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Abstract

The forcing polynomial and anti-forcing polynomial are two important enumer-
ative polynomials associated with all perfect matchings of a graph. In a graph with
large order, the exhaustive enumeration which is used to compute forcing number
of a given perfect matching is too time-consuming to compute anti-forcing number.
In this paper, we come up with an efficient method — integer linear programming,
to compute forcing number and anti-forcing number of a given perfect matching.
As applications, we obtain the di-forcing polynomials C60, C70 and C72, and as a
consequence, the forcing and anti-forcing polynomials of them are obtained.

1 Introduction

All graphs considered in this paper are finite and simple. A perfect matching or 1-factor

M of a graph G is a set of independent edges incidenting with every vertices of G, which

is also called a Kekulé structure in chemical literatures. In 1991, the forcing numbers for

perfect matchings of graphs are proposed by F. Harary, D. Klein and T. Živkovič [10]

while studying the hexagonal system, which are equivalent to the chemical concept —

innate degrees of freedom of Kekulé structures, given by D. Klein and M. Randić [13,19]

in study of the molecular resonance structures. In 2004, the forcing spectrum, the set
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of forcing numbers of all perfect matchings, of G is defined by P. Adams, M. Mahdian

and E. Mahmoodian [3, 4]. For more researches on forcing sets and forcing numbers, the

interested readers may refer to a recent survey [5] and references therein. In oder to refine

forcing spectrum, H. Zhang, S. Zhao and R. Lin [29] proposed the concept of the forcing

polynomial.

As a “complement” of innate degrees of freedom (also known as e-freedom [14]) of

Kekulé structures, D. Klein proposed the (e)-freedoms of Kekulé structures [14], which

was independently proposed by H. Lei, Y. Yeh and H. Zhang [16], under the name of

anti-forcing numbers of Kekulé structures. In 2007, D. Vukičević and N. Trinajstić [26]

proposed the concept of the anti-forcing number of a graph, that is the minimum anti-

forcing number of all perfect matchings of the graph. In fact, early in 1997, X. Li [18] had

studied the hexagonal system H with a forcing single edge e (now called an anti-forcing

edge), i.e., {e} is an anti-forcing set of H. Analogous to the forcing polynomial, H. Hwang,

H. Lei, Y. Yeh and H. Zhang [11] introduced the concept of an enumerative polynomial

— the anti-forcing polynomial for a graph.

The forcing polynomials and the anti-forcing polynomials of some graphs had been

obtained. K. Deng, S. Liu, X. Zhou, H. Lü and T. Wu [7,8] studied forcing and anti-forcing

polynomials of a pyrene system and a polyomino graph. S. Zhao and H. Zhang obtained

the recursive relation of forcing polynomials of cata-condensed hexagonal systems [29], the

forcing polynomials for benzenoid parallelograms [30], anti-forcing polynomials of phenyl

systems [30], and anti-forcing polynomials of P2×Pn rectangle grids and P3×P2n rectangle

grids [31]. Although the forcing polynomials of Fullerene graphs C60, C70, C72 have been

obtained [20,22,23], the anti-forcing polynomials of them are still not computed.

The Clar and Fries numbers are two important indicators relevant to perfect matchings

of benzenoid graphs [6,9]. P. Hansen and M. Zheng [17] formulated the Clar number of a

graph as an integer programming. H. Abeledo and G.W. Atkinson [1,2] substantiated that

the linear relaxation of the integer programming has integer optimal solution by proving

that the constraint matrix of the Clar integer programming is invariably totally unimod-

ular; they also formulated the Fries number as an integer programming and obtained a

similar result. Thus, the Clar and Fries numbers can be computed in polynomial time

using linear programmings. In this paper, we also formulate the forcing and anti-forcing

numbers of a perfect matchimg as an integer linear programmings. However, the linear
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relaxations of them may have fractional optimal solutions (see Remark 1(3)).

The structure of this paper is as follows. In Section 2, we introduce some basic

terminologies, symbols, conclusions and the main concept — di-forcing polynomial. In

Section 3, we introduce the exhaustive enumeration and come up with the integer linear

programming to compute forcing and anti-forcing numbers of a given perfect matching.

In Section 4, we use integer linear programming to compute di-forcing polynomials of C60,

C70 and C72, and as a direct application, the forcing and anti-forcing polynomials of them

are obtained.

