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Abstract

Combined-permutation representations (CPRs) for characterizing Dgj-skeletons
(a benzene skeleton, a Haworth-projected skeleton, a superphane skeleton, and a
coronene skeleton) are constructed by starting from respective sets of generators,
where the permutation of each generator is combined with a mirror-permutation
of 2-cycle to treat both achiral and chiral substituents under the GAP system.
Thereby, the CPR of degree 8 (= 6 + 2) for the benzene skeleton, the CPR of degree
14 (= 12 + 2) for the Haworth-projected skeleton, the CPR of degree 14 (= 12 +
2) for the superphane skeleton, the CPR of degree 14 (= 12 + 2) for the coronene
skeleton are generated to give primary mark tables (tables of marks) based on these
CPRs. These primary mark tables generated by the GAP system are different
in the sequence of subgroups from each other, although they stem from the same
point group Dgp. They are unified into a single standard mark table by means of a
newly-devised GAP function MarkTableforUSCI. Moreover, another newly-devised
GAP function constructUSCITable is employed to construct a standard USCI-CF
(unit-subduced-cycle-index-with-chirality-fittingness) table concordantly. After a
set of PCI-CFs (partial cycle indices with chirality fittingness) is calculated for each
skeleton, symmetry-itemized combinatorial enumeration is conducted by means of
the PCI method of Fujita’s USCI approach (S. Fujita, Symmetry and Combinatorial
Enumeration in Chemistry, Springer-Verlag, Berlin-Heidelberg, 1991).
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1 Introduction

Conventional approaches for symmetry-itemized enumeration of isomers have been based
on Burnside’s tables of marks [1], while conventional approaches for gross enumera-
tion of isomers (without symmetry-itemization) have been based on Pdlya’s enumeration
method [2,3]. Both of the conventional approaches regard isomers as graphs with no
chiral substituents, so that they are incapable of enumerating 3D structures with chiral
substituents.

The monographs [4, 5] published by the author (Fujita) have discussed the short-
comings of the conventional approaches and have clarified that they lack the concept of
sphericity of orbits or cycles. On the basis of the concept of chirality fittingness stem-
ming from the sphericity concept, the author (Fujita) has proposed versatile methods for

enumerating 3D structures with chiral substituents, as briefly described below:

e Fujita’s USCI approach for symmetry-itemized enumeration of stereoiso-
mers as 3D-objects (as well as graphs) [4]. The concept of sphericity of an
orbit [6] is the basis of Fujita’s USCI (unit-subduced-cycle-index) approach, which
is generally discussed in one monograph published by the author [4]. Fujita’s USCI
approach has provided us with systematic utilities for discussing symmetry-itemized

combinatorial enumeration of (stereo)isomers.

Thus, the concepts of unit subduced cycle indices (USCIs) [7] and subductions of
coset representations (SCR) [6] were introduced by the author (Fujita) as a sub-
stantial extension of Burnside’s tables of marks [1]. The concept of USCIs is further
extended by introducing the concept of chirality fittingness (CF) via the concept
of sphericity for an orbit [8,9], so as to develop unit subduced cycle indices with
chirality fittingness (USCI-CFs). The resulting USCI-CFs enable us to accomplish

symmetry-itemized combinatorial enumeration of (stereo)isomers as 3D objects.

Moreover, the concept of USCI-CF's has been recognized to play an important role in
symmetry-itemized enumerations of 3D objects under respective point groups [4,10-
12]. The resulting utilities are useful to combinatorial enumerations of stereoisomers,

so as to be referred collectively under the name of Fujita’s USCI approach.

e Fujita’s proligand method for gross enumeration of isomers as 3D-objects

(as well as graphs) [5]. On the other hand, the concept of sphericity of a cycle [13]
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is the basis of Fujita’s proligand method, which is generally discussed in another
monograph published by the author [5]. Fujita’s proligand method has provided us
with systematic utilities for discussing gross enumeration of (stereo)isomers without
symmetry-itemization.

Thereby, Pélya’s enumeration method concerning graphs [2, 3], which is originally
incapable of treating chiral proligands, has been extended to develop the proligand
method [13-15], which is capable of treating chiral as well as achiral proligands for

covering enumerations of 3D structures as well as graphs [5].

e Fujita’s stereoisogram approach by considering chirality/achirality and
RS-stereogenicity / RS-astereogenicity as two-kinds of handedness [11,12].
Recently, I have proposed the concept of stereoisograms controlled by newly-defined
RS-stereoisomeric groups [16,17]. The vertical directions of a stereoisogram indi-
cates chirality as the first kind of handedness, while the horizontal directions of a
stereoisogram indicates RS-stereogenicity as the second kind of handedness. Chi-
rality for supporting Le Bel’s way and RS-stereogenicity for supporting van’t Hoff’s
way are discussed from a viewpoint of two kinds of handedness [11,12]. After scle-
rality is added as the third aspect along the diagonal directions, the two kinds of

handedness are integrated into RS-stereoisomerism [18].

Tables of marks (mark tables) and USCI-CF tables are essential tools during the
enumeration processes of Fujita’s USCI approach (cf. Appendices of Ref. [4]). They have
been originally prepared in terms of the FORTRANT7 language (cf. note 24 of Ref. [6]
and note 17 of Ref. [19]). However, the procedures based on the FORTRAN77 language
have been rather tedious, even if the subsequent calculation processes of enumeration
can rely on more convenient computer algebraic systems such as the Maple system, the
Mathematica system, and the REDUCE system.

Recently, the GAP (Groups, Algorithms, Programming) system [20] (the current ver-
sion is GAP 4.11.1 released on 02 March 2021) is widely accepted as a system for compu-
tational discrete algebra, with particular emphasis on Computational Group Theory. In
particular, useful functions concerning tables of marks (mark tables) are now available,
e.g., the GAP function TableOfMarks.

On the other hand, USCI-CF tables for pursuing Fujita’s USCI approach should meet

the concepts of sphericity for an orbit and chirality fittingness (CF). Hence, the author
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1

Figure 1. Representative Dgj,-skeletons: a benzene skeleton (1), a Haworth-
projected skeleton (2), a superphane skeleton (3), and a coronene skele-
ton (4)

(Fujita) has extended permutation groups by previously-defined combined-permutation
representations (CPRs) [21-23]. The feasibility of CPRs has been examined by treating
T,-skeletons [24], Oy-skeletons [25], and Dsj-skeletons [26] under the GAP system, where
concordant generations of “standard” mark tables and “standard” USCI-CF tables are
necessary to absorb the differences due to the variety of Ty-, Op-, or Djg-skeletons.

In the present article, various skeletons of Dgp,-symmetry are testified to unify mark
tables and USCI-CF tables into the respective “standard” formats for the purpose of
pursuing more efficient procedures of symmetry-itemized enumeration under the point

group Dgy,.

2 Degp-skeletons to be testified
2.1 Previous studies on Dgj-skeletons

Figure 1 shows representative Dgj-skeletons: a benzene skeleton (1), a Haworth-projected
skeleton (2), a superphane skeleton (3), and a coronene skeleton (4).
Symmetry-itemized enumeration and symmetry characterization of isomers derived
from a benzene skeleton 1 as well as from a coronene skeleton 4 have been discussed [27]
as an important section for developing the USCI approach. A Dgp-skeleton 2 of Haworth-
type projection has been traditionally used to discuss the stereoisomers of inositols on
the analogy of sugar chemistry. In this treatment, a cyclohexane ring is considered to
be to be planar and to have upward (3) and downward («) faces in a dihedral fashion,
where the twelve positions (six upward (1 to 6) and six downward positions (7 to 12))
are considered as substitution positions. This Haworth-projected skeleton 2 has been

used to «, f-itemized enumeration of inositol derivatives by extending Fujita’s proligand
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method [28]. Strictly speaking, such a Haworth-projected skeleton should be replaced by
two-chair forms of a cyclopropane skeleton. The interconversion between the two-chair
forms has been discussed by proposing a pseudo-point group f)sh [29-31]. The twelve
bridge positions of a superphane ([26](1,2,3,4,5,6)cyclophane) skeleton (3) can be replaced
by divalent units, where resulting isomers are counted by the PCI (partial-cycle-index)

method of the USCI approach [32].

2.2 Basic properties of the point group Dgp,

The skeletons depicted in Figure 1 belong to the same point group Dgy, (order 24), which
is algebraically defined by a multiplication table containing 24 symmetry operations. To
conduct combinatorial enumeration, the skeletons are differentiated by their coset rep-
resentations (CRs, (G;\)Dey), which are permutation representations defined by the re-
spective subgroups, G; (C Degy,).

Each skeleton is specified by set(s) of fixed (stabilized) entities (e.g., points, vertices,
and edges), each of which is fixed (stabilized) under a subgroup G; (C Dgy,). For example,
the benzene skeleton (1) has six vertices, each of which is regarded as a fixed point under
the subgroup Cy,. The subgroup C,, is contained as a subgroup listed in a non-redundant
set of subgroups (SSG) for Dgy, which is a list of subgroups G; (C Degp) collected in an

ascending order of sizes (orders), i.e.,

SSGp = {C1, G, Cl.C), C,,C, C" C, Cy, Dy,
D, vv\ 2,2 /v\ S~~~

1 3 5 6 7 8 9 10

CQ?' CQI 5 C2”7C2h7 2lvclllz7 C()7 D37D3/- Cﬁhu
v\,ﬂ\,ﬂv\)vvvv’v

11 13 14 15 17 18 9 20

16 1
ng C%m Cs; , Dy, Dg , Cgy, Cop, Dapy, D( Ds,, D 3d s Dg,}. (1)
> vvvvvv\/\/vv
21 29 31

&

The word “non-redundant” means that an appropriate subgroup is selected as a repre-
sentative, if there exist two or more conjugate subgroups. In the present article, the
alignment of subgroups shown in Eq. 1 is adopted as a standard alignment, as indicated
by a sequential number under a brace below each subgroup. Note that the subgroup Cy,
for a benzene skeleton appears as the 12th subgroup of SSG D,, (Eq. 1).

According to a coset decomposition by each subgroup of the SSG, we have a set of
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coset representations (SCR) as follows:

SCRp,, = {(Ci\)Dgn.(C>\)Den, (C3\)Den, (C3'\)Dgp, (Cs\) Den,
(C\)Dgn, (C\)Dgn, (Ci\) Deh, (C5\) D, (D2\) Do, (Cs,\) Do,
(C3,\)Den, (C3,\) Dgr, (Con\) Don, (C3,\) D, (Cs3,\) Do, (Ci\) D,
(Ds\) Dgr, (D3\) Dg, (Cs0\) Don, (Cs,\) Don, (Csi\) Den, (Csi\) Do,
(D21\) Don, (Dg\) Dg, (Cu\) D, (Co\) Do, (Dsn\) D,
(D3, \) D, (Dsa\) Dgn, (D54\) Don, (Der\) Do } (2)

Such Dygj,-skeletons as collected in Figure 1 are differentiated by means of respective
CRs. For example, the six vertices of the benzene skeleton (1 in Figure 1) are governed
by the CR (Cs,\)Dgp, the degree of which is calculated to be |Dgy|/| Cy,| = 24/4 = 6; the
twelve vertices of the Dgp-skeleton 2 of Haworth-type projection (Figure 1) are governed
by the CR (C;\)Dgy, the degree of which is calculated to be |Dgy|/|Cs| = 24/2 = 12;
the twelve bridge positions of a superphane ([24](1,2,3,4,5,6)cyclophane) skeleton (3) are
governed by the CR (C;\)Dgy, the degree of which is calculated to be |Dgyl/|Cs| =
24/2 = 12; and the twelve vertices of the coronene skeleton 4 (Figure 1) are governed by
the CR (C,”\)Degy, the degree of which is calculated to be |Dgp|/|C)/| = 24/2 = 12.

