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Abstract

The algebraic structure count of a bipartite graph G = (U, V ), denoted by L(G),
is defined as the difference between the number of so-called “even” and “odd” Kekulé
structures of G by Wilcox in theoretical organic chemistry. Let e = uv be an edge of
a bipartite graph G. Gutman proved that G satisfies one of the following relations:

L(G) = L(G− e) + L(G− u− v),
L(G) = L(G− e)− L(G− u− v),
L(G) = −L(G− e) + L(G− u− v),

where G−e (resp. G−u−v) is the graph obtained from G by deleting edge e (resp.
vertices u and v). In this short note, we obtain a similar result and prove that for
any u1, u2 ∈ U, v1, v2 ∈ V , G satisfies one of the following relations:

L(G)L(G− u1 − u2 − v1 − v2) =
L(G− u1 − v1)L(G− u2 − v2) + L(G− u1 − v2)L(G− u2 − v1),

L(G)L(G− u1 − u2 − v1 − v2) =
L(G− u1 − v1)L(G− u2 − v2)− L(G− u1 − v2)L(G− u2 − v1),

L(G)L(G− u1 − u2 − v1 − v2) =
−L(G− u1 − v1)L(G− u2 − v2) + L(G− u1 − v2)L(G− u2 − v1).

1 Introduction

Let G = (U, V ) be a bipartite graph with bipartition U∪V , if not specified. The algebraic

structure count of G, denoted by L(G), is defined as the square root of the absolute value

of the determinant of the adjacency matrix A(G) of G [11, 12,15,16], that is,

L(G) =
√

| det(A(G))|. (1)
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Let |U | = m, |V | = n. It is well known that L(G)2 = (−1)n det(A(G)) if m = n and

L(G) = 0 otherwise [8]. Hence we may assume that G = (U, V ) is a bipartite graph with

|U | = |V | = n. If G is a benzenoid graph, then

K(G)2 = (−1)n det(A(G)), (2)

where K(G) is the number of perfect matchings (Kekulé structures) of G [5]. Hence if G

is a benzenoid graph, then

L(G) = K(G). (3)

The algebraic structure count of a bipartite graph is related closely the thermodynamic

stability of the corresponding alternant hydrocarbons. It has important applications

in theoretical organic chemistry [7, 10, 11, 14, 17]. In particular, if L(G) = 0, then the

respective hydrocarbon is extremely reactive and usually does not exist [10, 17]. See for

example some related references [1–4,9, 13] on the algebraic structure count.

Note that for any edge e = uv in a graph G, K(G) satisfies the following recurrence

relation

K(G) = K(G− e) +K(G− u− v), (4)

where G − e (resp., G − u − v) is the graph obtained from G by deleting edge e (resp.,

vertices u and v). Motivated by this result, Gutman [9] proved that L(G), L(G− e) and

L(G− u− v) conform to one of the following three relations:

L(G) = L(G− e) + L(G− u− v), (5)

L(G) = L(G− e)− L(G− u− v), (6)

L(G) = −L(G− e) + L(G− u− v), (7)

In linear algebra, the well-known Dodgson’s determinant-evaluation rule [6] implies

that, for any square matrix M = (mij)n×n of order n,

det(M) det(M1n
1n ) = det(M1

1 ) det(M
n
n )− det(Mn

1 ) det(M
1
n), (8)

where M1n
1n (resp., M j

i ) is the matrix obtained from M be deleting two rows and two

columns 1 and n (resp., the ith row and jth column).

Motivated by Eqs. (5)-(8), in this note, we obtain a similar result to Eqs. (5)-(7) and

prove that for any u1, u2 ∈ U, v1, v2 ∈ V in a bipartite graph G = (U, V ), G satisfies the
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one of the following relations:

L(G)L(G−u1−u2−v1−v2) = L(G−u1−v1)L(G−u2−v2)+L(G−u1−v2)L(G−u2−v1),

(9)

L(G)L(G−u1−u2−v1−v2) = L(G−u1−v1)L(G−u2−v2)−L(G−u1−v2)L(G−u2−v1),

(10)

L(G)L(G−u1−u2−v1−v2) = −L(G−u1−v1)L(G−u2−v2)+L(G−u1−v2)L(G−u2−v1).