2 Preliminaries

Let G = (V,E) be a simple graph with a perfect matching M . A cycle of G is M -

alternating if its edges are alternately in and out of M .

A subset S ⊆ M is a forcing set of a perfect matching M if M is the unique perfect

matching of G which contains S. The forcing number of M is the smallest cardinality

over all forcing sets of M , denoted by f(G,M). The minimum (resp. maximum) forcing

number of G is the minimum (resp. maximum) value of forcing numbers of all perfect

matchings of G, denoted by f(G) (resp. F (G)). In the early literatures, f(G) is also

known as the forcing number of G.

A subset Sa ⊆ E\M is an anti-forcing set ofM ifG\Sa has the unique perfect matching

M , where G \ Sa denotes the resulting subgraph obtained from G by deleting the edges

in Sa. The anti-forcing number of M is the smallest cardinality over all anti-forcing sets

of M , denoted by af(G,M). The minimum (resp. maximum) anti-forcing number of G

is the minimum (resp. maximum) value of anti-forcing numbers of all perfect matchings

of G, denoted by af(G) (resp. Af(G)). Similarly, af(G) is also known as the name of

the anti-forcing number of G.

Here is a characterization of a forcing set.

Lemma 2.1 [3, 21] Let M be a perfect matching of a graph G. A subset S ⊆ M is a

forcing set of M if and only if S contains at least one edge of each M-alternating cycle.

There is a similar characterization of the anti-forcing set.
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Lemma 2.2 [16] Let M be a perfect matching of a graph G. A subset Sa ⊆ E \M is an

anti-forcing set of M if and only if Sa contains at least one edge of each M-alternating

cycle.

The forcing and anti-forcing polynomials are enumerative polynomials w.r.t. forcing

and anti-forcing numbers of all perfect matchings of G, respectively. Let M(G) be the

set of all perfect matchings of G.

Definition 2.1 [11,29] The forcing polynomial of G is

F (G, x) =
∑

M∈M(G)

xf(G,M) =

F (G)∑

i=f(G)

ω(G, i)xi, (1)

where ω(G, i) refers to the number of perfect matchings of G with forcing number i.

Definition 2.2 [11,30] The anti-forcing polynomial of G is

Af(G, x) =
∑

M∈M(G)

xaf(G,M) =

Af(G)∑

i=af(G)

µ(G, i)xi, (2)

where µ(G, i) refers to the number of perfect matchings of G with anti-forcing number i.

Observing a striking similarity between the above two definitions, we naturally com-

bine these two polynomials into a single two-variable polynomial—di-forcing polynomial.

Definition 2.3 Let G be a graph. The di-forcing polynomial of G is

Faf(G;x, y) =
∑

M∈M(G)

xf(G,M)yaf(G,M) =
∑

i,j

ν(G; i, j)xiyj, (3)

where ν(G; i, j) refers to the number of perfect matchings of G with forcing number i and

anti-forcing number j.

Note that:

(1) Faf(G;x, y) = 0, if G has no perfect matchings.

(2) Faf(G;x, y) = 1, if G has a unique perfect matching or G is an empty graph (with

no vertices).

Consequently, we have the following conclusions.
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Corollary 2.3 (1) F (G, x) = Faf(G;x, 1).

(2) Af(G, x) = Faf(G; 1, x).

(3) The number of perfect matchings of G is Faf(G; 1, 1).

Under the action of the automorphism group of G, all perfect matchings are divided

into several equivalent classes [23]. By selecting a perfect matching from each equivalent

class, we obtain the system of distinct representatives. Since each perfect matching in an

equivalent class has the same forcing number and anti-forcing number, we have another

formula to compute the di-forcing polynomial.

Lemma 2.4 Let G be a graph with a perfect matching M . Let R(G) and s(M) denote

the system of distinct representatives of the perfect matching equivalent classes and the

cardinality of the equivalent class containing M , respectively. Then

Faf(G;x, y) =
∑

M∈R(G)

s(M)xf(G,M)yaf(G,M).

3 Computing the di-forcing polynomial

Now, there are two ways to compute the di-forcing polynomial of a graph: One is the

summation over all perfect matchings of a general graph G basing on Definition 2.3; The

other is the summation over all perfect matchings of the system of distinct representatives

of the perfect matching equivalent classes for a high symmestry of graph G basing on

Lemma 2.4. Thus, we provide two methods to compute the forcing number or anti-forcing

number of a given perfect matching M : Exhaustive enumeration is relatively simple but

time-consuming, while integer linear programming is effective.