The modes of such differentiation are explained by means of a mark table (a table
of marks introduced by Burnside [1]). The mark table of Dgy, is shown in Figure 2.
The standard mark table (Figure 2) is illustrated in the form of a matrix form of the
GAP system, where each row in an inner pair of square brackets shows a row vector
corresponding to the CR (G;\)Dgy. Note that the standard mark table (Figure 2) is found
to be a lower-triangular matrix, i.e., all values are zero in the upper-right triangular part.
Such a set of a standard mark table and its inverse has been calculated originally by a
FORTRANTT program [27] under the research environment of the author. The standard
mark table shown here (Figure 2) is calculated by starting from the inverse mark table

reported in Ref. [27].

3 Permutation groups corresponding to the point
group Dgp,

The GAP system stresses permutation groups, where a permutation group (PG) is derived

from each of the Dgp,-skeletons (e.g., Figure 1) by using the corresponding set of generators.
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1: [ ] 24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
2 [12,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0,0,0,0,0,0,0,0,0,0,0,0 ],
3 [12.0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
4 [12.0,0.4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
5 [12,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0,0.0,0.0,0,0,0,0,0 ],
6: [ 12.0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
7 [12,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0.0,0.0,0,0,0.0,0,0,0,0,0,0,0 ],
8 [12.0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0,0,0,0 ],
9:  [8,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
10: [6,6,2,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
11: [6,6,0,0,2,2,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 |,
12: [6,0,2,0,2,0,6,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0,0,0,0 ],
13: [6,0,0,2,0,2,6,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 |,
14: [6,6,0,0,0,0,6,6,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0,0,0,0 ],
15 [6,0,2,0,0,2,0,6,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 |,
16: 6.,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
17 4,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0.0,0,0,0,0,0 ],
18 [4,0,4,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0 |,
19: [4,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
20: [ 4,0,0,0,4,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0 ],

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ I
[ ]
[ ]
: |
21: [400004 0,4,0,0,0,0 000000‘4‘0‘0‘0.00000000],
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[2, ]
[ ]
[ J

22: 0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0 ],
923 [ 4.0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0 ],
24: [3,3,1,1,1,1,3,3,0,1,1,1,1,3,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 ],
25: [2,2,2,2,0,0,0,0,2.2,0,0,0,0,0,0,2,2,2,0,0,0,0,0,2,0,0,0,0,0,0,0 ],
26: [ 2.2,0,0,2,2,0,0,2,0,2,0,0,0,0,0,2,0,0,2,2,0,0,0,0,2,0,0,0,0,0,0 ],
27 , 2,2,0,0,0,0,2,0,0,2,0,0,0,0,2.2,0,0,0,2,0,0,0,0,0 ],
28: [2,0,2,0,2,0,2,0,2,0,0.2,0,0,0,0,0,2,0,2,0,2,0,0,0,0,0,2,0,0,0,0 ],
29: [2,0,0,2,0,2,2,0,2,0,0,0,2.0,0,0,0,0,2,0,2,2,0,0,0,0,0,0,2,0,0,0 ],
30: 2,0,0,2,0,2,2,0,0,0,0,0,2,0,0,2,0,0,2,0,2,0,0,0,0,0,0,2,0,0 ],
31 [2,0,0.2,2.0.0,2.2,0,0,0,0,0,0,2,0.0,2,2,0,0,2,0,0,0,0,0,0,0,2,0 ],
320 [L,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ] ]

Figure 2. Standard mark table of the point group Dgj, (GAP matrix expression).
For the sake of convenience, the sequential number with a colon is added
at the left-most column to show each CR (Eq. 2) in accord with the

sequential number shown in Eq. 1.

As a result, the mark table (table of marks) of a PG based on one set of generators is

different from a standard mark table (Figure 2), when it is produced by the GAP system.

3.1 CPR for a benzene skeleton (1) and the corresponding mark

table

A set of generators gen_benz for characterizing the six positions of the benzene skeleton

(1 in Figure 1) produces a permutation group D6h_benz of order 24, which is isomorphic

to the point group Dgy, of order 24.

gap> #generators for D6h_benz

gap> gen_benz := [(1,2,3,4,5,6), (1,4)(2,3)(5,6), (7,8)];;
gap> D6h_benz := Group(gen_benz); #benzene skeleton
Group([ (1,2,3,4,5,6), (1,4)(2,3)(5,6), (7,8) 1)

gap> Display(Size(D6h_benz)) ;

24
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Figure 3. Mark table (GAP expression, tom_D6h_benz) of the point group Dgj, by
starting from the the set of generators gen_benz for characterizing the
six positions of the benzene skeleton (1 in Figure 1).

Note that the set of generators gen_benz is adopted as a combined-permutation rep-
resentation (CPR) which stabilizes the six vertices (1, 2, ..., 6) of the benzene skeleton
and contains a 2-cycle (7,8) due to a mirror-permutation. Thus, the CPR of degree 8
(= 6 + 2) for the benzene skeleton is used to treat a reflection.

The GAP function TableOfMarks based on a permutation group (D6h_benz) generates

the corresponding mark table named tom_D6h_benz, as follows:

gap> tom_D6h_benz := TableOfMarks(D6h_benz);;
gap> Display(tom_D6h_benz) ;

This code generates the mark table (GAP expression, tom_D6h_benz) shown in Figure
3, in which each dot (.) shows a zero value; and a upper-triangular blank space indicates
the lower-triangular characteristics of the mark table.

The mark table (Figure 3) is different from the standard mark table (Figure 2) de-
scribed above, even if its GAP expression is transformed into a GAP matrix expression.

Each row of the mark table (numbered sequentially from 1 to 32) corresponds to
a subgroup, the generator of which (named sequentially from gen[1] to gen[32]) is

calculated by using the GAP command RepresentativeTom as follows:
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gap> gen := [1;;
gap> for i in [1..Size(OrdersTom(tom_D6h_benz))] do

> r_tom := RepresentativeTom(tom_D6h_benz,i);

> gen[i] := GeneratorsOfGroup (r_tom);

> Print("gen[", i, "lu:=4", gen[i], "\n");

> od;

gen[1] := [ ]

gen[2] := [ (2,6)(3,5) ]

gen[3] := [ (7,8) ]

gen[4] := [ (1,4)(2,5)(3,6) 1]

gen[5] := [ (2,6)(3,5)(7,8) 1]

gen[6] := [ (1,2)(3,6)(4,5) ]

gen[7] := [ (1,4)(2,5)(3,6)(7,8) ]

gen[8] := [ (1,2)(3,6)(4,5)(7,8) ]

gen[9] := [ (1,3,5)(2,4,6) ]

gen[10] := [ (7,8), (1,4)(2,5)(3,6) ]

gen[11] := [ (2,6)(3,5), (1,4)(2,5)(3,6) ]

gen[12] := [ (7,8), (2,6)(3,5) ]

gen[13] := [ (2,6)(3,5)(7,8), (1,4)(2,5)(3,6) ]

gen[14] := [ (7,8), (1,2)(3,6)(4,5) ]

gen[15] := [ (1,4)(2,5)(3,6)(7,8), (2,6)(3,5) ]

gen[16] := [ (1,3)(4,6)(7,8), (1,6)(2,5)(3,4) ]

gen[17] := [ (1,3,5)(2,4,6), (7,8) ]

gen[18] := [ (1,3,5)(2,4,6), (2,6)(3,5) ]

gen[19] := [ (1,3,5)(2,4,6), (2,6)(3,5)(7,8) ]

gen[20] := [ (1,3,5)(2,4,6), (1,2,3,4,5,6) ]

gen[21] := [ (1,3,5)(2,4,6), (1,2,3,4,5,6)(7,8) 1]
gen[22] := [ (1,3,5)(2,4,6), (1,2)(3,6)(4,5) ]

gen[23] := [ (1,3,5)(2,4,6), (1,2)(3,6)(4,5)(7,8)]
gen[24] := [ (7,8), (2,6)(3,5), (1,4)(2,5)(3,6) ]
gen[25] := [ (1,3,5)(2,4,6), (7,8), (1,2,3,4,5,6)]
gen[26] := [ (1,3,56)(2,4,6), (2,6)(3,5), (1,2,3,4,5,6) ]
gen[27] := [ (1,3,5)(2,4,6), (7,8), (2,6)(3,5) ]

gen[28] := [ (1,3,5)(2,4,6), (2,6)(3,5)(7,8), (1,2,3,4,5,6) 1]
gen[29] := [ (1,3,5)(2,4,6), (7,8), (1,2)(3,6)(4,5) ]
gen[30] := [ (1,3,5)(2,4,6), (2,6)(3,5), (1,2,3,4,5,6)(7,8) 1]
gen[31] := [ (1,3,5)(2,4,6), (2,6)(3,5)(7,8), (1,2,3,4,5,6)(7,8) 1
gen[32] := [ (1,2,3,4,5,6),(1,4)(2,3)(5,6), (7,8)]

gap>

Each set of generators (gen[i], i = 1 to 32) generates a non-redundant set of sub-
groups, although its alignment is different from Eq. 1. For example, the subgroup gen-
erated from gen[4] is found to correspond to the point group C,, which is the second

subgroup appearing in SSG D, (Eq. 1). This correspondence is represented by the symbol
X \

\CL , where the upper number 4 is concerned with the SSG for the mark table tom D6h_benz
2

(named SSbe)":h ), while the lower number 2 is concerned with SSGp_ (Eq. 1). The re-

maining mode of correspondence is similarly obtained, so as to give SSGIEZ for the mark

table tom_D6h_benz as follows:
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SSGIB"; = {c.c/,c’/ c, C,,Cl, C;, C!, Cy, Cuy,

9 21 24 27 25 28 26 20 30 31 32
where the upper numbers are taken from the leftmost column of the calculated mark
table tom D6h_benz (Figure 3), while the lower numbers are taken from SSG D,, (Eq. 1),
which corresponds to the standard mark table (Figure 2). The mark table tom D6h benz
(Figure 3) due to SSG%’Z (Eq. 3) can be converted into the mark table test_sort due
to SSGp,, (Eq. 1) by using the GAP function SortedTom as follows:

gap> perm_benz :=

> PermList([1,3,7,2,5,4,8,6,9,14,10,12,11,13,15,16,22,18,20,17,
> 23,19,21,24,27,25,28,26,29,30,31,32]) ;
(2,3,7,8,6,4)(10,14,13,11) (17,22,19,20) (21,23) (25,27,28,26)
gap> test_sort := SortedTom(tom_D6h_benz,perm_benz);;

gap> Display(test_sort);

: 24

12 12

12 . 4

12 . . 4

12 .. . 4

12 ... . 4

0 ~NO O WN =

9:8 ... ... .38
10: 6622 . . . .. 2
(omitted)

where the permutation perm benz is calculated by applying the GAP function PermList
to a list derived from the lower numbering in Eq. 3. The resulting sorted mark table
test_sort, if the former is transformed into the GAP matrix format, is identical with the

standard mark table shown in Figure 2.

