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Abstract

The fundamental model of any solid crystalline material (crystal) at the atomic
scale is a periodic point set. The strongest natural equivalence of crystals is rigid
motion or isometry that preserves all inter-atomic distances. Past comparisons of
periodic structures often used manual thresholds, symmetry groups and reduced
cells, which are discontinuous under perturbations or thermal vibrations of atoms.
This work defines the infinite sequence of continuous isometry invariants (Average
Minimum Distances) to progressively capture distances between neighbors. The
asymptotic behaviour of the new invariants is theoretically proved in all dimensions
for a wide class of sets including non-periodic. The proposed near linear time
algorithm identified all different crystals in the world’s largest Cambridge Structural
Database within a few hours on a modest desktop. The ultra fast speed and proved
continuity provide rigorous foundations to continuously parameterise the space of all
periodic crystals as a high-dimensional extension of Mendeleev’s table of elements.

∗Corresponding author.

https://doi.org/10.46793/match.87-3.529W


530

1 Motivations, problem statement and main results

A periodic lattice consists of all integer linear combinations of a basis in Euclidean space

Rn whose vectors span a unit cell U . More generally, a periodic point set is the Minkowski

sum Λ +M = {u⃗ + v⃗ : u ∈ Λ, v ∈ M} of a lattice Λ and a motif M , which is a finite

set of points in a unil cell U [42], see Fig. 1. Since atomic nuclei are well-defined physical

objects, their geometric positions provide the most important information about a periodic

crystal, while chemical bonds often depend on manually chosen thresholds for distances

and angles. Though chemical elements can be added to points as labels, a pure point set

representation allows us to study all periodic crystals together in a common space.

Figure 1. Left: a continuous deformation of lattices, all periodic sets form a con-
tinuous space. Right: many invariants such as symmetry groups are
discontinuous under any perturbations that change a primitive cell.

Though the concept of a crystal pattern [11, section 8.1.4] covers a periodic point

set, such patterns were studied up to coarse equivalences depending on compositions or

threshold parameters. For example, [26, Table 1] calls the crystals of FeS2 and PtP2

equivalent by all past relations, though their cubic lattices have different sizes [36] and

can be distinguished up to isometry.

An isometry of Euclidean Rn is any map that preserves inter-point distances. Any

orientation-preserving isometry can be realised as a continuous rigid motion, for example a

composition of translations and rotations in R3. The isometry equivalence is the strongest

and most natural for rigid crystals. We consider orientation-reversing isometries including

reflections for simplicity since a sign of orientation can be added to isometry invariants.

The recent work [17] initiated a classification of periodic point sets up to isometry.

An isometry classification of periodic point sets is highly non-trivial both mathematically

and computationally for the following four reasons.

Firstly, since any lattice can be generated by infinitely many different bases or primitive

unit cells of a minimal volume, a representation of a periodic point set as a sum S = Λ+M

of a lattice and a motif is highly ambiguous. All attempts to find a canonical basis or a
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reduced cell of a lattice are discontinuous under perturbations [17, section 1], which will

be formalised by Theorem 15 in section 7. Fig. 1 shows how all lattices (similarly any

periodic point sets) can be continuously deformed into each other. Hence all isometry

classes of periodic point sets form a continuous space. The last two periodic sets in Fig. 1

are nearly identical but their similarity is hard to quantify without using thresholds.

These sets substantially differ by symmetry groups and unit cell volumes but cannot be

distinguished by density (the number of points per volume).

Secondly, even for a fixed lattice basis, shifting points within a unit cell changes their

coordinates in the cell basis. Similarly, isometries preserve a rigid structure, but change

a basis representation in a fixed coordinate system.

Thirdly, periodic structures were traditionally studied by symmetries and other group-

theoretic invariants [19], which break down under almost any perturbations, see the last

pair in Fig. 1 Such discrete invariants cut the continuous space of periodic point sets into

separate strata. This discontinuous stratification is the main obstacle for understanding

transitions between crystal phases and for detecting nearly identical structures, which are

common due to inevitable noise in measurements or approximations in simulations.

Fourthly, the world’s largest Cambridge Structural Database has more than 1.1M

known structures kept as pairs (unit cell, motif), which should be converted into con-

tinuous invariants for reliable comparisons. Hence we need fast invariants that can be

sequentially extended to distinguish all real structures.

Problem 1 (fast invariants). Find continuous isometry invariants of periodic point sets

that can be computed in a near linear time in input sizes.

Fig. 2 shows how infinitely many pairs (cell, motif) form a single class of lattices rep-

resented by a colored box in the middle picture illustrating the continuous space of all

lattices. Consider the crystal geometry map {crystals} → {periodic point sets} represent-

ing any atom or ion by its atomic centre.

It is physically reasonable that the above map is injective meaning that any non-

isometric crystals remain non-isometric after forgetting chemical types or charges, because

different atoms or ions can be distinguished by their distances to neighbors in real crystals.

We experimentally confirm this injectivity by computing new isometry invariants for all

known molecular organic crystals.
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Figure 2. Ambiguous representations of periodic point sets by (unit cell, motif)
are converted into continuous isometry invariants. Each colored box in
the middle picture represents one isometry class of lattices.

Section 2 reviews key concepts and past results on isometry classifications. Section 3

introduces the Average Minimum Distances (AMD). Section 4 proves the Lipschitz conti-

nuity of AMD under perturbations of points. Section 5 describes the asymptotic behaviour

of the infinite AMD sequence. A near linear time algorithm in section 6 computes AMD

of real structures in milliseconds on a modest desktop. Section 7 discusses how AMD de-

tected previously unknown duplicates and distinguished hundreds of thousands of other

existing crystals in the Cambridge Structural Database (CSD).

2 Periodic point sets and a review of past work

Any point p ∈ Rn can be represented by the vector p⃗ from the origin of Rn to the point

p, so p and p⃗ can be used interchangeably, though p⃗ can be drawn at any initial point.

The Euclidean distance between points p, q ∈ Rn is |p− q|.

Definition 2 (a lattice Λ, a motif, a unit cell, a periodic point set S). Let vectors

v⃗1, . . . , v⃗n form a linear basis in Rn so that if
n∑

i=1

civ⃗i = 0⃗ for some real ci, then all ci = 0.

Then a lattice Λ in Rn consists of all linear combinations
n∑

i=1

civ⃗i with integer coefficients

ci ∈ Z. A motif M is a finite set of points p1, . . . , pm in the unit cell U(v⃗1, . . . , v⃗n) ={
n∑

i=1

civ⃗i : ci ∈ [0, 1)

}
, which is the parallepiped spanned by v⃗1, . . . , v⃗n. A periodic point

set S ⊂ Rn is the Minkowski sum S = Λ+M = {u⃗+ v⃗ : u ∈ Λ, v ∈M}, so S is a finite

union of translates of the lattice Λ. A unit cell U is primitive if S remains invariant

under shifts by vectors only from Λ generated by U or v⃗1, . . . , v⃗n.

Any lattice Λ can be considered as a periodic set with a 1-point motif M = {p}. This
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point p can be arbitrarily chosen in a unit cell U . The lattice translate Λ+ p⃗ is considered

as a lattice, because p can be the origin of Rn. The periodic sets in the top left part of

Fig. 2 represent isometric square lattices, though the former has a point p at a corner of

a unit cell U and the latter has p in the center of U . The periodic sets in the bottom

left part of Fig. 2 represent isometric hexagonal lattices, because every black point has

exactly six nearest neighbors that form a regular hexagon.

A lattice Λ of a periodic set S = M + Λ ⊂ Rn is not unique in the sense that S can

be generated by a sublattice of Λ and a motif larger than M . If U is any unit cell of

Λ, the sublattice 2Λ has the 2n times larger unit cell 2nU (twice larger along each of n

basis vectors of U), hence contains 2n times more points than M . Such an extended cell

2nU is superfluous, because S is invariant under translations along not only integer linear

combinations
n∑

i=1

civ⃗i with ci ∈ Z, but also along vectors with coefficients ci ∈ 1
2
Z.