(11)

2 Proof of the main result

Note that G = (U, V ) is a bipartite graph. If |U | ̸= |V |, then L(G) = L(G − u1 − u2 −
v1 − v2) = L(G − u1 − v1) = L(G − u2 − v2) = L(G − u1 − v2) = L(G − u2 − v1) = 0.

Hence we can assume that |U | = |V | = n. Let U = {u′
1, u

′
2, . . . , u

′
n}, V = {v′1, v′2, . . . , v′n}.

The bipartite adjacency matrix of G, denoted B(G) = (bij)n×n, is defined as follows:

bij =

{
1 if u′

iv
′
j is an edge of G,

0 otherwise.

Obviously, the adjacency matrix of G can be expressed by

A(G) =

(
0 B(G)

B(G)T 0

)
,

where B(G)T is the transpose of B(G). Hence

det(A(G)) = (−1)n det(B(G))2. (12)

By Eqs. (1) and (12),

L(G) = | det(B(G))|. (13)

Without loss of generality, set u′
1 = u1, u

′
n = u2, v

′
1 = v1, v

′
n = v2. Using Dodgson’s

determinant-evaluation rule Eq. (8) to B(G), then

det(B(G)) det(B(G)1n1n) = det(B(G)11) det(B(G)nn)− det(B(G)n1 ) det(B(G)1n). (14)

where B(G)1n1n (resp., B(G)ji ) is the matrix obtained from B(G) be deleting two rows

and two columns 1 and n (resp., the ith row and jth column). By the definition of the

bipartite adjacency matrix of a bipartite graph, it is not difficult to see that B(G)1n1n (resp.,
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B(G)11, B(G)nn, B(G)n1 , B(G)1n) is the bipartite adjacency matrix of G− u1 − u2 − v1 − v2

(resp., G− u1 − v1, G− u2 − v2, G− u1 − v2, G− u2 − v1). Hence, by Eq. (13),

L(G− u1 − u2 − v1 − v2) = | det(B(G)1n1n)|, (15)

L(G− u1 − v1) = | det(B(G)11)|, (16)

L(G− u2 − v2) = | det(B(G)nn)|, (17)

L(G− u1 − v2) = | det(B(G)n1 )|, (18)

L(G− u2 − v1) = | det(B(G)1n)|, (19)

Note that L(G)L(G−u1−u2− v1− v2) ≥ 0. Then Eqs. (9), (10) and (11) are immediate

from Eqs. (13)-(19).
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Figure 1. A molecular graph G.

3 Discussion

For the molecular graph G illustrated in Figure 1, it is not difficult to show that it satisfies:

L(G) = 4, L(G − 1 − 2 − 3 − 4) = 1, L(G − 2 − 3 − 5 − 6) = 2, L(G − 1 − 2 − 5 − 7) =

2;L(G− 1− 2) = 2, L(G− 3− 4) = 3, L(G− 1− 4) = 1, L(G− 2− 3) = 2, L(G− 5− 6) =

2, L(G− 2− 5) = 4, L(G− 3− 6) = 3, L(G− 5− 7) = 2, L(G− 1− 7) = 1. Hence

L(G)L(G− 1− 2− 5− 7) = L(G− 1− 2)L(G− 5− 7) + L(G− 1− 7)L(G− 2− 5),

L(G)L(G− 1− 2− 3− 4) = L(G− 1− 2)L(G− 3− 4)− L(G− 1− 4)L(G− 2− 3),

L(G)L(G− 2− 3− 5− 6) = −L(G− 2− 3)L(G− 5− 6) + L(G− 2− 5)L(G− 3− 6).

Thus, a natural question is: For any u1, u2 ∈ U, v1, v2 ∈ V in a bipartite graph G = (U, V ),

how to determine which equation among Eqs. (9)-(11) holds?
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[17] C. F. Wilcox, I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, XI.

Aromatic substitution, Tetradedron 31 (1975) 147–152.