3.2 CPR for a Haworth-projected skeleton (2) and the corre-
sponding mark table

The twelve positions of a Haworth-projected skeleton (2) shown in Figure 1 is charac-
terized by a permutation group D6h_haworth of order 24, which is generated by apply-

ing the GAP function Group to a set of generators gen haworth. The resulting group
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1: 24

2: 12 4

3: 12 . 4

4: 12 . . 12

5: 12 . .12

6: 12 . .4

7:o012.. . . L L4

8: 12 .. . .. .12

9: 8 . . . .8

10: 6.2 6 2 . .2

11: 6 2 6 2. .. .2

12: 622 . 6 . L2

13: 6 . 6 6 . 6 . 6

14: 6.2 . 2. 6. . ... 2

15: 6 2 .2 6. ... 2

16: 6 . 622 ... ... .. 2

17: 4 .4 e a4 4

18: 44 . A 4

19: 4 . . 4 AL 4

20: 4. . 4 4. 000 e 4

21: 4 .. . 4 4. . 4

22: 4 .. . 4 4. 4

23: 4 .. . 4. 4

24: 311 3 311 3 1113111 . ... ... 1

25: 2.2 2 ..2 22 ... ... .22 2

26: 22. 2 .2. 2.2 ... .. 2.2.2 2

27: 222 . 2., 2 L2 222 .. ... 2
28: 2.. 2 2.. 22 a2 22. .2 2
29: 2.2 . .2, 22. .. 2 2 Le22 00 2
30: 22 . a2 0220 0.0 2 2 2.2 ... 2
31: 2., . 0222 2. ... 2 2.22. 00000 2
32: 1111 111 1111111111111111111111111

Figure 4. Mark table (GAP expression, tom_D6h_haworth) of the point group Dgp,
by starting from the the set of generators gen haworth for characteriz-
ing the twelve positions of the Haworth-projected skeleton (2) shown in
Figure 1.

D6h_haworth is isomorphic to the point group Dgj, of order 24.

gap> gen_haworth := [(1,2,3,4,5,6)(7,8,9,10,11,12), (1,10)(2,9)(3,8)(4,7)(5,12)(6,11),
> (1,7)(2,8)(3,9) (4,10) (5,11) (6,12) (13,14)1;;

gap> D6h_haworth := Group(gen_haworth); #[6]haworth skeleton

Group([ (1,2,3,4,5,6)(7,8,9,10,11,12), (1,10)(2,9)(3,8)(4,7)(5,12)(6,11),
(1,7)(2,8)(3,9) (4,10) (5,11) (6,12) (13,14) 1)

gap> Display(Size(D6h_haworth));

24

Note that the set of generators gen_haworth is adopted as a combined-permutation
representation (CPR) which stabilizes the twelve vertices of the Haworth-projected skele-
ton (2) shown in Figure 1 and contains a 2-cycle (13,14) due to a mirror-permutation.
Thus, the CPR of degree 14 (= 12 + 2) for a Haworth-projected skeleton is used to treat
a reflection.

The corresponding mark table tom D6h haworth can be obtained by inputting the

command TableOfMarks (D6h_haworth).

gap> tom_D6h_haworth := TableOfMarks(D6h_haworth);;
gap> Display(tom_D6h_haworth) ;

The resulting mark table tom D6h_haworth (Figure 4) is different from the standard

mark table (Figure 2) and, at the same time, is different from the mark table tom_D6h_benz

(Figure 3) described above.
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The comparison between the mark table tom D6h_haworth (Figure 4) and the standard

mark table (Figure 2) results in the following SSGH:’:Tth (Eq. 4).

haworth — __
ssGpprrt = |

" ! " !/ !/

D2 3 Cz}” CQIu sza 02177 CQhr C:%v’ D3 ) C‘St C
NN N N N N N
10 16 14 12 13 15 20 19 23 17
21 22 23 24 25 26 27 28 29 30
AN AN AN AN AN AN AN AN
Cs,, Ds , Csn, Dan, Cou, Ds , Dsy, Con, Dap, Dy
Al N i e e g

where the upper numbers are taken from the leftmost column of the calculated mark table

tomD6h haworth, while the lower numbers are taken from SSGp (Eq. 1). The lower

numbers in Eq. 4 result in the appearance of perm haworth by using the GAP function

PermList. Thereby, the mark table tom D6h haworth (Figure 4) due to SSG%‘:}"”}L (Eq.

4) can be converted into the mark table test2_sort due to SSG D, (Eq. 1) by using the

GAP function SortedTom as follows:

gap> perm_haworth := PermList([1,4,5,2,8,3,6,7,9,11,10,16,14,12,13,15,20,19,23,17,
> 21,18,22,24,26,25,31,27,28,29,30,32]);

(2,4)(3,5,8,7,6)(10,11) (12,16,15,13,14) (17,20) (18,19,23,22) (25,26) (27,31,30,29,28)
gap> tom_D6h_haworth := TableOfMarks(D6h_haworth);;
gap> test2_sort := SortedTom(tom_D6h_haworth,perm_haworth);;
gap> Display(test2_sort);

1: 24

W N O WwN
I
N
IS

9: 8 . . . . ... 8
10: 6622 . . . . . 2
(omitted)

The resulting sorted mark table test2_sort is identical with the sorted mark table

test_sort. Then, if the mark table test2_sort is transformed into the GAP matrix

format, it is identical with the standard mark table shown in Figure 2.

3.3 CPR for a superphane skeleton (3) and the corresponding

mark table

The twelve chain positions of a superphane skeleton (3) (Figure 1) are characterized by

a permutation group D6h_phane of order 24, which is generated by applying the GAP

function Group to a set of generators gen_phane.
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The set of generators gen_phane for characterizing the superphane skeleton (3) is
identical with the set of generators gen_haworth for characterizing the Haworth-projected
skeleton (2) (Figure 1). As a result, the resulting group D6h_phane (as well as
D6h_haworth) is isomorphic to the point group Dgy, of order 24.

gap> gen_phane := [(1,2,3,4,5,6)(7,8,9,10,11,12), (1,10)(2,9)(3,8)(4,7)(5,12)(6,11),
> (1,7)(2,8)(3,9)(4,10)(5,11) (6,12) (13,14)] ;;

gap> D6h_phane := Group(gen_haworth); #superphane skeleton

Group([ (1,2,3,4,5,6)(7,8,9,10,11,12), (1,10)(2,9)(3,8)(4,7)(5,12)(6,11),
(1,7)(2,8)(3,9)(4,10) (5,11) (6,12) (13,14) 1)

gap> Display(Size(D6h_phane)) ;

24

The SSG for the superphane 3 (SSGZJ’—_’;'IM) is identical with SSG;‘—_’SZ’:’”}I (Eq. 4) for the
6h 5h
Haworth-projected skeleton 2 (Figure 1), as shown in Eq. 5.

hane haworth
SSGh = SSG

Dy, Dy,

1 2 3 4 5 6 7 8 9 10

- "’ N / / "

={¢c,c/,’c,’c, c,cy,cl,cl,

N NN
1 4 5 2 8 3 6 7 1
11 12 13 14 15 16 17 18 19 20

/ * "’ N ’ " 17 * 7 N )
D, , C,,, Cy, C,,, C,,, Cy,, Cs,, Dy, Cs;, Cg
e~ =

10 16 14 12 13 15
21 22 23 24 25 26 27

31 32
! ! !
305 D3 , Cap, Doy, Cey, Dg 3> Dy, Dy, Dsg, Dy, } (5)

Because the group D6h_phane is identical with the group D6h_haworth, the mark table
tom_D6h_phane is identical with tom D6h_haworth (Figure 4), the sorted mark table due
to tom D6h_phane and Eq. 5 is identical with the sorted mark table test_sort, which is

calculated by means of tom_D6h_haworth and Eq. 4.

3.4 CPR for a coronene skeleton (4) and the

The twelve vertices of the coronene skeleton 4 (Figure 1) are characterized by a permuta-
tion group D6h_coronene of order 24, which is generated by applying the GAP function

Group to a set of generators gen_coronene.

gap> gen_coronene := [(1,3,5,7,9,11)(2,4,6,8,10,12), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10), (13,14)];;
gap> D6h_coronene := Group(gen_coronene); #coronene skeleton

Group([ (1,3,5,7,9,11)(2,4,6,8,10,12), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10), (13,14) 1)

gap> Display(Size(D6h_coronene)) ;

24

Note that the set of generators gen_coronene is adopted as a combined-permutation

representation (CPR) which stabilizes the twelve vertices of the coronene skeleton (4)
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1: 24

2: 12 4
3: 12

4: 12

5: 12 .
6: 12 .
712 .
8: 12 .
9: 8 .
10: 6 .
11: 6 2
12: 62
13: 6 .
14: 6 .
15: 6 2
16: 6 .
17: 4

18: 4 4
19: 4 .
20: 4 .
21: 4 .
22: 4 .
23: 4 .
24: 31
25: 2.
26: 22
27: 22
28: 2.
29: 2.
30: 22
31: 2.
32: 11

.12

(SR

1

X
BN R

[SENNR

BECICE

.2

1

1

2
1

oW

.2
.2
2

2
2 .
1

1111111111111 111111111111

Figure 5. Mark table (GAP expression, tom_D6h_coronene) of the point group Dg,
by starting from the the set of generators gen_coronene for characteriz-
ing the twelve positions of the coronene skeleton (4) shown in Figure 1.

and contains a 2-cycle (13,14) due to a mirror-permutation. Thus, the CPR of degree

14 (= 12 + 2) for a coronene skeleton is used to treat a reflection. The mark table

tom_D6h_coronene is obtained by using the GAP function TableOfMarks as follows:

gap> tom_D6h_coronene := TableOfMarks(D6h_coronene);;
gap> Display(tom_D6h_coronene) ;

The resulting mark table tom D6h_coronene (Figure 5) is different in the sequence of

subgroups from the standard mark table (Figure 2) and, at the same time, is different

from the mark table tom_D6h_benz (Figure 3) described above.

The comparison between the mark table tom_D6h_coronene (Figure 5) and the stan-

dard mark table (Figure 2) results in the following SSG%TG"’"SM (Eq. 6).

coronene
SSGH = {’c,,

1)27
~—

11

10

4

12
A~ 5N

c’
20
~—

13
22

C ! " ! C D/ Cl
20, 25 “2hy P2k “3h, 3 “3u» 6

3 4 5 6 7 8 9 10
’—’\77 f-/\7\ /-’\7\ P N P N
C/,C, C!, C/, C ., C,, Cs, Cu,
~— R N e

1
13 14 15 16 17 18 19 20

11 12 16 15
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where the upper numbers are taken from the leftmost column of the calculated mark
table tom D6h_coronene (Figure 5), while the lower numbers are taken from SSG D,,
(Eq. 1), which corresponds to the standard mark table (Figure 2). The mark table
tom_D6h_coronene (Figure 5) due to SSGﬁ:’:"‘”E (Eq. 6) can be converted into the mark
table test3_sort due to SSGpy | (Eq. 1) by using the GAP function SortedTom as follows:

gap> perm_coronene := PermList([1,4,7,2,6,3,8,5,9,14,10,13,11,12,16,15,22,19,21,17,
> 23,18,20,24,27,25,29,26,28,31, 30,32]);

(2,4)(3,7,8,5,6)(10,14,12,13,11) (15,16) (17,22,18,19,21,23,20) (25,27,29,28,26) (30,31)
gap> tom_D6h_coronene := TableOfMarks(D6h_coronene);;
gap> test3_sort := SortedTom(tom_D6h_coronene,perm_coronene);;
gap> Display(test3_sort);

1: 24

0N O WN
-
N
S

9:8 . . . .. .. 8
10: 6622 . . . .. 2
(omitted)

The resulting sorted mark table test3_sort is identical with the sorted mark table
test_sort. Then, if the mark table test3_sort is transformed into the GAP matrix

format, it is identical with the standard mark table shown in Figure 2.