Now we discuss the past work on comparing finite and periodic sets up to isometry.

The wider area of Euclidean distance geometry is reviewed in [25]. The full distribution of

all pairwise Euclidean distances |a− b| between points a, b in a finite set S ⊂ Rm is a well-

known isometry invariant. This invariant is complete or injective for finite sets in general

position [8] in the sense that almost any finite set S can be uniquely reconstructed up to

isometry from the set of all distances between points of S. The left hand side pictures in

Fig. 3 show the counter-example pair T,K to the full completeness.

Figure 3. Non-isometric sets that cannot be distinguished by past invariants. Left:
T,K ⊂ R2 have the same pairwise distances {2,

√
2,
√
2,
√
10,

√
10, 4}.

Right: periodic sets S(r) = {0, r, r + 2, 4} + 8Z and Q(r) = {0, r +
2, 4, r+4}+8Z for 0 < r ≤ 1 have the same Patterson function [32, p. 197,
Fig. 2]. All these pairs are distinguished by AMD in section 3.
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The isometry classification of finite point sets was algorithmically resolved by [1, The-

orem 1] saying that an existence of an isometry between m-point sets in Rn can be

checked in time O(mn−2 logm). For finite sets, Average Minimum Distances are similar

to Mémoli’s seminal work on distributions of distances [28], also known as shape distribu-

tions [5,22,27,31]. All algorithms for finite sets cannot be easily extended to periodic sets

by fixing a unit cell, because any such reduced cell is discontinuous under perturbations

by Theorem 15 in section 7.

An isometry classification of periodic point sets is already non-trivial in dimension 1.

Complete invariants were found for 1D sets with only integer (or rational) coordinates [23].

Three-dimensional analogues of their invariants form the Patterson function, whose peaks

correspond to inter-point vectors [21]. Periodic sets that cannot be distinguished by

Patterson functions are called homometric, see Fig. 3 and more details in appendix B.

The 4-point non-isometric sets T,K have periodic versions S(1) = {0, 1, 3, 4} + 8Z and

Q(1) = {0, 3, 4, 5}+8Z in Fig. 3. Even more general homometric sets S(r), Q(r) depending

on 0 < r ≤ 1 will be distinguished by the simplest new invariant AMD1 in section 3.

More recently, for any periodic point set S ⊂ Rn with a motif M in a unit cell U ,

Edelsbrunner et al. [17] introduced the density functions ψk(t) for any integer k ≥ 1. The

k-th density function ψk(t) is the total volume of the regions within the unit cell U covered

by exactly k balls B(p; t) with a radius t ≥ 0 and centres at points p ∈ M , divided by

the unit cell volume Vol[U ]. The density function ψk(t) was proved to be invariant under

isometry, continuous under perturbations, complete for periodic sets in general position in

R3, and computable in time O(mk3), wherem is the motif size of S. Section 5 in [17] gives

the counter-example to completeness: the 1-dimensional periodic sets S15 = X +Y +15Z

and Q15 = X − Y + 15Z for X = {0, 4, 9} and Y = {0, 1, 3}, which appeared earlier

in [23, section 4]. These non-isometric sets have the same density functions for all k ≥ 1,

see [3, Example 11], and are distinguished by AMD3 in Example (5b).

The latest invariant isoset [4] reduces the isometry classification of all periodic point

sets to a fintie collection of isometry classes of α-clusters around points in a motif at a

certain radius α, which was motivated by the seminal work of Dolbilin with co-authors

about Delone sets [7, 15, 16]. Checking if two isosets coincide needs a cubic algorithm,

which is not yet implemented. Running times of algorithms are compared in section 7.
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Figure 4. A periodic point set cannot be reliably represented by its finite subsets
without a lattice. For example, disks and rectangular boxes of the same
size can contain non-isometric finite subsets, which can discontinuously
change under perturbations of points or cut-off parameters.

Other distance-based invariants widely used in applications are the radial distribu-

tion function [37], which additionally depends on a cut-off radius around atoms. Fig. 4

illustrates the key obstacle to represent a periodic point set by its finite subset of points.

Even if such a subset is sufficiently large to cover a big extended cell, its content is highly

variable. In the simpler cases of lattices, two metric functions on arbitrary lattices were

defined by using Voronoi domains [30], though their computation was only approximate.

A similar attempt to tackle the discontinuity under perturbations uses a pseudo-

symmetry approach [44] putting two structures in the same symmetry class if their points

can be matched by shifts up to a small distance ε. Any tolerance ε > 0 leads to a logical

contradiction in classifications, because any wildly different periodic point sets can be

connected by a long chain of small perturbations within any small ε > 0. If we accept the

transitivity axiom of an equivalence relation, which justifies a partition into well-defined

classes, all above sets become equivalent to each other, so the classification is trivial.

A better way to deal with perturbations is to continuously quantify noise by a met-

ric between isometry classes of periodic point sets. Such a metric d should satisfy three

axioms, most importantly the first axiom saying that d(S,Q) = 0 only if S,Q are iso-

metric. Most past attempts use a metric between descriptors or invariants of periodic

structures [43], which can satisfy the above axiom only if the invariant is complete.
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3 Average Minimum Distances and their invariance

This section introduces Average Minimum Distances in Definition 3 and proves their

isometry invariance in Theorem 4. For a lattice Λ ⊂ Rn, AMDk(Λ) can be defined as the

distance from a fixed point p ∈ L to its k-th nearest neighbor in Λ, see Fig. 5.

Figure 5. Left: in the square lattice, the k-th neighbors of the origin and corre-
sponding AMDk are shown in the same color, for example the shortest
axis-aligned distances AMD1 = · · · = AMD4 = 1 are in red, the longer
diagonal distances AMD5 = · · · = AMD8 =

√
2 are in blue. Middle: in

the hexagonal lattice, the shortest distances are in red: AMD1 = · · · =
AMD6 = 1. Right: a honeycomb periodic point set has a 2-point motif
and the first average distances AMD1 = AMD2 = AMD3 = 1.

Definition 3 (Average Minimum Distances AMD). Let a periodic point set S = Λ +

M ⊂ Rn have points p1, . . . , pm in a primitive unit cell. For a fixed integer k ≥ 1 and

i = 1, . . . ,m, the i-th row of the m × k matrix D(S; k) consists of the ordered Euclidean

distances di1 ≤ · · · ≤ dik measured from the point pi to its first k nearest neighbors within

the infinite set S, see Fig. 5. The Average Minimum Distance AMDk(S) =
1

m

m∑
i=1

dik

equals the average of the k-th column in the matrix D(S; k) of distances to neighbors.

Definition 3 makes sense for any finite set S = M of m points for k ≤ m − 1. Then

the matrix D(S;m− 1) for the largest possible number k = m− 1 of neighbors includes

all pairwise distances, but differs from the usual symmetric distance matrix of S due to

the ordered distances in each row. This pointwise information distinguishes the 4-point

sets T,K in Fig. 3 as follows. The trapezium T and kite K in R2 can be represented by

the points (±1, 1), (±2, 0) and (−2, 0), (−1,±1), (2, 0), respectively. The matrices from
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Definition 3 are D(T ; 3) =




√
2 2

√
10√

2 2
√
10√

2
√
10 4√

2
√
10 4


 and D(K; 3) =




√
2

√
2

√
10√

2 2
√
10√

2 2
√
10√

10
√
10 4


.

The first components of the vectors AMD(3)(T ) = (
√
2, 1 +

√
10
2
, 2 +

√
10
2
), AMD(3)(K) =

(3
√
2+

√
10

4
, 1 +

√
2+

√
10

4
, 1 + 3

4

√
10) distinguish K,T in Fig. 3.