Let G be a graph with a perfect matching M , n vertices, m edges and E(G) =

{e1, e2, . . . , em}. The symmetric difference of two finite sets A and B is A ⊕ B = (A ∪
B) \ (A ∩B).

3.1 Exhaustive enumeration

The basic idea of exhaustive enumeration is as follows: We generate all possible edge

subsets from small to large one by one, until finding the first subset S which is a forcing

or anti-forcing set of M . Hence S is a minimum forcing or anti-forcing set, and |S| is the
forcing or anti-forcing number of M .
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Although the exhaustive enumeration is successfully used to compute the forcing poly-

nomials of C60, C70, C72 [20, 22, 23, 27], it is too time-consuming to compute anti-forcing

polynomials of these graphs. When computing forcing number and anti-forcing num-

ber using this method, the total number of subsets to be verified are
∑F (G)

r=0

(n
2
r

)
and

∑Af(G)
r=0

(
m−n

2
r

)
, respectively. If n and m are large, then

∑Af(G)
r=0

(
m−n

2
r

)
is much larger

than
∑F (G)

r=0

(n
2
r

)
, since the first one not only has large combinatorial numbers but also

has more terms ( F (G) ⩽ Af(G) ⩽ (∆ − 1)F (G) [16, Theorem 2.2]). For example, we

use this method to compute the anti-forcing numbers of perfect matchings of C60, where

n = 60,m = 90 and
∑20

r=0

(
60
r

)
≫ ∑10

r=0

(
30
r

)
. After computing for consecutive six months

on a personal computer, we only find the minimum anti-forcing sets of 75 representives

with anti-forcing numbers 8, 9 and 10. However, to finish the work, we have to verify

all subsets with size from 11 to 20 of 60 edges to find the first anti-forcing set of the

remaining 83 representives, since Af(C60) = 20 = (3− 1)F (C60).

3.2 Integer linear programming

By Lemma 2.1, we can see that finding the minimum forcing set S ⊆ M is an optimization

problem: S is a smallest edge subset containing at least one edge of each M -alternating

cycle. Therefore, the forcing number of a perfect matchingM of graph G can be computed

as follows.

We generate allM -alternating cycles of G, such as collecting all connected components

(each must be aM -alternating cycle) among all symmetric differences betweenM and each

of the other perfect matchings. Let M=(mij) be an l×m matrix, where l is the number

of M -alternating cycles, and each row vector (mi1,mi2, . . . ,mim) of M represents the 0-1

vector correesponding to an M -alternating cycle ci, with 1 on the positions of the edges

both inM and ci, and 0 otherwise, i.e. mij = 1 if and only if ej ∈ ci∩M ,i = 1, 2, . . . , l, j =

1, 2, . . . ,m. Let b =
(
1, 1, . . . , 1

)T
and c =

(
1, 1, . . . , 1

)T
be two vectors with dimensions

l and m, respectively. Thus, we have the following integer linear programming (ILP):

(ILP): min cTx;

s.t.{
Mx ⩾ b,

x ∈ {0, 1}m.

Now, the optimal value of (ILP) is just the forcing number of M and the optimal
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solution x is the incidence vector of a minimum forcing set S, i.e. ei ∈ S if and only if

xi= 1.

Remark 1

(1) If we put 1 at the positions of the edges which are in ci but not in M , and 0

otherwise, i.e. mij = 1 if and only if ej ∈ ci \M , i = 1, 2, . . . , l, j = 1, 2, . . . ,m in

M, then the above (ILP) gives the anti-forcing number of the perfect matching M .

Thus we can compute the di-forcing polynomial of G by Definition 2.3 or Lemma

2.4.

(2) F. Zhang, G. Lin, M. Zheng [28] proposed a direct exhaustive searching method to

obtain all M -alternating cycles of a graph.

(3) If we relax the condition x ∈ {0, 1}m to x ≥ 0 or 0 ≤ x ≤ 1, i.e. 0 ≤ xj ≤ 1, j =

1, 2, . . . ,m, then we may obtain a fractional solution. For example, for the No.