4 Concordant construction of a standard mark table
and a standard USCI-CF table for Dgy,

As shown in the preceding section, the mark tables stemmed from the various skeletons
of Dg, (1-4 in Figure 1) are different in their sequences of subgroups, where they obey
the respective SSGs, i.e., SSGlﬂi (Eq. 3) for the benzene skeleton 1, SSG%Z:"th (Eq.
4) for the Haworth-projected skeleton 2, SSG%ZT (Eq. 5 for the superphane skeleton
3, and SSGCﬁ;:w”“ (Eq. 6) for the coronene skeleton 4. As described above, these mark
tables with different appearances can be converted into a single format (called a standard
mark table, Figure 2) based on SSGDM (Eq. 1), even if the corresponding different sets
of generators are used. This is because the mark table and the USCI-CF table reported
in a previous article [33] are based on SSGp_(Eq. 1).

The author (Fujita) has developed GAP functions for concordant generation of mark
tables and USCI-CF tables, i.e., MarkTableforUSCI and constructUSCITable (contained
in the file USCICF.genfunc; cf. Appendix A in [24]). They are here examined to be

capable of concordant construction of a mark table and a USCI-CF table by starting
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from a CPR based on any of Dgj-skeletons (1-4). To assure the concordance, a list of
subgroups derived from each SSG (Eq. 3-Eq. 6) is given as a list of sets of generators
gen[1]-gen[32].

As shown in the Source Code 1 named SubDh6h6-X.gap (Appendix A), for example,
the CPR D6h_benz based on the benzene skeleton 1 is characterized by the sets of gen-
erators gen[1]-gen[32], which are shown as the list derived from SSG"B’; (Eq. 3). The
set of generators (gen_benz) for generating the CPR D6h_benz and the corresponding set
of generators (gen_benzx) for specifying the point group Dg are written as an argument
in the GAP function Group.

The Source Code 1 (SubDh6h6-X.gap, Appendix A) is stored in an appropriate di-
rectory, in which the file USCICF.gapfunc containing the newly-devised GAP functions
MarkTableforUSCI and constructUSCITable are also stored. To execute the Source
Code 1 (SubDh6h6-X.gap, Appendix A), the Read command shown in the top line is
copied and pasted after the command prompt gap>. The calculation result is output into
the log file named SubD6h6Xlog.txt.

The devised GAP function MarkTableforUSCI generates the standard mark table (Fig-
ure 2), which corresponds to SSGpy_ (Eq. 1) and so identical with test_sort calculated
by using the GAP function SortedTom.

Such a standard mark table as Figure 2 is linked with a USCI-CF table (USCITableD6h,
Figure 6), which is generated by the other devised GAP function constructUSCITable
appearing in the above Source Code 1 (SubDh6h6-X.gap).

The USCI-CF table (USCITableD6h) shown in Figure 6 follows the convention of the
GAP system for printing a matrix format, where a nested list of the GAP system is
used. Each list in an inner pair of square brackets is a row vector of the matrix, which
corresponds to a coset representation (CR) (G;\)Dgy,. For the sake of convenience, the
sequence numbers (1) to (32) are added to show the correspondence to (G;\)Dg, (i =
1---32) in accord with Eq. 1 and Eq. 2. Each term at the intersection between the
(G;\)Dgp-row and the Gj-column is calculated by means of SCR (subduction of the CR)
(Gi\)Dg,, I G;. An outer pair of square brackets contains the thirty-two of such row

vectors to indicate the whole format of the matrix.
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c.2,a2,a2,a2,a22a2]l,

_1°2,a.2,a_2,a.2,a_2,a.2 ],

_2,b.2, c.2, a

a_1°2,a,

,a2, a_1"2,a.2,a2 ],

~2,a_2,b.2, a_2,a_2,c.2

f brackets corresponds to the coset representation (CR)

1ces

ins 32 USCI-CFs (unit subduced cycle ind

ive subgroups Gj.

d to the respect

assigne

subduction of the CR)

[(1) [ b_1724, b_2712, b_2712, b 2712, c_2712, c_2712, c_2712, c_2712, b_3"8, b_4"6, c_476, c_4°6, c_476, c_476,
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Each USCI-CF at the intersection between the (G;\)Dgp-row and the

Gj-column is calculated by means of SCR (

with chirality fittingness)
(Gi\)Dgy | Gj.

inner pair o
(G;\)Dgp, and conta

a_1"2, b.2,b_2, b_1"2, a_1"2,c_2,c_2, a_1"2,a.2,b_2, a_2,a_2,a_2,c.2,a.2, a_1"2,a.2 ],

a2, b2, b_1"2,b_2, a_1"2,c_2, a_1"2,c_2,a.2,b_2, a_2,a.2, a_1"2,a_2,c_.2,a.2,2.2 ],
(32) [ b.1,b_1,b_1,b1,a1,a_1,a_1,a_1, b_1,b_1,a 1,a1,a1,a1,a_t,

(29) [ b.1°2,b.2,b.2, b_1"2,c.2, a_1"2, a_1"2,c.2, b_1"2,b.2,a 2,22, a_1"2,a.2,a.2,

€2, b.2,b_2, b_1"2,c_2, a_1"2, a_1"2,c_2,a_2,b_2, a_2,a_2,a2, a_1"2,a.2,c.2,a.2 ],
(30) [ b.1°2,b_2, b_1"2,b_2,c_2, a_1"2,c_2, a_1"2, b_1"2,b_2,a.2,c.2,a.2,a_2, a_1"2,

a1, b_1,b_1,b1,al,al,al,al,a1,b1, at,al,al,alalalalll

a2, b_1°2,b.2,b_2, a_1"2, a_1"2,c_2,c_2,a_2,b_2, a_1"2,

a2, b2, b_1"2,b_2,c_2, a_1"2,c_2, a.

a2, b_12,b_2,b_2,c_2,c_2, a_1"2,
(28) [ b.1"2,b.2, b_1"2,b_2, a_1"2,c_2, a_1"2,c_2, b_1"2,b_2,a_2, a_1"2,a_2,a_2,c_2,

(26) [ b.172, b_1"2,b_2,b_2, a_1"2, a_1"2,c_2,c_2, b_1"2,b_2, a_1"2,a_2,a_2,c_2,a_2,
(27) [ b.172, b_1"2,b_2,b_2,c_2,c_2, a_1"2, a_1"2, b_1"2,b_2,c_2,a_2,a_2, a_1"2,a_2,
(31) [ b.1"2,b_2,b_2, b_1"2, a_1"2,c_2,c_2, a_1"2, b_1"2,b_2,a_2,a_2,c_2,a_2,a_2,

Figure 6. Standard USCI-CF Table of Dg), (USCITableD6h). Each row with an
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5 Generation of SCI-CFs

In general, a given skeleton has one or more orbits, where each orbit is governed by a
coset representation (CR). In the preceding section, each of the Dgp-skeletons collected
in Figure 1 has been examined by emphasizing one orbit.

As calculated in Source Code 1 (SubDh6h6-X.gap, Appendix A) for the benzene skele-
ton 1, for example, the fixed-point vector (FPVbenz) is calculated by using the newly-
devised GAP function calculateFPvector; and the list of SCI-CFs (1_SCICF_benz) is
calculated by using the newly-devised GAP function constructSCICF. The corresponding

outputs in the log file SubDh6h6-X1log.txt are as follows:

#Fized point vector for benzene #FPVbenz
[6, 0,2, 0,2, 0,6,0,0,0,0,2,0,0,0,0,0,0,0,0,
o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 01
#0rbits for benzene #0rbit_benz
fo,o,o0,o0,0,0,0,00,001,0000,00,00,
0, 0,0,0,0,0,0,0,00,00]
#SCI-CF for benzene #1_SCICF_benz
[ b_1"6, b_2"3, b_1"2¥b_2"2, b_2"3, c_2"2*a_1"2, c_2"3, a_1"6, c_2"3, b_3"2, b_2%b_4,
c_4%a_2, a_1"2xa_272, a_2"3, a_273, c_2%c_4, c_4%a_2, b_6, b_372, b_6, a_372,
c_6, a_3"2, c_6, a_2*a_4, b_6, a_6, a_6, a_3"2, a_6, c_6, a_6, a_6 ]

Thus, the fixed-point vector (FPVbenz) is identical with the 12th row of the standard
mark table (its matrix format (Figure 2) or test_sort). This is confirmed by the output
of Orbit_benz, in which the 12th value 1 indicates the appearance of the subgroup Cs,.
Hence, the six vertices of the benzene skeleton 1 belong to one orbit governed by the coset
representation (Cy,\)Dgy, (size: |Dgy|/|Cy,| = 24/4 = 6).

The SCI-CF for benzene (1-SCICF_benz) calculated by the newly-devised GAP func-
tion constructSCICF is identical with the 12th row of the standard USCI-CF table of
Dy, (USCITableD6h) shown in Figure 6 because of the presence of one orbit.

In similar ways as Source Code 1 (SubDh6h6-X.gap, Appendix A), FPVs, CRs, and
SCI-CFs of the skeletons 1-4 (Figure 1) are calculated as collected in Table 1, where
the respective SSGs are taken into consideration, i.e., SSG%‘; (Eq. 3) for the benzene
skeleton 1, SSG%Z‘,’TM (Eq. 4) for the Haworth-projected skeleton 2, SSG%‘:ZE (Eq. 5) for
the superphane skeleton 3, and SSG%’B":”LE (Eq. 6) for the coronene skeleton 4.

It should be noted that the present article deals with cases in which each skeleton
is considered to contain one orbit corresponding to a single CR, i.e., (G;\)Dg,. How-
ever, a general case would contain one or more orbits corresponding to a summed CR,
ie, 3 ,(G;\)Dgn. The subduction process operated onto a single CR expressed by a

symbol (G;\)Dg, | Gj, where each term at the intersection between i-th row and
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Table 1. FPV, CR, and SCI-CF for Each Dgj,-Skeleton 1—4

FPV CR list of SCI-CF's
1 [6,0,20,20,6,0,0,0, (Cy,\)Dgr,  [b5, 63,02 % b2, b3, c3 x a3,
0,2,0,0,0,0,0,0,0, 0, 3, aS, 3,02, by ¥ by,
0,0,0,0,0,0,0,0,0,0,0,0] cyxag,al xad al, a3, co* ¢y,
(the 12th row of Figure 2) €4 * ag, bg, b2, bg, a3,
Ce, a3, Cg, ag * ay, b,
ag, ag, a2, ag, Co, ag, ag)
(the 12th row of Figure 6)
2 [12,0,0,0,4,0,0,0,0,0, (C\)Dg,  [b12, 85,68, 6, ¢ % al,
0,0,0,0,0,0,0,0, 0,0, 8, 8, B b b3,
0,0,0,0,0,0,0,0,0,0,0,0] xad ctxal, cl e,
(the 5th row of Figure 2) c2x a3, b b2, b2, a3,
2,2 2, cs x ay, b2,
az, c12,a,¢12,¢,2, a2, a2
(the 5th row of Figure 6)
3 [12,0,0,0,4,0,0,0,0,0, (C,\)Dg,  [b32, 05,85, 88, c3 * at,
0,0,0,0,0,0,0,0,0,0, 5,5, c5, b3, b3,
0,0,0,0,0,0,0,0,0,0,0,0] xad ctxal, cl e,
(the 5th row of Figure 2) c2x a3, b2 b2, b2 a3,
2,2 2, cs x ay, b2,
a2, 12,42, ¢12,¢12, a2, a,2]
(the 5th row of Figure 6)
4 [12,0,0,0,0,0,12,0,0,0, (C\)Dgn  [b}2, 85, b5, b8, &,
0,0,0,0,0,0,0,0, 0,0, S, al2, ¢S, bi, b3,
0,0,0,0,0,0,0,0,0,0,0,0] 3, a8, as, as, c3,
(the 7th row of Figure 2) 3, b2, b2, 02, 2,

cg, a3, ¢g, a, b2,
12,42, a2, a2, ¢,2, ¢12, a,2]
(the 7th row of Figure 6)

j-the column is represented by USCI-CF;;. The subduction process operated onto a
summed CR expressed by a symbol > ,(G;\)Dg, | Gj, which corresponds to SCI-CF;
(= II, USCI — CF;;). When one orbit relates to the (G;\)Dg,-row (the i-th row), SCI-
CF; is equal to USCI-CFj, e.g., as found in the 12th row of Figure 6 for the benzene
skeleton.