If S is periodic, all AMD values form the infinite sequence {AMDk}+∞
k=1. In practice,

we compute the vector AMD(k) = (AMD1, . . . ,AMDk) up to a certain number k of neigh-

bors. However, k is not a parameter that changes the output. If we increase k, we get

more values without changing the previous ones, so k is similar to a desired degree of

approximation. Since the asymptotic behaviour of AMDk will be explicitly described in

Theorem 13, the infinite AMD sequence can be informally compared with the sequence

of coefficients in a degree k Taylor polynomial approximating an analytic function.

Theorem 4 (isometry invariance of AMDk). For any finite or periodic point set S ⊂ Rn,

the Average Minimum Distance AMDk(S) from Definition 3 is an isometry invariant of

S for any k ≥ 1.

Proof. If S is periodic, first we show that the unordered collections of rows of the matrix

D(S; k), and hence AMDk(S), is independent of a primitive unit cell. Let U,U ′ be different

primitive cells of the periodic point set S ⊂ Rn with a lattice Λ. Any point q ∈ S ∩ U ′

can be translated along v⃗ ∈ Λ to a point p ∈ S ∩ U and vice versa. These translations

establish a bijection between the motifs S∩U ↔ S∩U ′ and preserve all distances. Hence

the matrix D(S; k) is the same for both cells U,U ′ up to a permutation of rows.

Now we prove that D(S; k), and hence AMDk(S), is preserved by any isometry f :

S → Q. Any primitive cell U of S is bijectively mapped by f to the unit cell f(U) of Q,

which should be also primitive. Indeed, if Q is preserved by a translation along a vector v⃗

that doesn’t have all integer coefficients in the basis of f(U), then S = f−1(Q) is preserved

by the translation along f−1(v⃗), which also doesn’t have all integer coefficients in the basis

of U , i.e. U was non-primitive. Since both primitive cells U and f(U) contain the same

number of points from S and Q = f(S), the isometry f gives a bijection between all motif

points of S,Q. For any sets S,Q, since f preserves distances, every list of ordered distances

from any point pi ∈ S∩U to its first k nearest neighbors in S coincides with the list of the

ordered distances from f(pi) to its first k neighbors in Q. The matrices D(S; k), D(Q; k)

are identical up to permutations of rows, hence AMDk(S) = AMDk(Q).
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Example 5. (5a) Table 1 implies by Theorem 4 that S(r), Q(r) in Fig. 6 are not isometric

for 0 < r ≤ 1. The mirror image of S(r) = {0, r, r + 2, 4} + 8Z under the reflection

t 7→ 4− t coincides with S(2− r) = {0, 2− r, 4− r, 4}+ 8Z, so they are equivalent up to

isometries including reflections. Similarly, Q(r) and Q(2 − r) are isometric by t 7→ −t.
Though AMDk(S(r)) seem to be independent of r, the first column of D(S(r); 3) has the

minimum distance r, which distinguishes S(r) between each other for all 0 < r ≤ 1.

(5b) The 1-dimensional periodic sets S15 = {0, 1, 3, 4, 5, 7, 9, 10, 12} + 15Z and Q15 =

{0, 1, 3, 4, 6, 8, 9, 12, 14}+15Z in Fig. 6 are not isometric due to AMDk(S15) ̸= AMDk(Q15)

for k = 3, 4 in Table 2. All their density functions ψk(t) are identical [17, section 5].

Table 1. Matrices D(S; k) and AMD from Definition 3 distinguish the sets S(r) =
{0, r, r+2, 4}+8Z and Q(r) = {0, r+2, 4, r+4}+8Z for any 0 < r ≤ 1.

D(S(r); 3) distance to neighbor 1 distance to neighbor 2 distance to neighbor 3

p1 = 0 |0− r| = r |0− (2 + r)| = 2 + r |0− 4| = 4
p2 = r |r − 0| = r |r − (2 + r)| = 2 |r − 4| = 4− r
p3 = 2 + r |(2 + r)− 4| = 2− r |(2 + r)− r| = 2 |(2 + r)− 0| = 2 + r
p4 = 4 |4− (2 + r)| = 2− r |4− r| = 4− r |4− 0| = 4

AMDk(S(r)) AMD1 = 1 AMD2 = 2.5 AMD3 = 3.5

D(Q(r); 3) distance to neighbor 1 distance to neighbor 2 distance to neighbor 3

p1 = 0 |0− (2 + r)| = 2 + r |0− (r + 4− 8)| = 4− r |0− 4| = 4
p2 = 2 + r |(2 + r)− 4| = 2− r |(2 + r)− (4 + r)| = 2 |(2 + r)− 0| = 2 + r
p3 = 4 |4− (4 + r)| = r |4− (2 + r)| = 2− r |4− 0| = 4
p4 = 4 + r |(4 + r)− 4| = r |(4 + r)− (2 + r)| = 2 |(4 + r)− 8| = 4− r

AMDk(Q(r)) AMD1 = 1 + 0.5r AMD2 = 2.5− 0.5r AMD3 = 3.5

Figure 6. Left: circular versions of the periodic point sets S(r) = {0, r, r+2, 4}+8Z
and Q(r) = {0, r+2, 4, r+4}+8Z for 0 < r ≤ 1. The distances between
points (shown outside the disk) are arc lengths (shown inside the disk).
Right: S15, Q15 from Example 5b are distinguished by AMD3, not by
the density functions ψk(t) for all k ≥ 1 [3, Example 11].
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Table 2. First row: points from the motif M of S15 and Q15 in Fig. 6. Further
rows: distances from each p ∈M to its k-th neighbor in S15 and Q15.

S15 0 1 3 4 5 7 9 10 12 AMDk

k = 1 1 1 1 1 1 2 1 1 2 11/9
k = 2 3 2 2 1 2 2 2 2 3 19/9
k = 3 3 3 2 3 2 3 3 3 3 25/9
k = 4 4 4 3 3 4 3 4 5 4 34/9

Q15 0 1 3 4 6 8 9 12 14 AMDk

k = 1 1 1 1 1 2 1 1 2 1 11/9
k = 2 1 2 2 2 2 2 3 3 2 19/9
k = 3 3 2 3 3 3 4 3 3 2 26/9
k = 4 3 3 3 4 3 4 5 4 4 33/9

4 Continuity of Average Minimum Distances

For the isometry invariance of AMD(S; k) in Theorem 4, a unit cell U in Definition 3

should be primitive. If U contains m points and we make one edge of U twice longer, the

resulting non-primitive unit cell contains 2m points and the matrix D(S; k) will be twice

larger. A translated copy of any point pi ∈ U will have exactly the same ordered distances

to its neighbors as pi due to periodicity. After doubling U , every row is repeated twice in

D(S; k). The requirement of a primitive cell U makes D(S; k) discontinuous similarly to

the cell volume Vol[U ] in Fig. 1. One way to resolve this discontinuity is to average each

column of D(S; k) to get AMDk(S) in Definition 3.

Continuity of AMDk(S) is most naturally measured relative to a maximum perturba-

tion of points needed to get one set from another, as formalised below.

Definition 6 (bottleneck distance between sets). For a bijection g : S → Q between finite

or periodic point sets S,Q ⊂ Rn, the maximum deviation is the supremum sup
p∈S

|p− g(p)|
over p ∈ S. The bottleneck distance is defined as dB(S,Q) = inf

g:S→Q
sup
p∈S

|p− g(p)| is the

infimum over bijections g : S → Q.

