfered  fullerene. Then, all pairs of pentagons in � are nice. 

 

Proof. We know that all fullerene graphs have perfect matchings, it follows from a classical 

result of Petersen that every connected cubic graph with no more than two cut-edges has a 

perfect matching [10]. 

First, we present a method for a perfect matching in chamfered fullerenes.  

According to the method of producing chamfered fullerenes, if there are ℎ  hexagons between 

two pentagons in the original graph, after performing the chamfer transformation, the number 

of � hexagons will be between those two pentagons in the chamber fullerene. And we have 

 

� = 2ℎ + 1 

 

 

Therefore, the structure of faces in chamfered fullerenes is the same as in Fig 2 
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Figure 2. Placement of faces in chamfered fullerenes. 
 
 

 

The number of hexagons between the pentagons is an odd number �. We now consider two 

modes: 

� = �. In this case, According to [3], we know that all chamfered fullerenes have perfect star 

packaging. we consider perfect star packaging � for � as follows: Consider vertices �� and �� 

on the pentagons �� and �� as the central vertices of the star, On the other hand, Each pentagon 

can contain at most one center of a star.  Therefore perfect star packing � can be considered as 

Figure 3. 

 



625

 

 

Figure 3. Perfect star packaging � of �. 

 

 

Using this packing, we define a matching �� for � as shown by the dashed lines in Figure 4: 

The edges of stars  � and  � are not, in edges of �� and one edge of all the other stars should 

be considered as a matching edge ��.  

 

Figure 4. Dashed edges are matching edges. 
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Now if we remove the vertices of pentagons �� and ��, we will have a perfect matching for 

� − �(��) − �(��). 

� ≥ !. In this case, a perfect matching can be considered as follows 
 

 

Figure 5. Perfect matching edges in pentagons (Tick lines). 

 

In hexagons, the desired matching occurs in the following three ways that are shown in fig 6 

 

Figure 6. Perfect matching edges in hexagons (Tick lines). 

 

For example, for � = 5  mode, we have the following figure 

 

 

Figure 7. Perfect matching edges for � = 5 . 
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Let � be a chamfered fullerene and ��, �� be two of its pentagon faces and � be the perfect 

matching as defined above that shown in fig 7, and the edges of the original fullerene are 

shown by thin dashed line. 

 

 

 Figure 8.  

 
Consider the shortest path connecting pentagons in the original fullerene; the path is indicated 

by thick dashed lines in Figure 8. The length of this path in the original Fullerene is equal to 2ℎ. 

This path in the original fullerene corresponds to four numbers of adjacent hexagons �� , �� ,

�$ ,  �%  in the chamfered fullerene. We construct an �-alternating path � of odd length 

connecting a vertex & of �� to a vertex � in ��  

 

�: & − ( − ) − * − + − , − - − � 

 By flipping the edges on path � and the four hexagons  .� , .� ,  .$ , .% , we obtain a 

matching, called ��, in � that matches no vertices from � −  �(��) −  �(��) to vertices on �� 

or ��. The situation is shown in Figure 9.                                                                                      ▄ 

 

Figure 9. Edges of Matching �� are shown in thick dashed lines. 
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