Although the respective combined-permutation representations (CPRs) are different,
the standard mark table (its matrix format (Figure 2) or test_sort) and the standard
USCI-CF table (USCITableD6h shown in Figure 6) are commonly obtained, so as to
characterize the point group Dg, algebraically. Thus, the FPVs, CRs, and SCI-CFs
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collected in Table 1 are commonly based on the standard mark table (Figure 2) and the

standard USCI-CF table (Figure 6) for the point group Dgy.

6 Generation of PCI-CFs

Fujita’s USCI approach [4,10] supports four methods of combinatorial enumeration, i.e.,
(1) the FPM (fixed-point matrix) method, which is based on generating functions derived
from subduced cycle indices (SCIs) and mark tables [7-9]; (2) the PCI (partial-cycle-index)
method, which is based on generating functions derived from partial cycle indices (PCIs)
[34,35]; (3) the elementary superposition method [36]; and (4) the partial superposition
method [34,36]. Among them, the partial-cycle-index (PCI) method [34,35] will be applied

here to Dgp,-skeletons (Figure 1).

6.1 PCI-CFs for the benzene skeleton 1

As shown in the last part of Source Code 1 (SubDh6h6-X.gap, Appendix A), the list
of PCI-CFs (1_PCICF_benz) for the benzene skeleton 1 has been obtained from the list
of SCI-CFs (1.SCICF_benz, i.e., the first row at the list of SCI-CFs-column of Table 1),
which is multiplied by the inverse of the mark table Inverse(Matrix_tomD6hbenz), as

follows.

Display("#list of PCI-CFs_ for benzene");
1_PCICF_benz := 1_SCICF_benz * Inverse(Matrix_tomD6h_benz);
Display(1_PCICF_benz);

The output in the corresponding log file is a matrix format with a single row, which

contains a list of 32 PCI-CF's for the respective subgroups:

#list of PCI-CFs for benzene

[ 1/24%b_1"6-1/24%a_1"6-1/8%b_1"2xb_2"2-1/8*c_2"2*%a_1"2+1/4%a_1"2%a_2"2 -1/6xb_2"3-1/6*c_2"3+1/3%a_2"3
+1/4%b_2%b_4+1/4xc_2%c_4+1/12%b_3"2+1/2%c_4xa_2-a_2*a_4-1/12*%a_3"2-1/12%c_6-1/12%b_6+1/6*a_6,
1/12%b_2"3-1/12%a_2"3-1/4%b_2¥b_4-1/4*c_4*a_2+1/2%a_2%a_4+1/6%b_6-1/6%a_6,

(omitted)

a6 ]

This list is transformed into the respective PCI-CF for each subgroup, i.e., PCICF[1]—

PCICF[32]:

#PCI-CFs for subgroups

PCI-CF[1] := 1/24%b_1"6-1/24%a_1"6-1/8%b_1"2%b_27"2-1/8%c_2"2%a_1"2+1/4%a_1"2xa_2"2-1/6%b_2"3-1/6%c_2"3
+1/3%a_2"3+1/4xb_2%b_4+1/4xc_2%c_4+1/12%b_3"2+1/2%c_4*a_2-a_2*a_4-1/12%a_3"2-1/12*c_6-1/12%b_6+1/6*a_6
PCI-CF[2] := 1/12%b_2"3-1/12%a_2"3-1/4*b_2¥b_4-1/4*c_4*a_2+1/2%a_2%a_4+1/6%b_6-1/6*a_6

PCI-CF[3] := 1/4%b_1"2%b_2"2-1/4*a_1"2%a_2"2-1/4¥b_2%b_4-1/4*xc_2%c_4-1/4*%b_3"2+1/2%a_2*a_4+1/4*a_3"2
+1/4xc_6+1/4%b_6-1/2%a_6

PCI-CF[4] := 1/4%b_2"3-1/4%a_2"3-1/4%b_2¥b_4-1/4*c_4*a_2+1/2%a_2%a_4

PCI-CF[5] := 1/4*c_2"2%a_1"2-1/4xa_1"2%a_272-1/2xc_4%a_2+1/2*a_2%a_4

PCI-CF[6] := 1/4%c_273-1/4%a_2"3-1/4xc_2xc_4-1/4*c_4*a_2+1/2%a_2%a_4

PCI-CF[7] := 1/12%a_1"6-1/4*a_1"2*xa_2"2-1/3%a_2"3+1/2*a_2%a_4+1/6%a_3"2-1/6%a_6
PCI-CF[8] := 1/12%c_273-1/12%a_2"3-1/4*c_2%c_4-1/4*c_4xa_2+1/2*a_2xa_4+1/6*c_6-1/6%a_6

PCI-CF[9] [
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PCI-CF[10] := 1/2%b_2%b_4-1/2%a_2%a_4-1/2%b_6+1/2%a_6
PCI-CF[11] := 1/2xc_4*a_2-1/2%a_2%a_4

PCI-CF[12] := 1/2%a_1"2%a_2"2-1/2%a_2%a_4-1/2%a_3"2+1/2%a_6
PCI-CF[13] := 1/2%a_2"3-1/2%a_2%a_4

PCI-CF[14] := 1/6%a_2"3-1/2%a_2%a_4+1/3%a_6
PCI-CF[15] := 1/2%c_2%c_4-1/2%a_2+%a_4-1/2%c_6+1/2%a_6
PCI-CF[16] := 1/2%c_4*a_2-1/2%a_2%a_4

PCI-CF[17] := 0

PCI-CF[18] := 1/4xb_3"2-1/4xa_3"2-1/4xc_6-1/4xb_6+1/2%a_6
PCI-CF[19] := 0

PCI-CF[20] := 0

PCI-CF[21] := 0

PCI-CF[22] := 0

PCI-CF[23] := 0

PCI-CF[24] := a_2*a_4-a_6

PCI-CF[25] := 1/2%b_6-1/2%a_6

PCI-CF[26] := 0

PCI-CF[27] := 0

PCI-CF[28] := 1/2%a_372-1/2%a_6

PCI-CF[29] := 0

PCI-CF[30] := 1/2%c_6-1/2%a_6

PCI-CF[31] := 0

PCI-CF[32] := a_6

The i-th element PCI-CF[:] (i = 1,2,---,32) corresponds to the respective sub-
groups numbered sequentially, as shown in SSG D, (Eq. 1). Hence, the above PCI-CFs
(PCI-CF[:1, i = 1,2,...,32) for the benzene skeleton 1 can be written in usual mathe-

matical notation (cf. Definition 19.6 of Ref. [4]):

1 1 1 1 1 1 1 1 1
PCI-CF{(C1,$q) = ﬂb? - ﬁa? - §b§b§ 8(,2(11 + 4@? a3 — ébg - Ecg + gag + szlM
1 1 1 1 1 1
+ 10204 + ﬁb% + §C4(l2 204 — 12 2 ECG 12b6 + 6a6 (7)
1 . 1 1 1 1 1 1
PCI-CFq (Cs, =0 — —a— Zbby— = - —bg — = 8
1(Cs,84) 2" 1202 7020 4C4Cl2+ 2<12<1zmL 6% 606 (8)
1. 1, 1 1 1. 1 1 .
PCI—CFI(CZ,, $d) = bebg - Z(l%(l; - Zb2b4 — 16264 - Zbﬁ + 50,2044 + Zaj
1 1 1
+ ZC(:; + Zbﬁ — 5‘16 (9)
, 1, 1, 1 1 1
PCI-CF{(Cy, $4) = 71)2 Vi 1?)21)4 — 4 Caz + 50204 (10)
1 1 1 1
PCI-CF{(C;, $q) = 4(’%@% 4(1?(1% 5Ca02 + 50204 (11)
PCI-CF (C'$)*lcs—la3—lcc —lca +1aa (12)
1(C559a) = 76 = 705 = 5020y — 740y + 5020y
1 1 1 1 1 1
PCI-CF{(C/,$4) = 12a1 — Za]a2 - §a2 + asas + 6a3 gl (13)
1 1 1 1 1 1 1
PCI-CF{(C;, $q) = ﬁ(sg — ﬁag = 40204 — €10 + 50204 + 6(:6 - Eaﬁ (14)

PCI-CF{(Cs,$4) = 0 (15)
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PCI-CF{ (Dy, $4) =
PCI-CFq1(Cy,, $4) =
PCI-CF{(Cy,,$4) =
PCI-CF{(Cy.,$4) = =a

PCI-CFq (Cap, $4) =

PCI-CF1(CY,.$4)
PCI-CF{(Cy;, 34
PCI-CF{ (Cy, $4
PCIL-CFy (D3, $4
PCI-CFy(Dy, $4
PCI-CF{ (Ci,, $4
PCI-CF{(Cy,, $4
PCI-CF (Cy, $4
PCI-CFy (Cs;, $4

PCI-CFq (D, $4
PCI-CF{ (Cey, $4
PCI-CF (Cep, $4

PCI-CFq (Dsy, $4

PCI-CF{ (D34, $4

)=
)
)
)
)
)
)
)
PCI-CF{ (Dgp, $4)
)
)
)
)
)
)
PCI-CFy (Dy,, $4)

)

(C

(
PCL-CF1q (Dy,, $4

(

(

(Ds

PCI-CFq (Dgy, $4

1 1
5b2b4 — 5@2&4 - ibb + 5(16

1
€402 — Q204

2 2
1 1
gafag - 5a2a4 — iag + 5(16
1, 1
g2 g
1, 1
ga‘é — 50204 +1/3ag
1 1 1 1
= 562(?4 — 5(12(14 — 506 + 5[1,6
2(4(]2 - 2(1,2(1,4
=0
1 1 1 1
= sz - Zai - 106 bﬁ + 5(16
=0
= Q204 — Qg
1 1
= —bg—
PR
=0
=0
1 1
= 5&% 5(16
=0
1 1
= — — Qe
207 gt
=0

(16)
(17)
(18)
(19)
(20)
(21)
22
23
24
25
26
27
28

29

(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)

38

where the symbol a_d is replaced by the sphericity index (SI) aq for a d-membered ho-

mospheric orbit; the symbol c_d is replaced by the SI ¢4 for a d-membered enantiospheric

orbit; the symbol b_d is replaced by the SI b; for a d-membered hemispheric orbit; and

totally the symbol $; is used to designate aq, ¢4, and by.
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6.2 PCI-CFs for the Haworth-projected skeleton (2)

The above procedure of Source Code 1 (SubDh6h6-X.gap, Appendix A) for calculating
PCI-CFs of the benzene skeleton (Egs. 7-38) via 1_SCICF_benz and 1_PCICF_ benz is
applicable to the other skeletons.