The bottleneck distance is impractical to compute because of a minimisation over

infinitely many bijections. Theorem 15 in Section 7 will justify that there is no continuous

way to select a unit cell of a lattice. However, continuity of isometry invariants can be

checked for all small perturbations in the bottleneck distance. Continuity Theorem 9

requires Lemmas 7 and 8.
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Lemma 7 (Lemma 2 in [17]). Let periodic point sets S,Q ⊂ Rn have a bottleneck distance

dB(S,Q) < r(Q), where the packing radius r(Q) is the minimum half-distance between

points of Q. Then S,Q have a common lattice Λ with a unit cell U such that S =

Λ+ (U ∩ S) and Q = Λ+ (U ∩Q).

Lemma 8 (perturbed distances). For some ε > 0, let g : S → Q be a bijection between

finite or periodic sets such that |a− g(a)| ≤ ε for all a ∈ S. For any i ≥ 1, let ai ∈ S and

bi ∈ Q be the i-nearest neighbors of points a ∈ S and b = g(a) ∈ Q, respectively. Then

the Euclidean distances from a, b to their i-th neighbors ai, bi are 2ε-close, i.e. ||a− ai| −
|b− bi|| ≤ 2ε.

Proof. Translate the full set Q by the vector a − g(a). So we assume that a = g(a) and

|b− g(b)| < 2ε for all b ∈ S. Assume by contradiction that the distance from a to its i-th

neighbor bi is less than |a− ai| − 2ε.

Then all first i neighbors b1, . . . , bi of a within Q belong to the open ball with the

center a and the radius |a−ai|− 2ε. Since the bijection g shifted every point b1, . . . , bi by

at most 2ε, their preimages g−1(b1), . . . , g
−1(bi) belong to the open ball with the center

a = g(a) and the radius |a − ai|. Then the i-th neighbor of a within S is among these i

preimages. Hence the distance from a to its i-th nearest neighbor is strictly less than the

required distance |a − ai|. A similar contradiction is obtained from the assumption that

the distance from a to its new i-th neighbor bi is more than |a− ai|+ 2ε.

Theorem 9 (continuity of AMD under any small perturbations). Let

finite or periodic sets S,Q ⊂ Rn satisfy dB(S,Q) < r(Q), where r(Q) is the packing radius

of Q. Then |AMDk(S)− AMDk(Q)| ≤ 2dB(S,Q) for k ≥ 1.

Proof. By Lemma 7 the sets S,Q have a common lattice Λ. Any primitive cell U of Λ

is a unit cell of S,Q, i.e. S = Λ + (S ∩ U) and Q = Λ + (Q ∩ U). Since the bottleneck

distance ε = dB(S,Q) < r(Q), we can define a bijection g from every point a ∈ S to its

unique ε-closest neighbor g(a) ∈ Q.

If U is a non-primitive unit cell of S, the matrix D(S; k) can be constructed as in

Definition 3, but each row will be repeated n(S) > 1 times, where n(S) is Vol[U ] divided

by the volume of a primitive unit cell of S. The average AMDk(S) in the k-th column is

independent of the factor n(S) > 1.
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Since the above conclusions hold for Q instead of S, we now compare the matrices

D(S; k) and D(Q; k) built on the same unit cell U and have equal sizes. By Lemma 8

the corresponding elements of the matrices D(S; k) and D(Q; k) differ by at most 2ε, i.e.

|Dij(S; k)−Dij(Q; k)| ≤ 2ε. The average of the k-th column changes by at most 2ε, i.e.

|AMDk(S)− AMDk(Q)| ≤ 2ε.

5 The explicit asympotic behaviour of AMD

The main result of this section is Theorem 13 explicitly describing the asymptotic growth

of AMDk as k → +∞ for a wide class of sets including non-periodic sets. The average

minimum distance AMDk(S) approaches c(S) n
√
k, where the point packing coefficient

c(S) is introduced below. The volume of the unit ball in Rn is Vn =
πn/2

Γ(n
2
+ 1)

, where

Γ(m) = (m− 1)! and Γ(m
2
+ 1) =

√
π(m− 1

2
)(m− 3

2
) · · · 1

2
for integer m ≥ 1.

Definition 10 ((U,m)-sets S, point packing coefficient c(S)). Let U be a unit cell of a

lattice Λ ⊂ Rn. For any fixed m ≥ 1, a set S ⊂ Rn is called a (U,m)-set if S ∩ (U +

v⃗) consists of m points for any vector v⃗ ∈ Λ. For any point p ∈ S ∩ U , let dk(S; p)

be the distance from p to its k-th neighbor in S. The Average Minimum Distance is

AMDk(S;U) =
1

m

∑
p∈S∩U

dk(S; p). The Point Packing Coefficient is c(S) = n

√
Vol[U ]

mVn
,

where S has m points in U .

Figure 7. The six 2-dimensional lattices Λi have the point packing coefficients
c(Λi) below and the curves of AMDk values for k = 1, . . . , 300 in Fig. 8.
1st: a generic black lattice Λ1 with the basis (1.25, 0.25), (0.25, 0.75) and

c(Λ1) =

√
7

8π
≈ 0.525. 2nd: the blue hexagonal lattice Λ2 with the basis

(1, 0), (1/2,
√
3/2) and c(Λ2) =

√√
3

2π
≈ 0.528. 3rd: the orange rhombic

lattice Λ3 with the basis (1, 0.5), (1,−0.5) and c(Λ3) =

√
1

π
≈ 0.564.

4th: the purple rhombic lattice Λ4 with the basis (1, 1.5), (1,−1.5) and

c(Λ4) =

√
3

π
≈ 0.977. 5th: the red square lattice Λ5 with the basis

(1, 0), (0, 1) and c(Λ5) =

√
1

π
≈ 0.564. 6th: the green rectangular lat-

tice Λ6 with the basis (2, 0), (0, 1) and c(Λ6) =

√
2

π
≈ 0.798.
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Figure 8. Left: AMDk up to k = 30 for the 2D lattices in Fig. 7. Right: AMDk

extended to k = 300. The orange and red lattices have close point
packing coefficients c(Λi), so their AMD curves approach each other by
Theorem 13 but distinguish these lattices.

An example of a (U,m)-set is a non-periodic perturbation of a periodic set S = Λ+M ,

where a lattice Λ is generated by a unit cell U , a motif M has m points. Since S may not

be periodic, AMDk(S;U + v⃗) can depend on a shift vector v⃗ ∈ Λ. Even if S is periodic, a

unit cell U in Definition 10 can be non-primitive. However, Vol[U ]/m is independent of a

choice of U . Hence c(S) is an isometry invariant, also for any (U,m)-set S, because any

shifted cell U + v⃗ contains the same number m of points from S by Definition 10.

If all points have the weight Vn, then (c(S))n is inversely proportional to the density

ρ =
mVn
Vol[U ]

of S. The diameter of a unit cell U is d = sup
a,b∈U

|a− b|.

Lemma 11 (bounds on points within a ball). Let S ⊂ Rn be any (U,m)-set with a unit cell

U , which generates a lattice Λ and has a diameter d. For any point p ∈ S∩U and a radius

r, consider the lower union U ′(p; r) =
⋃{(U + v⃗) such that v⃗ ∈ Λ, (U + v⃗) ⊂ B̄(p; r)} and

the upper union U ′′(p; r) =
⋃{(U + v⃗) such that v⃗ ∈ Λ, (U + v⃗) ∩ B̄(p; r) ̸= ∅}. Then

the number of points from S in the closed ball B̄(p; r) with center p and radius r has the

bounds

(
r − d

c(S)

)n

≤ m
Vol[U ′(p; r)]

Vol[U ]
≤ |S ∩ B̄(p; r)| ≤ m

Vol[U ′′(p; r)]

Vol[U ]
≤
(
r + d

c(S)

)n

.

Proof. Intersect the three regions U ′(p; r) ⊂ B̄(p; r) ⊂ U ′′(p; r) with S in Rn and count

resulting points: |S ∩ U ′(p; r)| ≤ |S ∩ B̄(p; r)| ≤ |S ∩ U ′′(p; r)|.