187 perfect matching M of C60, we get a fractional optimal solution of anti-forcing

number 27
2
≤ af(C60,M) = 14 (see Figure 1).
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Figure 1. A fractional optimal solution
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3.3 An example

The cube graph Q3 (see Figure 2) has 9 perfect matchings (see Figure 3, matching edges

are thick). According to the symmetry of Q3, they can be divided into two equivalent

classes: {M1,M2,M3} and {M4,M5,M6,M7,M8,M9}. Let M1 and M4 be the represen-

tatives of these two equivalent classes, respectively.

1 2

34

5 6

78

1

4

6

2

9

11

12

10

3 5

78

Figure 2. The cube graph Q3

M1 M2 M3 M4 M5 M6 M7 M8 M9

Figure 3. 9 perfect matchings of Q3

Firstly, let’s calculate the forcing numbers of M1 and M4.

By making symmetric differences of M1 with each of the other perfect matchings, we

obtain 6 M1-alternating cycles (see Figure 4).

1 2 3 4 5 6

Figure 4. M1-alternating cycles

Then the coefficient matrix M1 w.r.t. M1, b, c and x of (ILP) are as follows:

M1 =




0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 1 1 0 0 0 0
0 0 1 0 1 0 1 1 0 0 0 0




,

b =
(
1, 1, 1, 1, 1, 1

)T
,
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c =
(
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

)T
,

x =
(
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12

)T
.

By solving the (ILP), we obtain x =
(
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0

)T
. That is to say that

S = {e5, e8} is a minimum forcing set and the forcing number of M1 is cTx = 2, the

number of 1’s in x.

Similarly, the coefficient matrix M4 w.r.t. M4 is

M4 =




1 0 0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 1 0
1 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 1 1 0
1 0 0 0 0 1 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0 0 1 1 0




.

By solving the (ILP), we obtain the forcing number of M4 is cTx = 2.

Secondly, let’s calculate the anti-forcing numbers of M1 and M4.

The new coefficient matrix M′
1 w.r.t. M1 is

M′
1 =




1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0 0 1 1 0
0 1 0 1 0 0 0 0 1 0 0 1




,

By solving the (ILP), we obtain the anti-forcing number of M1 is cTx = 4.

The new coefficient matrix M′
4 w.r.t. M4 is

M′
4 =




0 0 1 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1
0 1 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 1
0 0 1 1 0 0 0 1 0 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 1 0 0 0




,

By solving the (ILP), we obtain the anti-forcing number of M4 is cTx = 3.

Finally, by the above arguments and Lemma 2.4, the di-forcing polynomial of cube

graph Q3 is

Faf(Q3;x, y) = 3x2y4 + 6x2y3.
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4 Applications

As applications of (ILP), we obtain di-forcing polynomials, and particularly anti-forcing

polynomials, of C60, C70 and C72 (See Figure 5 [12,20,22,29]).

Figure 5. C60, C70 and C72

4.1 The di-forcing polynomial of C60

In 1985, H. Kroto, J. Heath, S. O’Brien, R. Curl, R. Smalley found C60 [12], an important

member of Fullerenes. Vukičević, Harry W. Kroto, and Milan Randić [23–25] solved the

forcing number problem of C60. Using the automorphism group of C60, they divided

12500 perfect matchings into 158 equivalent classes, and gave the forcing number of each

representative. By Lemma 2.4, their result is equivalant to the forcing polynomial of C60.

By Lemma 2.4 and using the function “LinearProgramming” with option “Integers”

to solve the (ILP) in software Mathematica, we compute the di-forcing polynomial of C60.

Theorem 4.1 The di-forcing polynomial of C60 is

Faf(C60;x, y) =x10y20 + 20x9y18 + 60x9y16 + 100x8y16 + 612x8y14

+ 60x7y14 + 376x8y13 + 30x7y13 + 640x8y12 + 1080x7y12

+ 60x6y12 + 325x8y11 + 2290x7y11 + 420x6y11 + 20x8y10

+ 600x7y10 + 1720x6y10 + 660x5y10 + 886x6y9 + 1280x5y9

+ 30x6y8 + 1230x5y8.

Particularly, we have a new result as follows:

Corollary 4.2 The anti-forcing polynomial of C60 is

Af(C60, x) =Faf(C60; 1, x) = x20 + 20x18 + 160x16 + 672x14 + 406x13

+ 1780x12 + 3035x11 + 3000x10 + 2166x9 + 1260x8.
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Similarly, we obtain the following known results.