The use of the set of generators gen_haworth in place of gen benz of Source Code 1
(SubDh6h6-X . gap) generates the CPR D6h_haworth for calculating the Haworth-projected
skeleton 2. After the selection of the set of subgroups gen[i] (i = 1,2,--- ,32) according
to the SSGfBZ:”h (Eq. 4), the corresponding FPV and the corresponding list of SCI-CFs
(Table 1) are calculated as described above. Thereby, the list of PCI-CFs is calculated,
so as to give the respective PCI-CF's for the enumeration based on the Haworth-projected
skeleton 2. These PCI-CFs in GAP expressions are converted into usual mathematical

formats as follows:

1 1, 7 5+ 1 3 1 7
P(}I-CJFZ(Cl7 $(1) = 7b12 g 71)() ﬂcg - ﬂbi + Zcﬁa% —+ gdi + E(’;
1
+ bJ + 254 Cg + lbz cgQy — %aé 1;72612 —bia + a1 (39)
PCI-CFo(C;, $q) = 1 — b5 — 1c2a2 Lo 4)3 - —bz + 1csa4 + 1a2
' 122 4 219 % 4% 12°% 7 2 40
1 1
+ EC]Z + b12 5012 (40)
PCI-CF5(Cy,$4) = —b5 — lcﬁag lci i 108(14 + 12 n 1012
' L 4 4 4072 407 4
1 1
blg — —Qa19 (41)
4 2
1 1, 1. 1 1 1 1
PCI-CF5(Cy', $4) = 4 1 Zci - Zbi - Zbg + 5esas + Za%
L 3 1( L 42
+ 1(112 + <012 — 5”112 (42)
1 3 1 1 3 1
PCI-CFo(Cs, $4) = cha‘f — Zcﬁag - Za; + 5 ¢804 + 4% Fz (43)
1, 1 1. 1 1 1 1 1
PCI—CFz(CS/, $d) 402 — Zciaﬁ 2643 - Z(’(Q) + 508514 + 1(12 + 5612 — 5(112 (44)
1 1 1. 1 1 1 1 1
PCI-CFo(C/, $4) = 1263 402&% gcj 12c6 + 5804+ 4(16 + 3612 — 501 (45)
1 1 1 1 1 1 1 1
PCI-CF5(C;, $q) = E(g — Zfiag gci - E(G + ¢804 + 4(16 + 3(*12 - 52 (46)
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PCL-CF9(C;,$4) = ébg - éaé - %(;Z - gb% Za,g + %(;12 + e — an2
PCL-CFg(Dy, $4) = 5174 - %CS‘M - %bm + %am

PCL-CFg(Cyy, 84) = %cﬁa% - %Csflz; - %aé + 502

PCI-CF2(Cy,, $4) = %cia% Tt~ %aé + %au

PCI-CFy(Cy,, 84) = %ci — %cs(m - %012 + %au
PCI-CFo(Ca, $q) = &€ S ;(‘8(14 (13(‘12 + ;am
POLCF3(Cy, $0) = 56— sests — sen + sy
PCI-CFg(Cy,, $4) = %Qaz - %Csfu - %a?ﬁ + %au
PCI-CFo(Cs, $q) = i 2 — iag - %clg - iblz + %alz
PCI-CFo(Ds, $4) = —bg — %ag e 11)12 + %(1,12
PCILCFy (D, 84) = 10 — 12 — 112 — hur + o
PCI-CF9(Cs,, $4) = %aﬁ - i 2 ;alg
PCI-CF9(Cy,, $4) = icé - iaé ;cu + ;alg
PCI-CFg(Csp, $q) = i(‘é - ia% ;(‘12 + ;au
PCI-CF5(Cs;, $4) = icg — %ag ;cm —+ ;a]z
PCL-CFy(Dyy, $4) = csas — ars

PCLCF3(Dy.84) = thia — sua

PCI-CFo(Csy, $4) = iaé — %am

PCLCFo(Cop, $4) %cm - %aw

PCI-CFg(D3y, $4) = §a§ - %au

PCI-CFg(Dy),,$4) = %C]Q — ;alz

PCI-CF(Dss,$4) = 5o ;au

PCI-CFg9(Ds,,$4) = %a,g - %au

PCI-CFo (D, $) = a1



505

6.3 PCI-CFs for the superphane skeleton (3)

The set of generators gen_phane for characterizing the superphane skeleton (3) is identical
with the set of generators gen_haworth for characterizning the Haworth-projected skeleton
(2) (Figure 1). As a result, the set of FPV, CR, and SCI-CF for the superphane skeleton
(3) is equal to the corresponding set for the Haworth-projected skeleton (2), as collected
in Table 1. Moreover, the PCI-CFs expressed by usual mathematical formats for the
Haworth-projected skeleton (2), i.e., PCI-CFo(C},$,) -PCI-CFg(Dgp, $4) (Egs. 39-70),
are identical with the counterparts for the superphane skeleton (3), i.e., PCI-CFg(C, $,)
~PCI-CF3(Dgp, $4) (which are omitted).

6.4 PCI-CFs for the coronene skeleton (4)

In the above procedure of Source Code 1 (SubDh6h6-X.gap, Appendix A), the set of
generators gen_coronene is used in place of gen_benz, so as to gain the corresponding
CPR (D6h_coronene), which is adopted to employ further calculations for the coronene
skeleton 4. After the selection of the set of subgroups gen[i] (i = 1,2, - ,32) according
to the S.S(}.C]:—’)r‘:’:’”"E (Eq. 6), the corresponding FPV and the corresponding list of SCI-CFs
for the coronene skeleton 4 are calculated, as collected in Table 1. Thereby, the list of
PCI-CFs is calculated, so as to give the respective PCI-CFs for the enumeration based
on the coronene skeleton 4. These PCI-CFs in GAP expressions are converted into usual

mathematical formats as follows:

1 1 7 7 7 1 3.
PCI-CF4(C1,$q) = —b]2 — ﬂaiz — ﬂbﬁ - ﬂ(g + E% - ﬂbA —as + 404
7 7 3
+ b3,a4+ﬂ 6+ﬂb2,ﬁa§ 44 —7b]2+a12 (71)
1 4 1. 1 1
PCL-CF4(C, —fbtfm, ,,b ,71,2
4(Cs,84) 2% 7 1% 1t 2 ay 12% + 1612
1
+ *512 — 502 (72)
1 1 1. 1 1 1
PCL-CF4(G,84) = 1) — 30 — 36k = 00+ o = 18+ 1 + jau
1
+ 4b12 502 (73)
1 1 1 1 1 1 1 1
PCI-CF4(Cy', $4) = e Za;’ - Zci - ij + Eai - Zbg + Zaé + e
1 1
+ ~bi2 — San (74)

4 2
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PCI-CF4(C;,84) = —¢; —

PCI-CF4(C/,$4) =

PCI-CF4(C/,$4) =

PCI-CF4(C;, $4) =

PCI-CF4(Cy$4) =
PCI-CF4(Dy, $,) =
PCI-CF 4(Cy, $4) = ~¢}
PCI-CF4(Cy,,$4) =
PCI-CF4(Cy., $4) =
PCI-CF 4(Cap, $4) =

PCI-CF4(Cyy,, $4) = =¢

PCI-CF4(Cy;, $4) =

PCI-CF 4(Cs, $4) =

PCI-CF4 (D3, $,) =

PCI-CF4(Dy,$4) =

PCI-CF4(Cs,, $4) = ~c§

PCI-CF4(Cy,, $4) =

PCI-CF4(Cip, $4) =
PCI-CF4(Cs;, 84) =
PCI-CF 4 (Dyy, $) = a —

PCI-CF 4(Ds, $4)

PCI-CF4(Céy, $a) =

PCI-CF 4(Cép, $4) =

PCI-CF 4 (D5, $4)

1 1 1 1

Zag - 5(32 + 5“2 - ch +
1 1 1 1 1
zgfﬁ?53+fii%+

1, 1
1(1,6+§
1 1

4a6+ 2012

Ci2 —

1
2
1
2

—ai2

a2

1w 76 1. 3
2™ T 1% T g% T g%t g% T g
1. 1 1, 1, 1 1
ué‘ﬁ@‘?ﬁaﬁ‘ﬁﬁ+n%+
1 1 3 3 3 3
gbs §“g — gcg - §b‘23 + Zag + 762 + 11712 — 12
1 1 1 1
ibi 5@2 ibm 502
1 3 l 3 1 +l
9t gt QT
1 1 1,1
5“3 Eaj — iaé + 502
1 1, 1 1
iag iaj - 2a§ + 502
1 1 1 1
7(12 7(12 6(1% + 5(1/12
1 3 _ las 1C + la
PAEPE P
1, 1, 1 1
204 2af -5t + 02
1o lcf 1 1b + 1a
476 Ty T gt T e T e
1, 1 L1 !
sz — Zag 4 4b12 + 2(112
1 to1 1
4b2**(l6 70 4b12+ 502
! 2 laz_ 1(‘12 + 1(112
4 4% 2 2
lo 1. 1 1
107 g% T pfe Ty
1, 3, 1
Za3 - Zaﬁ + §a12
1, 1, 1 1
76~ 7% ~ 30z + 512

12
1 1

= 5()12 - 2(112
1 1
5612 - 2(112
5(1,2 — 5”112
1

= 5(13 —5h2
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PCI-CFy(Dy),,$,) = %aé - %(112 (99)
PCI-CF4(Dya,$:) = gers — 3o (100)
PCLCF 4(Dfy, $.) = %cm - %alz (101)
PCL-CF 4(Dg, $4) = a2 (102)

7 Application of the PCI-CF method to symmetry-
itemized enumeration of Dgj-derivatives

Source Code 2 (enumoctaX) for enumeration of Oj-derivatives has been reported by the
present author (Fujita) on page 362 of Ref. [25]. It is here applied to the enumeration
of Dgp-derivatives. Source Code 2 (enumoctaX) has shown the GAP code for practical
enumeration based on the PCI-CF method, where the GAP functions developed to treat
CI-CFs [22], e.g., calcCoeffGen, are capable of treating PCI-CFs as they are. In order to
use the function calcCoeffGen, the file CICFgenCC.gapfunc (Appendix A of [22]) should
be loaded along a similar way to Appendix B of [22].

In order to show practices of enumeration procedures based on the PCI method of

Fujita’s USCI approach ( [4]), let us examine enumerations of several selected skeletons.