The union U ′(p; r) consists of
Vol[U ′(p; r)]

Vol[U ]
cells, which all have the same volume

Vol[U ]. Since |S ∩ U | = m, we now get |S ∩ U ′(p; r)| = m
Vol[U ′(p; r)]

Vol[U ]
. Similarly we
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count the points in the upper union: |S ∩ U ′′(p; r)| = m
Vol[U ′′(p; r)]

Vol[U ]
. The bounds of

|S ∩ B̄(p; r)| become

m
Vol[U ′(p; r)]

Vol[U ]
≤ |S ∩ B̄(p; r)| ≤ m

Vol[U ′′(p; r)]

Vol[U ]
,

Vol[U ′(p; r)] ≤ Vol[U ]

m
|S ∩ B̄(p; r)| ≤ Vol[U ′′(p; r)].

For the diameter d of the unit cell U , the smaller ball B̄(p; r− d) is completely contained

within the lower union U ′(p; r). Indeed, if |q⃗ − p⃗| ≤ r − d, then q ∈ U + v⃗ for some

v⃗ ∈ Λ. Then (U + v⃗) is covered by the ball B̄(q; d), hence by B̄(p; r) due to the triangle

inequality. The inclusion B̄(p; r − d) ⊂ U ′(p; r) implies the lower bound for the volumes:

Vn(r − d)n = Vol[B̄(p; r − d)] ≤ Vol[U ′(p; r)], where

Vn is the unit ball volume in Rn. The inclusion U ′′(p; r) ⊂ B̄(p; r + d) gives

Vol[U ′′(p; r)] ≤ Vol[B̄(p; r + d)] = Vn(r + d)n,

Vn(r − d)n ≤ Vol[U ]

m
|S ∩B(p; r)| ≤ Vn(r + d)n,

mVn
Vol[U ]

(r − d)n ≤ |S ∩B(p; r)| ≤ mVn
Vol[U ]

(r + d)n, which implies the result.

Lemma 12 (distance bounds). Let S ⊂ Rn be any (U,m)-set with a unit cell U of

diameter d. For any point p ∈ S∩U , let dk(S; p) be the distance from p to its k-th nearest

neighbor in S. Then c(S) n
√
k − d < dk(S; p) ≤ c(S) n

√
k + d for any k ≥ 1.

Proof. The closed ball B̄(p; r) of the radius r = dk(S; p) has more than k points (including

p) from S. The upper bound of Lemma 11 for r = dk(S; p) implies that k < |S∩B̄(p; r)| ≤
(r + d)n

(c(S))n
. Taking the n-th roots, we get n

√
k <

r + d

c(S)
, so r = dk(S; p) > c(S) n

√
k − d.

For any smaller radius r < dk(S; p), the closed ball B̄(p; r) contains at most k points

(including p) from S. The lower bound of Lemma 11 for any r < dk(S; p) implies that
(r − d)n

c(S)n
≤ |S ∩ B̄(p; r)| ≤ k. Since

(r − d)n

c(S)n
≤ k holds for the constant upper bound

k and any radius r < dk(S; p), the same inequality holds for the radius r = dk(S; p).

Similarly to the upper bound above, we get
r − d

c(S)
≤ n

√
k, r = dk(S; p) ≤ c(S) n

√
k + d.

Combine the two bounds above as follows: c(S) n
√
k − d < dk(S; p) ≤ c(S) n

√
k + d.

Theorem 13 (asymptotic behaviour of AMD). For any (U,m)-set S ⊂ Rn from Defi-

nition 10, we have |AMDk(S;U) − c(S) n
√
k| ≤ d for any k ≥ 1 and lim

k→+∞

AMDk(S;U)
n
√
k

equals the Point Packing Coefficient c(S).
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Proof. Averaging the bounds of Lemma 12 over all points p ∈ S ∩ U , we get c(S) n
√
k −

d < AMDk(S;U) =
1

m

∑
p∈S∩U

dk(S; p) ≤ c(S) n
√
k + d, which imply that |AMDk(S;U) −

c(S) n
√
k| ≤ d, k ≥ 1. So lim

k→+∞

AMDk(S;U)
n
√
k

= c(S).

6 A near linear time algorithm and experiments

This section describes the AMD algorithm in Theorem 14 and experiments on big datasets.

The input for computing AMD is a periodic point set S given by the basis vectors of its

unit cell U and the Cartesian coordinates of m motif points. The length k of the vector

AMD(k)(S) = (AMD1, . . . ,AMDk) is independent of a periodic point set S. Increasing k

adds more components to the vector AMD(k) without changing any previous values.

The size of an input for any real periodic structure is proportional to the number m

of points in a motif. Theorem 14 solves Problem 1 requiring a near linear time in both

k,m. For a unit cell U with a diameter d, define the skewness ν =
d

n
√

Vol[U ]
. Reduced

cells of most real structures have a small skewness ν. For any fixed ν, in Theorem 14

below (5ν)nVn → 0 as n → +∞ by Stirling’s approximation of the factorial n! hidden in

the unit ball volume Vn.

Theorem 14 (a near linear time algorithm for AMD). Let a periodic set S ⊂ Rn have

m points in a unit cell U . Then AMDi(S) can be computed for i = 1, . . . , k in time

O((5ν)nVnkm log2(km)), where Vn is the unit ball volume in Rn, d and ν =
d

n
√
Vol[U ]

are

the diameter and skewness of the cell U .

Proof. Let the origin 0 ∈ Rn be in the center of the unit cell U . If d is the diameter of

U , any point p ∈M = S ∩U is covered by the closed ball B̄(0, 0.5d). By Lemma 12 all k

neighbors of p are covered by the ball B̄(0; r) of radius r = c(S) n
√
k + 1.5d. To generate

all Λ-translates of M within B̄(0; r), we gradually extend U in spherical layers by adding

more shifted cells until we get the upper union U ′′(0; r) ⊃ B̄(0; r). By Lemma 11 the union

U ′′(0; r) includes k neighbors of motif points and has at most µ ≤ m
Vol[U ′′(0; r)]

Vol[U ]
≤

≤
(
c(S) n

√
k + 2.5d

c(S)

)n

=

(
n
√
k +

2.5d

c(S)

)n

= O(2n(k +m(2.5ν)nVn)) points.

To get the last expression, we use the rough estimate (a+ b)n ≤ 2n(an + bn) with an = k,

bn =

(
2.5d

c(S)

)n

=
(2.5d)n

Vol[U ]
mVn = m(2.5ν)nVn for ν =

d
n
√
Vol[U ]

.
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A cover tree on µ points can be built in time O(µ log µ) by [6, Theorems 4, 6]. Then

all k neighbors of m ≤ µ motif points p ∈ M can be found in time O(mk log k) by [18,

chapter 3], which extends [14, Theorem 2] for k = 1, where hidden constants depend on

a type of a point set, but not on its size. By Definition 3 we lexicographically sort m

lists of ordered distances in time O(km logm), because a comparison of any two ordered

lists of length k takes O(k) time. The ordered lists of distances are the rows of the

matrix D(S; k). Then AMDi(S) are found as column averages in time O(km). Using

log µ = n log 2 +O(log(k +m(2.5ν)nVn)) = nO(log(km)), the total time is

O(µ log µ+mk log2 k) = O(2n(k +m(2.5ν)nVn)n log(km) +mk log2 k) =

= O((5ν)nVnkm log2(km)), which is near linear in both key inputs k,m.

Figure 9. The blue curves show the AMD time averaged over 3000 sets whose
points are uniformly generated in unit cells with random edge-lengths in
[1, 2] and angles in [π3 ,

2π
3 ]. Left: k = 200. Right: m = 250 for the blue

curve, 5679 structures for the red curve.

