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Abstract
The algebraic structure count of a bipartite graph G = (U, V'), denoted by L(G),
is defined as the difference between the number of so-called “even” and “odd” Kekulé
structures of G by Wilcox in theoretical organic chemistry. Let e = uv be an edge of
a bipartite graph G. Gutman proved that G satisfies one of the following relations:

L(G)=L(G—e)+ L(G—u—v),
L(G)=L(G—e)— L(G—u—v),
L(G)=—-L(G—e)+ L(G—u—v),
where G —e (resp. G—u—v) is the graph obtained from G by deleting edge e (resp.
vertices u and v). In this short note, we obtain a similar result and prove that for
any uj,uz € U,vi,v9 € V, G satisfies one of the following relations:
L(G)L(G —up —ug — vy —v3) =
L(G —up — v1)L(G — ug — v2) + L(G — ug — v2) L(G — ug — v1),
L(G)L(G —u1 —ug —v1 —v2) =
L(G —uyp — Ul)L(G —u2 — 1}2) - L(G — Uy — ’UZ)L(G — U2 — ’Ul),
L(G)L(G — U] — U — V] — ’U2) =
7L(G — Uy — ’Ul)L(G — Uy — ’Uz) + L(G —up — UQ)L(G — Uy — U1)4

1 Introduction

Let G = (U, V) be a bipartite graph with bipartition UUV, if not specified. The algebraic
structure count of G, denoted by L(G), is defined as the square root of the absolute value

of the determinant of the adjacency matrix A(G) of G [11,12,15,16], that is,

L(G) = V[ det(A@)]. (1)
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Let [U| = m,|V| = n. It is well known that L(G)? = (—=1)"det(A(G)) if m = n and

L(G) = 0 otherwise [8]. Hence we may assume that G = (U, V) is a bipartite graph with
|U| = |V| =n. If G is a benzenoid graph, then

K(G)? = (=1)"det(A(G)), (2)

where K (@) is the number of perfect matchings (Kekulé structures) of G [5]. Hence if G
is a benzenoid graph, then

L(G) = K(G). 3)

The algebraic structure count of a bipartite graph is related closely the thermodynamic
stability of the corresponding alternant hydrocarbons. It has important applications
in theoretical organic chemistry (7,10,11,14,17]. In particular, if L(G) = 0, then the
respective hydrocarbon is extremely reactive and usually does not exist [10,17]. See for
example some related references [1-4,9,13] on the algebraic structure count.

Note that for any edge e = uv in a graph G, K(G) satisfies the following recurrence
relation

K(G)=K(G—e)+ K(G—u—v), (4)

where G — e (resp., G — u — v) is the graph obtained from G by deleting edge e (resp.,
vertices u and v). Motivated by this result, Gutman [9] proved that L(G), L(G — ¢) and

L(G — u — v) conform to one of the following three relations:

L(G)=L(G —¢)+ L(G—u—v), (5)
L(G)=L(G—-¢) — L(G —u—v), (6)
L(G) = —-L(G —¢) + L(G —u—v), (7)

In linear algebra, the well-known Dodgson’s determinant-evaluation rule [6] implies

that, for any square matrix M = (m;;)nxn of order n,
det(M) det (M) = det(M}) det(M?) — det(M?7) det(M), )

where M (resp., M}) is the matrix obtained from M be deleting two rows and two
columns 1 and n (resp., the ith row and jth column).

Motivated by Egs. (5)-(8), in this note, we obtain a similar result to Egs. (5)-(7) and
prove that for any uj,us € U,v;,v9 € V in a bipartite graph G = (U, V'), G satisfies the
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one of the following relations:

L(G)L(G—u1 —us —v1 — ) = L(G—uy —v1) L(G —u2 —v3) + L(G —uy —v2) L(G —ua — 1),
9)

L(G)L(G—uy —us—v1 —v2) = L(G—uy — vy ) L(G —uz —v9) — L(G —uy —v2) L(G —ug — v1),
(10)

L(G)L(G—uy—ug—v1—v2) = —L(G—uy1 —v1) L(G —us—v2) + L(G —uy —v2) L(G —us —vy).
(11)

2 Proof of the main result

Note that G = (U, V) is a bipartite graph. If |U| # |V, then L(G) = L(G — u; — us —
Ul—’l)g) :L(G—ul—vl) = L(G—Ug—vg) :L(G—ul—v2) :L(G—UQ—Ul) :0
Hence we can assume that |U| = |V| =n. Let U = {u},uj, ..., u,},V = {v],v},...,0,}.

The bipartite adjacency matrix of G, denoted B(G) = (bs;)nxn, is defined as follows:

b — 1 if wjvj is an edge of G,
7 0 otherwise.

Obviously, the adjacency matrix of G can be expressed by

16 = (pap 8.

where B(G)7 is the transpose of B(G). Hence
det(A(G)) = (=1)"det(B(G))% (12)

By Egs. (1) and (12),
L(G) = |det(B(G))|. (13)
Without loss of generality, set u}] = wuj,ul, = uz,v] = v1,v), = vs. Using Dodgson’s

determinant-evaluation rule Eq. (8) to B(G), then
det(B(G)) det(B(G)1") = det(B(G)}) det(B(G)?) — det(B(G)}) det(B(G)L).  (14)

where B(G)'* (resp., B(G)?) is the matrix obtained from B(G) be deleting two rows
and two columns 1 and n (resp., the ith row and jth column). By the definition of the

bipartite adjacency matrix of a bipartite graph, it is not difficult to see that B(G){? (resp.,
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B(G)}, B(G)", B(G)?, B(G)}) is the bipartite adjacency matrix of G — uy — ug — v — vy

n n

(resp., G —uy —v1,G —ug — v2, G — ug — v2,G — uz — vq). Hence, by Eq. (13),

L(G — w1 —uz — v — v5) = | det(B(G)})], (15)
L(G —uy — v1) = | det(B(G)})], (16)
L(G — uz — va) = | det (B(G)})], (17)
L(G — uy — v3) = | det(B(Q)}), (18)
L(G —uy — 1) = | det(B(G)}), (19)

Note that L(G)L(G — u; — us — v; —v3) > 0. Then Egs. (9), (10) and (11) are immediate
from Eqgs. (13)-(19).

7 5 6

Figure 1. A molecular graph G.

3 Discussion

For the molecular graph G illustrated in Figure 1, it is not difficult to show that it satisfies:
LG) =4,L(G-1-2-3-4)=1L(G-2-3-5-6)=2L(G-1-2-5-7) =
2, L(G-1-2)=2,L(G-3-4)=3,L(G-1-4)=1,L(G-2-3)=2,L(G-5-6) =
2,L(G—-2-5)=4,L(G-3-6)=3,L(G—-5—-T7)=2,L(G—1-7) = 1. Hence
LG)L(G-1-2-5-T)=L(G-1-2)L(G-5—-T)+ L(G—-1—-T)L(G—2-5),
LG)L(G-1-2-3-4)=L(G—-1-2)L(G—-3—-4)—-L(G—-1—-4)L(G—-2-23),
L(G)L(G-2-3-5—-6)=—-L(G—-2-3)L(G—5—-6)+ L(G—2—-5)L(G—3—6).
Thus, a natural question is: For any uy, us € U, v1,v2 € V in a bipartite graph G = (U, V),

how to determine which equation among Eqs. (9)-(11) holds?
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