7.1 Enumeration of benzene derivatives
7.1.1 Calculation of symmetry-itemized numbers of benzene derivatives with

given compositions

Let us select six proligands for the benzene skeleton 1 from the following ligand inventory:
L={H,AB,C;p/P,q/Q,r/R,s/S}, (103)

where H, A, B, and C represent achiral proligands, while p/P --- s/S represents a pair
of enantiomeric proligands when detached. The uppercase letter P etc. is used in place
of the symbol P etc. to simplify the source code. The letter H is used to show the
substitution of a hydrogen atom, which is usually omitted in structural formulas. For the
sake of simplicity, only four achiral proligands and only four pairs of chiral proligands are

adopted for substituting the six positions of the benzene skeleton. Then, the following
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ligand-inventory functions are calculated:

ag = H + A? 4 B! + ¢ (104)
ca=H?+ A+ B 4 C?
+ 2P 4 2g QU2 + 2 YRR 4 251252 (105)
by = H+ A? + B+ C?
+pl+ Pl gt + QU+ + R4 51+ 57 (106)

These ligand-inventory functions are introduced into the right-hand side of each PCI-
CF for the benzene skeleton 1, i.e., Eqs. 7-38. The resulting equations are expanded
to give generating functions, in which the coefficient of each term corresponding to the
composition H7 AABPCCpPPP QP R s*SY represents the number of the corresponding

derivatives. The non-negative superscripts satisfy the following condition:
H+A+B+C+p+P+q+Q+r+R+s+S5=6. (107)

For practical enumeration, the GAP code is obtained by modifying Source Code 2
(enumoctaX) reported on page 362 of Ref. [25], where the function calcCoeffGen is used
in the subroutine function calcCoeffGenbenz for outputting enumeration results in a
tabular form. The composition HZAABECCpPPPq?Q@r"REs*SY is represented by the

following partition during the process of tabulation:
[0}:[H:AvacvpaPanQ;T;R’SvSL (108)

which is used as the argument of the function calcCoeffGen and the subroutine function
calcCoeffGenbenz. Thereby, the coefficient of the term H? AABECCpPPP Q" REs*SS
appearing in each of the generating functions is extracted to give the number of pro-
molecules with the composition H? AABBCCpPPPq1QP1"R¥s°S® and with the assigned
subgroup of Dgy,.

Table 2 collects the symmetry-itemized numbers of isomeric benzene derivatives with
achiral and chiral proligands, where the symmetry-itemized values for each selected com-
position (the partition [f]) are shown in accord with the SSGp ~ (Eq. 1). The data
collected in Table 2 are consistent with those reported previously [27], which have not
relied on the GAP system.

Each row with an asterisk should be duplicated, because a pair of enantiomers is

counted once under the present enumeration of the PCI-CF method. For example, the
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Table 2. Symmetry-Itemized Numbers of Derivatives Derived from the Benzene

Skeleton 1
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partition [5,0,0,0,1,0,0,0,0,0,0,0]* of the third row (Table 2) is paired with the partition

[5,0,0,0,0,1,0,0,0,0,0,0]x, so that these paired partitions correspond to 1/2(H;p+HsD);

then the value 1/2 at the intersection between the third row and the third column (C,)

should be duplicated to give 1 (= 1/2 x 2).

Note that the columns for the respective

subgroups of an inherent zero value (Egs. 15, 23, 25-29, 32, 33, 35, and 37) are omitted

from Table 2.
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Figure 7. Symmetry-itemized enumeration of benzene derivatives with the com-
position HgAsp (partition: [3,2,0,0,1,0,0,0,0,0,0,0]), which shows the
presence of four pairs of enantiomeric Cj-derivatives and two pairs of
enantiomeric Cy-derivatives.

7.1.2 Diagrammatical examination of calculation results concerning benzene
derivatives

For the purpose of confirming the validity of the PCI-CF method, let us examine several

rows among the data of Table 2. It should be noted that each pair of enantiomeric

derivative or each achiral derivative is counted once during the present enumerations.

The values at the 13th row of Table 2 with the partition [3,2,0,0,1,0,0,0,0,0,0, 0]*
should be duplicated, so as to indicate the presence of four (= 2 x 2) pairs of enantiomeric
C,-derivatives (5/5, 6/6, 7/7, and 8/8) and two (= 1 x 2) pairs of enantiomeric C,-
derivatives (9/9 and 10/10) of the composition HzAsp/H3Aop. These derivatives are
depicted in Figure 7. For the sake of rigidity, each pair of enantiomers is connected by
a vertical double-headed arrow, because each pair linked with a vertical double-headed
arrow is regarded as a hypothetically single object and so counted once during the present
enumeration nuder the point group Dgy.

The values at the 18th row of Table 2 with the partition [3,1,0,0,1,1,0,0,0,0,0,0]
indicate the presence of four pairs of enantiomeric Cj-derivatives (11/11, 12/12, 13/13,
and 14/14) and two C,-derivatives (15 and 16) of the composition H3App. Note that
the antipodal effects of p and P are compensated during reflection, so as to result in the

appearance of the C-derivatives. These derivatives are depicted in Figure 8.
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Figure 8. Symmetry-itemized enumeration of benzene derivatives with the com-
position H3App (partition: [3,1,0,0,1,1,0,0,0,0,0,0]), which shows
the presence of four pairs of enantiomeric Cj-derivatives and two Cs-
derivatives.

7.2 Enumeration of superphane derivatives

7.2.1 Calculation of symmetry-itemized numbers of superphane derivatives
with given compositions

Let us next examine skeletal substitution concerning the twelve methylene moieties of the

superphane skeleton 3. Then, twelve skeletal positions are replaced by bidentate moieties

selected from the following ligand inventory:
L' = {C,N,0,8}, (109)

where C represents a methylene moiety (CHy), N represents an amine moiety (NH), O
and S represent bidentate oxygen and sulfur. Because the absence of no chiral moiety,

equal ligand-inventory functions are used as follows:

ag=C*+N?+ 0+ 8¢ (110)
by =C*+ N+ 07 + 54 (111)
ca=C+ N+ 0% 8¢ (112)

Because the PCI-CFs for enumerations based on the superphane skeleton (3), i.e.,
PCI-CFg(C1,84) PCI-CFg(Dgy,$q), (omitted) are identical with PCI-CFg(C\,$4) —
PCI-CF9(Degp, $4) (Egs. 39-70), the latter are used for the present calculation.
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After the ligand-inventory functions (Egs. 110-112) are introduced into the right-hand
side of each PCI-CF (Egs. 39-70), the resulting equations are expanded to give generating
functions, in which the coefficient of the composition C¢NAOPS® represent the number

of the corresponding skeletal derivatives. The superscripts satisfy following equation:
C+N+O+S5=12. (113)

For practical enumeration, the GAP code obtained previously as Source Code 2 (enum-
octaX) on page 362 of Ref. [25] is applied to the present enumeration after appropri-
ate modifications, where the function calcCoeffGen is used in the subroutine function
calcCoeffGenphane for outputting enumeration results in a tabular form. During this
process of tabulation, the composition CC°NVOPS? is represented by the following parti-
tion:

[0] = [C,N, 0, 5], (114)

which is used as the argument of the function calcCoeffGen and the subroutine function
calcCoeffGenphane. Thereby, the coefficient of the term CYNNOYSY (partition: Eq.
114) appearing in each of the generating functions is extracted to give the number of pro-
molecules with the composition C*N¥OPS* and with the assigned subgroup of Dgj,. The
resulting set of coeflicients are collected in Table 3. These data are consistent with those
previously reported, which have not relied on the GAP system and have not considered
chirality fittingness (PCIs in place of PCI-CFs).

7.2.2 Diagrammatical examination of calculation results concerning super-

phane derivatives

For the purpose of confirming the validity of the PCI-CF method, let us examine several
rows among the data of Table 3, where each pair of enantiomeric derivative or each achiral
derivative is counted once during the present enumerations.

The values at the 6th row of Table 3 with the partition [10,0,2, 0] indicate the pres-
ence of one pair of enantiomeric C,-derivatives (17/17), one pair of enantiomeric C,'-
derivatives 18/18), one achiral Cs-derivative (19), one achiral C.-derivative (20), one
achiral Cy,-derivative (21), one achiral C,, -derivative (22), and one achiral C,;-derivative
(23), where they have the composition C'°0? (or alternatively expressed as C1oOz). These

derivatives are depicted in Figure 9.
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Table 3. Symmetry-Itemized Numbers of Derivatives Derived from the Superphane

Skeleton 3
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Figure 9. Symmetry-itemized enumeration of superphane derivatives with the
composition C1902 (partition: [10,0,2,0]).
The values at the 10th row of Table 3 with the partition [10,0,1,1] indicate the
presence of four pairs of enantiomeric C;-derivatives (24/24 —27/27) and three achiral
C-derivatives (28, 29, and 30), where they have the composition C!°0S (or alternatively

expressed as Cjp0S). These derivatives are depicted in Figure 10.

7.3 Enumeration of coronene derivatives

7.3.1 Calculation of symmetry-itemized numbers of coronene derivatives
with given compositions

Let us select twelve proligands for the coronene skeleton 4 from the following ligand

inventory:

L"={H,A B,C;p/P,q/Q}, (115)

where H, A, B, and C represent achiral proligands, while p/P or q/Q represents a pair of
enantiomeric proligands when detached. This ligand inventory is selected to be smaller
than the ligand inventory of Eq. 103. Thus only two pairs of chiral proligands are adopted
for substituting the twelve positions of the coronene skeleton, because the usage of Eq.
103 (four pairs of chiral proligands) to the term b}? causes the GAP error (“Error, reached

the pre-set memory limit”). The uppercase letter P etc. is used in place of the symbol
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Figure 10. Symmetry-itemized enumeration of superphane derivatives with the
composition C190S (partition: [10,0,1,1]).

P ete. to simplify the source code. Then, the following ligand-inventory functions are

calculated:

ag=H*+ A"+ B* 4+ C? (116)
cqg = H'+ A%+ B 4 O 2p¥2 P2 4 94242 (117)
bo=H'+ A+ B+ O+ p? + P!+ ¢ + Q? (118)

These ligand-inventory functions are introduced into the right-hand side of each PCI-
CF for the coronene skeleton 4, i.e., Egs. 71-102. The resulting equations are expanded to
give generating functions, in which the coefficient of the composition H¥ AABECCpPPP2QR
represent the number of the corresponding derivatives. The superscripts satisfy following
equation:

H+A+B+C+p+P+q+Q =12 (119)

For practical enumeration, the GAP code is obtained by modifying Source Code 2
(enumoctaX) reported previously on page 362 of Ref. [25], where the function calcCoeffGen
is used in the subroutine function calcCoeffGencoronene for outputting enumeration

results in a tabular form. During this process of tabulation, the composition H AABECC-
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pPPPq?Q? is represented by the following partition:
[0] = [H,A,B,C,p, P,q,Q), (120)

which is used as the argument of the function calcCoeffGen and the subroutine function
calcCoeffGencoronene. Thereby, the coefficient of the term H? AABECCpPPP Q% ap-
pearing in each of the generating functions is extracted to give the number of promolecules
with the composition HZ AABECCpPPP?Q? and with the assigned subgroup of Dgy,.
Table 4 (Part 1) and Table 5 (Part 2) collect the symmetry-itemized numbers of
isomeric coronene derivatives with achiral and chiral proligands, where the symmetry-
itemized values for each selected composition (the partition [f]) are shown in accord
with the SSG D, (Eq. 1). Each row with an asterisk should be duplicated, because a
pair of enantiomers (as well as an achiral derivative) is counted once under the present
enumeration. The non-asterisked data collected in Tables 4 and 5 are consistent with

those reported previously [27], which have been concerned with achiral proligands only.