Our implementations of AMD invariants in Python [39] and C++ [29] use the n-d

tree [12] on µ points in Rn, which performs faster in small dimensions than a cover tree

but has no proved complexity for a nearest neighbor search. Fig. 9 illustrates a near

linear running time justified by Theorem 14. The red curve on the right was obtained on

5679 predicted structures, which have the same chemical composition and contain about

m = 250 points on average in a unit cell, which has led to four new crystals [34].

The only other implemented sequence of continuous isometry invariants are density

functions ψk(t) requiring a cubic time in k, see [17, section 6.3]. Because of this cubic

increase, we ran the C++ code [38] only up to k = 8 for four representative points out of

46 atoms per molecule. These simplified sets contain about 25 points on average in a unit

cell. Each ψk(t) depends on a continuous radius t and can be evaluated only at discretely
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sampled values of t. We computed the first eight ψk(t) sampled at t equal to multiples of

0.2Å up to about 12Å, where 1Å = 10−10m. Smallest distances between atoms in crystals

are about 0.8Å at this atomic scale. With the above parameters, the experiments on

similar machines (Dell XPS 15 6-core, 2.20GHz, 16GB and MacBook Pro, 2.3GHz, 8GB)

took about 1 min per structure, more than 4 days for 5679 simplified sets.

In comparison with the above times of density functions, vectors AMD(k) were com-

puted for full periodic structures and much larger k on the modest desktop AMD Ryzen

5 6-core 4.60Ghz, 32GB DDR4. The red curve in Fig. 9 for the 5679 structures implies

the average time of 10ms for AMD(100) and 27ms for AMD(1000), so the total time was

about 17 min. Despite the world’s largest Cambridge Structural Database (CSD) has

much more diverse compositions in comparison with T2 structures based on the same

molecule, AMD(100) required the similar time of 13.4ms on average, less than 52 min in

total for all 228,994 molecular organic real crystal structures in the CSD.

7 A discussion of contributions and further steps

In conclusion, the AMD sequence is a novel continuous invariant of periodic point sets

up to isometry in Rn by Theorems 4 and 9. Theorem 13 is especially strong due to

the asymptotic formula working even for non-periodic sets S with the new point packing

coefficient c(S). Theorem 14 justified a near linear running time in both input parameters

k,m, which enabled visualisations of huge data with modest resources, see appendix B.

The key motivation for continuous isometry invariants is the discontinuity of reduced

cells, which was experimentally known [2] since 1980. Theorem 15 below will disprove any

possibility of a continuous reduction. Let B be the space of linear bases b = {v⃗1, . . . , v⃗n}.
If we concatenate n vectors into one vector with n2 coordinates, the space B becomes a

subset of Rn2
with the Euclidean topology. Since any basis generates a lattice, we have

the projection g : B → L, where L is the space of all lattices in Rn. This space L can have

the minimal topology that makes g continuous so that the preimage g−1(N(Λ)) of any

open neighborhood N(Λ) is a union of open neighborhoods of bases from g−1(Λ) ⊂ B.

Continuity of g : B → L means that any small perturbation of a basis gives rise to a

small perturbation of the lattice generated by this basis. A desired reduction would be

a continuous map h : L → B such that g ◦ h(Λ) = Λ is the identity. If we continuously

change a lattice Λ ∈ L, its reduced basis h(Λ) ∈ B should also change continuously.
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Theorem 15 (discontinuity of reduced cells). Let g : B → L map any basis b of Rn to

its lattice Λ. There is no continuous map h : L→ B such that g ◦ h is the identity.

Proof. Let h(Zn) = {v⃗1, . . . , v⃗n} ∈ B be a reduced basis of integer lattice Zn ⊂ Rn.

Consider the continuous path γ : [0, 1] → B, where γ(t) is the basis v⃗1 + tv⃗2, v⃗2, . . . , v⃗n.

Since the bases γ(0) ̸= γ(1) define the same lattice Zn ⊂ Rn, the composition g ◦ γ is a

continuous loop g ◦ γ : [0, 1] → L in the space of lattices with g ◦ γ(0) = Zn = g ◦ γ(1).

It remains to show that the continuous map h lifts the loop g◦γ to the path γ : [0, 1] →
B with disjoint endpoints γ(0) ̸= γ(1), which is a contradiction with the existence of such

h. Since h is continuous, for all sufficiently small t > 0, the basis h ◦ g ◦ γ(t) should

be close to h(Zn), hence should coincide with γ(t), because all other bases of the lattice

h ◦ g ◦ γ(t) close to Zn are sufficiently away from γ(t) in Euclidean metric on B.

This local extension argument works around any t ∈ [0, 1] where we already know

that h ◦ g ◦ γ(t) = γ(t). Since any infinite cover of the compact line segment [0, 1] by

open neighborhoods contains a finite subcover, we need only finitely many steps to get

γ(1) = h ◦ g ◦ γ(1) = h(Zn) = h ◦ g ◦ γ(0) = γ(0), which contradicts the fact that the

initial bases γ(1) ̸= γ(0).

A limitation of AMD is its potential incompleteness, though we do not know any

non-isometric periodic sets that have equal AMDk for all k ≥ 1. Theorem 16 hints at

completeness of AMD for periodic point sets in general position.

Theorem 16 (completeness for generic finite sets). Let a finite set S ⊂ Rn consist of m

points such that all pairwise distances between points of S are distinct. Then S can be

uniquely reconstructed from the matrix D(S;m− 1) in Definition 3 up to isometry.

Proof. Since the distances between all m points of S ⊂ Rn are distinct, every distance

appears in the matrix D(S;m− 1) exactly twice, once as the distance from a point pi to

its neighbor pj, and once more as the distance from pj to pi, though these equal entries

are not symmetric. We will convert D(S;m − 1) into the distance matrix D(S). Let

d1 < d2 < · · · < dm−1 be all distances from the first point p1 ∈ S to all m − 1 others.

Each distance di from the first row of D(S;m− 1) appears exactly once more in another

(say, i′-th) row of D(S;m − 1). Then di is the distance between the points p1 and pi′

numbered as the i′-th row. The map of indices i 7→ i′ is a permutation of {2, . . . ,m}. We
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set D11 = 0 and D1,i′ = di for each i = 2, . . . ,m. Then we similarly permute indices in the

2nd row of D(S;m−1), starting from the 3rd index due to the symmetry of D(S), and so

on. The full distance matrix D(S) uniquely determines a set with ordered points S ⊂ Rn

modulo isometries by the classical multi-dimensional scaling in [25, Section 8.5.1].

Encouraged by Theorem 16 and fast speed of the AMD algorithm, we have com-

puted the invariant AMD(100) vector for all 229K molecular organic crystals from the

world’s largest Cambridge Structural Database (CSD). We found 405 pairs with identical

AMD(100) and checked them by the traditional packing similarity [13] measuring the Root

Mean Square Devitation (RMSD) between atomic positions in 15 (by default) matched

molecules from two crystals. It turned out that these 405 pairs have RMSD≈ 10−15Å in

the range of typical floating point errors. So all these pairs of crystals are duplicates but

remained undetected in the CSD, because RMSD is slow to compute pairwisely.

The AMD invariants were enough to predict the lattice energy of molecular crystals

within 5kJ/mole [35] without using any chemical data. In the partial case of lattices, their

space of isometry classes was continuously parameterised by root forms [9,10] in dimension

two and three. AMD were recently extended to Pointwise Distance Distributions (PDD)

whose continuity was proved [40] under Earth Mover’s Distance, which was used for

comparing chemical compositions [24]. The above root forms of lattices combined with

PDD are enough to explicitly reconstruct a periodic point set in general position, which

justifies a geometric inverse design for any periodic crystals.