Corollary 4.3 (1) [24,27] The forcing polynomial of C60 is

F (C60, x) =Faf(C60;x, 1) = x10 + 80x9 + 2073x8 + 4060x7 + 3116x6

+ 3170x5.

(2) [15] The number of perfect matchings of C60 is

Faf(C60; 1, 1) = 12500.

4.2 The di-forcing polynomial of C70

C70 has 52168 perfect mathings that are divided into 2780 equivalent classes [20]. Similar

to the above calculation procedure of C60, we obtain the di-forcing polynomial of C70.

Theorem 4.4 The di-forcing polynomial of the C70 is

Faf(C70;x, y) =2x11y21 + 20x11y19 + 40x10y19 + 10x9y18 + 10x11y17

+ 300x10y17 + 290x9y17 + 90x10y16 + 30x9y16 + 171x8y16

+ 230x10y15 + 1614x9y15 + 1000x8y15 + 20x10y14

+ 1100x9y14 + 1731x8y14 + 290x7y14 + 1490x9y13

+ 4130x8y13 + 2480x7y13 + 320x9y12 + 4220x8y12

+ 7230x7y12 + 360x6y12 + 90x9y11 + 1120x8y11

+ 7040x7y11 + 4950x6y11 + 40x8y10 + 1320x7y10

+ 6360x6y10 + 660x5y10 + 50x7y9 + 1880x6y9

+ 1300x5y9 + 40x6y8 + 140x5y8.

Consequently, we have a new result as follows:

Corollary 4.5 The anti-forcing polynomial of C70 is

Af(C70, x) =Faf(C70; 1, x) = 2x21 + 60x19 + 10x18 + 600x17

+ 291x16 + 2844x15 + 3141x14 + 8100x13 + 12130x12

+ 13200x11 + 8380x10 + 3230x9 + 180x8.

Also, we obtain the following known results.
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Corollary 4.6 (1) [20,27] The forcing polynomial of C70 is

F (C70, x) =Faf(C70;x, 1) = 32x11 + 680x10 + 4944x9 + 12412x8

+ 18410x7 + 13590x6 + 2100x5.

(2) [20] The number of perfect matchings of C70 is

Faf(C70; 1, 1) = 52168.

Remark 2 Zeng [27] corrects the corresponding computation result in [20], see [29].

4.3 The di-forcing polynomial of C72

C72 has 77400 perfect mathings that are divided into 3470 equivalent classes [22]. Similar

to the above calculation procedure of C60, we obtain the di-forcing polynomial of C72.

Theorem 4.7 The di-forcing polynomial of the C72 is

Faf(C72;x, y) =x12y24 + 24x11y22 + 76x11y20 + 168x10y20

+ 1120x10y18 + 244x9y18 + 276x10y17 + 24x9y17

+ 1464x10y16 + 2935x9y16 + 55x8y16 + 696x10y15

+ 2504x9y15 + 537x8y15 + 372x10y14 + 7622x9y14

+ 1684x8y14 + 456x7y14 + 7836x9y13 + 3000x8y13

+ 3274x7y13 + 2764x9y12 + 3338x8y12 + 8538x7y12

+ 764x6y12 + 108x9y11 + 570x8y11 + 781x7y11

+ 6822x6y11 + 12x8y10 + 1470x7y10 + 7225x6y10

+ 432x5y10 + 48x7y9 + 1983x6y9 + 948x5y9

+ 15x6y8 + 177x5y8.

Especially, we have a new result as follows:

Corollary 4.8 The anti-forcing polynomial of C72 is

Af(C72, x) =Faf(C72; 1, x) = x24 + 24x22 + 244x20 + 1364x18 + 300x17

+ 4454x16 + 3737x15 + 10134x14 + 14110x13 + 15404x12

+ 15318x11 + 9139x10 + 2979x9 + 192x8.

Also, we obtain the following known results.
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Corollary 4.9 (1) [22] The forcing polynomial of C72 is

F (C72, x) =Faf(C72;x, 1) = x12 + 100x11 + 4096x10 + 24037x9

+ 9196x8 + 21604x7 + 16809x6 + 1557x5

(2) [22] The number of perfect matchings of C72 is

Faf(C72; 1, 1) = 77400.

4.4 The di-forcing polynomials of other fullerenes

We have obtained all di-forcing polynomials of other fullerenes with carbon atoms at

most 60 (including all 1812 isomers of C60). A detailed discussion of these results will be

presented in other articles.
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