7.3.2 Diagrammatical examination of calculation results concerning coronene
derivatives

For the purpose of confirming the validity of the PCI-CF method, let us examine several

rows among the data of Table 4 where each pair of enantiomeric derivative or each achiral

derivative is counted once during the present enumerations.

The value 11 at the intersection between the 6th row (the partition [10,1,1,0,0,0,0, 0])
and C.’-column in Table 4 shows the presence of eleven C.’-derivatives with the compo-
sition HygAB. These derivatives are depicted in Figure 11. Note that C.-symmetry is
characterized by its horizontal mirror plane which contains the plane of coronene.

The values at the 8th row of Table 4 with the partition [10,0,0,0,1,1,0,0] (the com-
position Hyopp) show the presence of two pairs of enantiomeric Cj-derivatives (42/42
and 43/43), three achiral Cs-derivatives (45, 46, and 47), three achiral C/-derivatives
(48, 49, and 50), and one achiral C;-derivative (44). These derivatives are depicted in
Figure 12.

Note that the mirror operation onto 42 (as well as 43) results in the appearance of its
non-superimposable mirror object 42 (as well as 43); however, the resulting enantiomeric
pair 42/42 (as well as 43/43) is counted once as a hypothetically single object during the

present enumeration under the point group Dgj,. As a result, the value 2 appears at the
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Table 4. Symmetry-Itemized Numbers of Derivatives Derived from the Coronene

Skeleton 4 (Part 1)
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Figure 11. Symmetry-itemized enumeration of coronene derivatives with the com-

[10,1,1,0,0,0,0,0]), which shows the pres-

ence of eleven C,’-derivatives.
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Figure 12. Symmetry-itemized enumeration of coronene derivatives with the com-
position Hyopp (partition: [10,0,0,0,1,1,0,0]), which shows the pres-
ence of two pairs of enantiomeric Cj-derivatives, three achiral Cs-
derivatives, three achiral C,-derivatives. and one achiral Cj-derivative.

intersection between the 8th [10,0,0,0,1,1,0,0]-row and the Cj-column. The inversion
operation 7 means the successive action of the rotation Cy around the vertical two-fold axis
and the horizontal reflection; thereby, the ¢ operation stabilizes (fixes) the Cj-derivative
(44). Three vertical reflection groups for stabilizing the three achiral C,-derivatives (45,
46, and 47) are conjugate under Dgy,.

This fact can be confirmed by the GAP function ConjugateSubgroups, which is op-

erated onto Cs (C;) for stabilizing 45 as follows.

gap> gen_coronene := [(1,3,5,7,9,11)(2,4,6,8,10,12),

> (1,6)(2,5)(3,4)(7,12)(8,11)(9,10), (13,14)1;;

gap> D6h_coronene := Group(gen_coronene);; #coronene skeleton

gap> gen_Cs := [(1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,14)];;

gap> Cs := Group(gen_Cs);;

gap> ConjugateSubgroups (D6h_coronene,Cs) ;

[ Group([ (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,14) 1),
Group([ (1,4)(2,3)(5,12)(6,11)(7,10)(8,9) (13,14) 1),
Group([ (1,8)(2,7)(3,6)(4,5)(9,12)(10,11)(13,14) 1) 1

gap>

The resulting two-fold reflection groups stabilize 46 and 47, respectively.
Similarly, three vertical reflection groups for stabilizing the three achiral C/-derivatives

(48, 49, and 50) are conjugate under Dgy,.
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8 Conclusions

To systematize symmetry-itemized enumeration under a point group by using the GAP
(Groups, Algorithms, Programming) system, the applicability of combined-permutation
representations (CPRs) with an additional 2-cycle due to a mirror-permutation are ex-
amined by adopting several skeletons of the Dgj,-point group as probes. Thereby, the
GAP functions MarkTableforUSCI and constructUSCITable, which have been newly
devised to systematize the concordant construction of a standard mark table and a stan-
dard USCI-CF (unit-subduced-cycle-index-with-chirality-fittingness) table in a previous
report [25], are applied to four representative Dgj-skeletons, i.e., a benzene skeleton, a
Haward-projected skeleton, a superphane skeleton, and a coronene skeleton. Thereby, we
are able to construct the standard mark table and the standard USCI-CF table even if
we start from any of CPRs for characterizing these skeletons, i.e. the CPR of degree 8
(= 6 + 2) for the benzene skeleton, the CPR of degree 14 (= 12 + 2) for the Haward-
projected skeleton, the CPR of degree 14 (= 12 + 2) for the superphane skeleton, and the
CPR of degree 14 (= 12 + 2) for the coronene skeleton. After a set of PCI-CFs (partial
cycle indices with chirality fittingness) is calculated for each skeleton, symmetry-itemized
combinatorial enumeration is conducted by means of the PCI method of Fujita’s USCI

approach.
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Appendix A. Source code 1 (SubDh6h6-X.gap) for con-
cordant preparation of a standard mark table and a
standard USCI table of Dg;, by starting from a ben-
zene skeleton, as well as formation of PCI-CF's for the
benzene skeleton

The following source code SubDh6h6-X.gap aims at concordant generations of a standard
mark table MarkTableD6h and a standard USCI-CF table USCITableD6h for the point
group Dgp,, where the combined-permutation representation (CPR) D6h_benz for a ben-
zene skeleton is used as a typical example. A set of USCI-CFs for characterizing a benzene
(1_PCICF_ benz) is calculated.

The file SubD6h6X.gap is loaded by Read as shown in the first line (commented by
#). The results are output into a log file named SubD6h6X1og.txt by means of the GAP
function LogTo. The file USCICF.gapfunc (cf. Appendix A in [24]) is loaded to use the

devised GAP functions MarkTableforUSCI and constructUSCITable.

Source Code 1 (SubDh6h6-X.gap)

#Read("c:/fujita00/fujita2020/subductionD6h/gap/SubD6h6X. gap") ;
LogTo("c:/fujita00/fujita2020/subductionD6h/gap/SubD6h6Xlog.txt");

Read("c:/fujita00/fujita2020/subductionD6h/gap/USCICF.gapfunc");

#generators for D6h_benz

gen_benz := [(1,2,3,4,5,6), (1,4)(2,3)(5,6), (7,8)]1;;
D6h_benz := Group(gen_benz); #benzene skeleton
Display(Size(D6h_benz)) ;

#generators for D6_benz
gen_benzx := [(1,2,3,4,5,6), (1,4)(2,3)(5,6)];;
D6_benz := Group(gen_benzx); #benzene skeleton
Display(Size(D6_benz));

tom_D6h_benz := TableOfMarks(D6h_benz);;
Display(tom_D6h_benz) ;

#Subgroups of D6h given

gen := [1;;

gen[1] := [ 1;; #--—-1

gen[3] := [ (2,6)(3,5) 1;; #--—-2

gen[7] := [ (7,8) 1;; #--—-3

gen[2] := [ (1,4)(2,5)(3,6) 1;; #-———4

gen[5] := [ (2,6)(3,5)(7,8) 1;; #-—---5

gen[4] := [ (1,2)(3,6)(4,5) 1;; #----6

gen[8] := [ (1,4)(2,5)(3,6)(7,8) 1;; #-—-7

gen[6] := [ (1,2)(3,6)(4,5)(7,8) 1;; #--——-8

gen[9] := [ (1,3,5)(2,4,6) 1;; #--—-9

gen[14] := [ (7,8), (1,4)(2,5)(3,6) 1;; #--—-10

gen[10] := [ (2,6)(3,5), (1,4)(2,5)(3,6) 1;; #----11
gen[12] := [ (7,8), (2,6)(3,5) 1;; #-——-12

gen[11] := [ (2,6)(3,5)(7,8), (1,4)(2,5)(3,6) 1;; #----13
gen[13] := [ (7,8), (1,2)(3,6)(4,5) 1;; #--——-14

gen[15] := [ (1,4)(2,5)(3,6)(7,8), (2,6)(3,5) 1;; #--—-15
gen[16] := [ (1,3)(4,6)(7,8), (1,6)(2,5)(3,4) 1;; #----16
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gen[22] := [ (1,3,5)(2,4,6), (7,8) 1;; 17
gen[18] := [ (1,3,5)(2,4,6), (2,6)(3,5) 1;; #----18

gen[20] := [ (1,3,5)(2,4,6), (2,6)(3,5)(7,8) 1;; #----19

gen[17] := [ (1,3,5)(2,4,6), (1,2,3,4,5,6) 1;; #--—-20

gen[23] := [ (1,3,5)(2,4,6), (1,2,3,4,5,6)(7,8) 1;; #----21

gen[19] := [ (1,3,5)(2,4,6), (1,2)(3,6)(4,5) 1;; #----22

gen[21] := [ (1,3,5)(2,4,6), (1,2)(3,6)(4,5)(7,8) 1;; #----23

gen[24] := [ (7,8), (2,6)(3,5), (1,4)(2,5)(3,6) 1;; #--—-24

gen[27] := [ (1,3,5)(2,4,6), (7,8), (1,2,3,4,5,6) 1;; #--—-25

gen[25] := [ (1,3,5)(2,4,6), (2,6)(3,5), (1,2,3,4,5,6) ];; #-—--26
gen[28] := [ (1,3,5)(2,4,6), (7,8), (2,6)(3,5) 1;; #----27

gen[26] := [ (1,3,5)(2,4,6), (2,6)(3,5)(7,8), (1,2,3,4,5,6) 1;; #----28
gen[29] := [ (1,3,5)(2,4,6), (7,8), (1,2)(3,6)(4,5) 1;; #----29
gen[30] := [ (1,3,5)(2,4,6), (2,6)(3,5), (1,2,3,4,5,6)(7,8) 1;; #----30
gen[31] := [ (1,3,5)(2,4,6), (2,6)(3,5)(7,8), (1,2,3,4,5,6)(7,8) 1;;
#----31

gen[32] := [ (1,2,3,4,5,6), (1,4)(2,3)(5,6), (7,8) 1;; #----32

#mark table sorted for USCI table
MarkTableD6h := MarkTableforUSCI(D6h_benz,D6_benz,32,gen,6,8);;
Display(MarkTableD6h) ;

USCITableD6h := constructUSCITable(D6h_benz,D6_benz,32,gen,6,8);
Display ("##USCI-CF_table (USCITableD6h) :");
Display(USCITableD6h) ;

#Matriz form of mark table
Matrix_tomD6h_benz := MatTom(MarkTableDé6h) ;
Display(Matrix_tomD6h_benz) ;

Display ("#Fixed point vector for_ benzene");
FPVbenz := calculateFPvector(D6h_benz,D6_benz,32,gen,6,8);;
Display (FPVbenz) ;

Display ("#0rbits for benzene");
Orbit_benz := FPVbenz*Inverse(MatTom(MarkTableD6h));;
Display(Orbit_benz) ;

Display ("#SCI-CF_for benzene");

1_SCICF_benz :=

constructSCICF (D6h_benz,D6_benz,Matrix_tomD6h_benz,USCITableD6h,FPVbenz) ;;
Display(1_SCICF_benz);

Display ("#list of PCI-CFs_for benzene");
1_PCICF_benz := 1_SCICF_benz * Inverse(Matrix_tomD6h_benz);
Display(1_PCICF_benz) ;

Display ("#PCI-CFs_ for subgroups") ;

for i in [1..32] do

Print ("PCI-CF[", i, "lu:=,", 1_PCICF_benz[i], "\n");
od;

LogTo();