The fact that AMD(100) distinguished 229K real crystals supports the Crystal Isometry

Principle (CRISP) saying that the map {periodic crystals} → {periodic point sets} is

injective, where both crystals and point sets are considered up to isometry. Indeed,

replacing one chemical element by another inevitably changes its distances to neighbors,

which is easily captured by the new distance-based invariants AMD or PDD. The pairwise

computations for over 660K periodic crystals (with full 3D geometry and without disorder)

from the Cambridge Structural Database (CSD) have identified five pairs of crystals that

have identical AMD(100) invariants and differ only by the chemical type of a single atom:

HIFCAB and JEPLIA (Cd ↔ Mn),

COLYEI and POCLOK (Eu ↔ Sm),

DTBIPT and DTHBPD10 (Pt ↔ Pd),
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LALNET and POCPAA (Cd ↔ Ni),

AFIBOH and NENCUF (Cd ↔ Zn).

After the above five pairs of ‘needles in a haystack’ were automatically detected by

invariant computations, it was easy enough to manually check that in each pair both

crystals have identical unit cell parameters, atomic coordinates and structure factors.

These coincidences seem unrealistic to all crystallographers who looked the raw data.

Our colleagues in the Cambridge Crystallographic Data Centre are now contacting the

journals that published the underlying papers. The above examples were not discovered by

any of the past tools such as RMSD or PXRD, because they are slow even for comparing

a single newly deposited crystal with more than 1.1M entries in the CSD. Moreover,

checking the cell and motif data for coincidence cannot reliably detect duplicates, because

cell parameters and atomic coordinates can be easily changed for any crystal.
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A Appendix A: definitions and proof of Lemma 7

This section covers key facts about isometries in Rn and their invariants.

Definition 17 (isometry). An isometry of Rn is a map f : Rn → Rn that preserves

the Euclidean distance, so |p − q| = |f(p) − f(q)| for any points p, q ∈ Rn. The map

f also preserves the orientation if the matrix whose columns are images under f of the

standard basis vectors e⃗1, . . . , e⃗n has a positive determinant. In this case f can be called a

rigid motion, because f is included into a continuous family of isometries ft : Rn → Rn,

t ∈ [0, 1], where f1 = f and f0 is the identity map f0(p) = p for any p ∈ Rn.

Any isometry of Rn can be decomposed into at most n+1 reflections over hyperspaces,

for example over planes in R3, hence is bijective and can be inverted. A composition

of isometries is also an isometry and defines the operation in the group Iso(Rn) of all

isometries in Rn. Rigid motions are orientation-preserving isometries and form the smaller

subgroup Iso+(Rn) ⊂ Iso(Rn).

Example rigid motions in R3 are translations by vectors and rotations around straight

lines. It suffices to classify sets up to general isometries, because if we know that two

point sets S,Q are isometric, one can easily check if a possible isometry S → Q preserves

an orientation defined as follows.

Let a set S ⊂ Rn have n+ 1 points p0, . . . , pn that are not in any (n− 1)-dimensional

subspace. The determinant of the n× n matrix with columns pi − p0, i = 1, . . . , n, is the

signed volume of the parallelepiped spanned by these n vectors. The sign of this deter-

minant can be considered as an orientation of S. An isometry f preserves an orientation

if the determinant obtained from f(p0), . . . , f(pn) ∈ Q has the same sign as S.

For any n × n matrix A, recall that AT denotes the transpose matrix with elements

AT
ij = Aji, i, j = 1, . . . , n. A matrix A is orthogonal if the inverse matrix A−1 equals the

transpose AT . Orthogonality of a matrix A means that v⃗ 7→ Av⃗ maps any orthonormal

basis to another orthonormal basis. All orthogonal matrices A have the determinant

detA = ±1. If detA = 1, then the map v⃗ 7→ Av⃗ preserves an orientation of Rn.

All orthogonal matrices A with detA = 1 form the special orthogonal group SO(Rn),

where the operation is the matrix multiplication. The group SO(R2) consists of rotations

about the origin in the plane. The group SO(R3) consists of rotations about axes passing
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through the origin in R3. All orientation-preserving isometries in Rn can be decomposed

into translations and high-dimensional rotations R ∈ SO(Rn) around the origin in Rn.

For a given equivalence relation, any objects can be distinguished (claimed to non-

equivalent) only by an invariant is preserved the given equivalence hence is independent

of a representation of an object. Surprisingly many descriptors of crystals include non-

invariants, for example parameters of an ambiguous unit cell or atomic coordinates in an

arbitrary cell basis.

Definition 18 (isometry invariants). An isometry class of sets is a collection of all sets

that are isometric to each other, i.e. any sets S,Q from the same class are related by

an isometry S → Q. An isometry invariant is a function I that maps all sets of a given

type, for example all periodic point sets, to a simpler space (numbers, matrices) so that

I(S) = I(Q) for any isometric sets S,Q. An invariant I is called complete if the converse

is also true: if I(S) = I(Q), then S,Q are isometric.

Proof of Lemma 7. Let S = Λ(S) + (U(S) ∩ S) and Q = Λ(Q) + (U(Q) ∩ Q), where

U(S), U(Q) are initial unit cells of S,Q and the lattices Λ(S),Λ(Q) contain the origin.

By shifting all points of S,Q (but not their lattices), we guarantee that S contains the

origin 0 of Rn. Assume by contradiction that the given periodic point sets S,Q have no

common lattice. Then there is a vector p⃗ ∈ Λ(S) whose all integer multiples kp⃗ ̸∈ Λ(Q)

for k ∈ Z − 0. Any such multiple kp⃗ can be translated by a vector v⃗(k) ∈ Λ(Q) to the

initial unit cell U(Q) so that q⃗(k) = kp⃗− v⃗(k) ∈ U(Q).

Since U(Q) contains infinitely many points q⃗(k), one can find a pair q⃗(i), q⃗(j) at a

distance less than δ = r(Q)− dB(S,Q) > 0. The formula q⃗(k) ≡ kp⃗ (mod Λ(Q)) implies

that q⃗(i + k(j − i)) ≡ (i + k(j − i))p⃗ (mod Λ(Q)) ≡ q⃗(i) + k(q⃗(j) − q⃗(i)) (mod Λ(Q)).

If the point q⃗(i) + k(q⃗(j) − q⃗(i)) belongs to U(Q), we get the equality q⃗(i + k(j − i)) =

q⃗(i) + k(q⃗(j) − q⃗(i)). All these points over k ∈ Z lie on a straight line within U(Q) and

have the distance |q⃗(j)− q⃗(i)| < δ between successive points.

The closed balls with radius dB(S,Q) and centers at points in Q are at least 2δ away

from each other. Then one of the points q⃗(i+ k(j − i)) is more than dB(S,Q) away from

Q. Hence the point (i+ k(j − i))p⃗ ∈ S also has a distance more than dB(S,Q) from any

point of Q, which contradicts Definition 6.
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Figure 10. Circular versions of the periodic point sets S32, Q32, which are distin-
guished by AMD2. Distances between any points are measured along
round arcs in each circle.

The density functions narrowly distinguish the following periodic sets [17, Example 1]

S32 = {0, 7, 8, 9, 12, 15, 17, 18, 19, 20, 21, 22, 26, 27, 29, 30}+ 32Z,

Q32 = {0, 1, 8, 9, 10, 12, 13, 15, 18, 19, 20, 21, 22, 23, 27, 30}+ 32Z

in Fig. 10. Tables 3, 4 distinguish these similar sets by AMDk for k = 2, 3.

S32 0 7 8 9 12 15 17 18 19 20 21 22 26 27 29 30 AMDk

k = 1 2 1 1 1 3 2 1 1 1 1 1 1 1 1 1 1 20/16

k = 2 3 2 1 2 3 3 2 1 1 1 1 2 3 2 2 2 31/16

k = 3 5 5 4 3 4 3 2 2 2 2 2 3 4 3 3 3 50/16

Table 3. First row: 16 points from the motif M ⊂ S32 in Fig. 10. Further rows:
distance from each point p ∈M to its k-th nearest neighbor in S32.

Q32 0 1 8 9 10 12 13 15 18 19 20 21 22 23 27 30 AMDk

k = 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 2 20/16

k = 2 2 3 2 1 2 2 2 3 2 1 1 1 1 2 4 3 32/16

k = 3 5 6 4 3 2 3 3 3 3 2 2 2 2 3 5 3 51/16

Table 4. First row: 16 points from the motif M ⊂ Q32. Further rows: distance
from each point p ∈M to its k-th nearest neighbor in Q32, see Fig. 10.
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B Appendix B: homometric sets and visualisations

This section defines homometric sets, which had different interpretations in past papers

[20,32]. These sets are hard to distinguish, because they have identical diffraction patterns

depending only on the difference set below.

Definition 19 (homometric sets). For any finite set S ⊂ Rn of m points, the difference

multi-set Dif(S) consists of the m2 vector differences a⃗− b⃗ for all points a, b ∈ S, counted

with multiplicities. Periodic point sets S,Q ⊂ Rn with a common lattice Λ and a primitive

unit cell U are homometric if Dif(S ∩ U) ≡ Dif(Q ∩ U) (mod Λ) with multiplicities

respected, so all pairs of vectors u ∈ Dif(S ∩ U) and v ∈ Dif(Q ∩ U) that are equal up to

lattice translations have the same multiplicity in both difference sets. The homometry is

the equivalence relation of periodic point sets being homometric.

If a set S consists of m points, Dif(S) includes the zero vector with multiplicity m.

The above definition clarifies the past attempts below.

Patterson [32, p.197] called periodic point sets S,Q ⊂ Rn homometric if Dif(S ∩U) ≡
Dif(Q∩U) (mod Λ) without mentioning weights or multiplicities. Franklin [20, equations

(17)-(18)] renamed them as homometric modulo a lattice Λ and called S,Q homometric if

Dif(S∩U) = Dif(Q∩U), not modulo the lattice Λ. Additionally both definitions required

that S,Q are not isometric. However, after removing this restriction, we expect to get an

equivalence relation so that any periodic point set should be homometric to itself even if

another unit cell of a lattice Λ is chosen.

The following example shows that the equation Dif(S ∩ U) = Dif(Q ∩ U) without

translations by the lattice Λ fails this reflexivity condition.

Franklin [20, p. 699] considered the sets S3 = {0, 1} + 3Z and Q3 = {0, 2} + 3Z,

which are isometric by x 7→ x + 1 (mod 3). However, Dif({0, 1}) = {0, 0,−1,+1} ̸=
Dif({0, 2}) = {0, 0,−2,+2}. These sets are equal modulo 3, hence lattice translations

are needed. If we consider the set S3 with a twice larger unit cell and period 6 as

{0, 1, 3, 4}+ 6Z, then

Dif({0, 1, 3, 4}) = {0, 0, 0, 0,±1,±1,±2,±3,±3,±4}.

This difference set can be considered equal to Dif({0, 1}) modulo 3 only if the mul-

tiplicities in both sets are normalised so that their sums are equal. Hence Definition 19
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requires a primitive unit cell U . Most importantly, Proposition 20 below justifies that

homometry in Definition 19 is independent of a primitive unit cell and is an equivalence

relation satisfying

(1) reflexivity : a periodic set S is homometric to S, i.e. S ∼ S;

(2) symmetry : if S is homometric to Q, i.e. S ∼ Q, then Q ∼ S;

(3) transitivity : if S ∼ Q and Q ∼ T , then S ∼ T .

Proposition 20 makes the experimental concept of homometric crystals verifiable in

an algorithmic way. It might be a folklore result, but we couldn’t find a proof in the

literature.

Proposition 20 (algorithm for homometric sets). (a) For any periodic point set S ⊂ Rn

with a lattice Λ, the difference set Dif(S ∩ U) (mod Λ) does not depend on a primitive

unit cell U of S. So the homometry in Definition 19 is an equivalence relation.

(b) Given a common primitive unit cell U containing m points of periodic point sets

S,Q ⊂ Rn, there is an algorithm of complexity O(m2 logm) to determine if S,Q are

homometric.

Proof. Let U,U ′ be primitive cells of the periodic set S ⊂ Rn. Any point q ∈ S ∩ U ′ can

be translated along a vector v⃗ ∈ Λ to a point p ∈ S∩U and vice versa. These translations

establish a bijection S ∩ U ↔ S ∩ U ′, which can change any point only by a vector of

Λ. So Dif(S ∩ U) ≡ Dif(S ∩ U ′) (mod Λ) with multiplicities respected by the bijection

above.

To determine if periodic sets S,Q ⊂ Rn are homometric by Definition 19, first we

compute all O(m2) pairwise vector differences between points from the motifs S ∩ U and

Q ∩ U . To check if these vector sets coincide, we could lexicographically order them in

time O(m2 logm), e.g. by using coordinates in the basis of the cell U . Then a single pass

over O(m2) vector differences is enough to decide if Dif(S) ≡ Dif(Q) (mod Λ).

We illustrate Proposition 20 for S(1) = {0, 1, 3, 4} + 8Z and Q(1) = {0, 3, 4, 5} + 8Z

in Fig. 3. Their 4-point motifs have distinct difference sets:

S8 0 1 3 4
0 0 −1 −3 −4
1 1 0 −2 −3
3 3 2 0 −1
4 4 1 3 0

and

Q8 0 3 4 5
0 0 −3 −4 −5
3 3 0 −1 −2
4 4 1 0 −1
5 5 2 1 0
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The difference sets coincide modulo 8 with multiplicities shown as subscripts:

Dif(S(1)) ≡ {04, 12, 21, 32, 42, 52, 61, 72} ≡ Dif(Q(1)).

Then S(1), Q(1) are homometric by Definition 19. The equivalence of differences modulo 8

gives rise to a bijection between all 16 elements of the matrices above, hence to a bijection

between the sets of vector differences Dif(S(1)) → Dif(Q(1)). For example, the difference

(8i + 1)− (8j + 4) = 8(i− j)− 3 ≡ 5 (mod 8) in S(1) can be bijectively mapped to the

vector difference (8i+ 5)− 8j = 8(i− j) + 5 in Q(1).

Previously it was impossible to visualise a large dataset of diverse crystals, because

traditional comparison tools such as the COMPACK algorithm in the Mercury software

[13] are slow and designed for pairwise comparisons of crystals with the same chemical

composition or the same symmetry group. The Crystal Isometry Principle (CRISP) about

injectivity of the map {periodic crystals} → {periodic point sets} allows us to study

crystal similarities without restricting their symmetry group or composition. Mendeleev’s

table similarly parameterises all chemical elements by their period and group number.

Any crystal dataset can be considered as a discrete sample from the common con-

tinuous space of all periodic point sets. Though the ambient continuous space is high-

dimensional, one can easily visualise [33] any finite subset in this space as a Minimum

Spanning Tree (MST). This MST spans all given crystals represented by vertices and min-

imises the total length of edges (distances between crystal invariants). Hence any crystal

and its nearest neighbor are always connected in any MST. Fig. 11 shows such MST for

12576 crystalline drugs, which was computed within one hour on a modest desktop.

The earlier version [41] of this paper has more Minimum Spanning Trees of larger

datasets in appendices, which are being extended into another applications paper.
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Figure 11. TMap of all 12576 crystalline drugs in the Cambridge Structural
Database (CSD), based on L∞-distances between AMD(200) vectors.
All drugs in the same CSD family have the same (random) color.


