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Abstract

Combined-permutation representations (CPRs) for characterizing D6h-skeletons
(a benzene skeleton, a Haworth-projected skeleton, a superphane skeleton, and a
coronene skeleton) are constructed by starting from respective sets of generators,
where the permutation of each generator is combined with a mirror-permutation
of 2-cycle to treat both achiral and chiral substituents under the GAP system.
Thereby, the CPR of degree 8 (= 6 + 2) for the benzene skeleton, the CPR of degree
14 (= 12 + 2) for the Haworth-projected skeleton, the CPR of degree 14 (= 12 +
2) for the superphane skeleton, the CPR of degree 14 (= 12 + 2) for the coronene
skeleton are generated to give primary mark tables (tables of marks) based on these
CPRs. These primary mark tables generated by the GAP system are different
in the sequence of subgroups from each other, although they stem from the same
point group D6h. They are unified into a single standard mark table by means of a
newly-devised GAP function MarkTableforUSCI. Moreover, another newly-devised
GAP function constructUSCITable is employed to construct a standard USCI-CF
(unit-subduced-cycle-index-with-chirality-fittingness) table concordantly. After a
set of PCI-CFs (partial cycle indices with chirality fittingness) is calculated for each
skeleton, symmetry-itemized combinatorial enumeration is conducted by means of
the PCI method of Fujita’s USCI approach (S. Fujita, Symmetry and Combinatorial
Enumeration in Chemistry, Springer-Verlag, Berlin-Heidelberg, 1991).

https://doi.org/10.46793/match.87-3.481F
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1 Introduction

Conventional approaches for symmetry-itemized enumeration of isomers have been based

on Burnside’s tables of marks [1], while conventional approaches for gross enumera-

tion of isomers (without symmetry-itemization) have been based on Pólya’s enumeration

method [2, 3]. Both of the conventional approaches regard isomers as graphs with no

chiral substituents, so that they are incapable of enumerating 3D structures with chiral

substituents.

The monographs [4, 5] published by the author (Fujita) have discussed the short-

comings of the conventional approaches and have clarified that they lack the concept of

sphericity of orbits or cycles. On the basis of the concept of chirality fittingness stem-

ming from the sphericity concept, the author (Fujita) has proposed versatile methods for

enumerating 3D structures with chiral substituents, as briefly described below:

• Fujita’s USCI approach for symmetry-itemized enumeration of stereoiso-

mers as 3D-objects (as well as graphs) [4]. The concept of sphericity of an

orbit [6] is the basis of Fujita’s USCI (unit-subduced-cycle-index) approach, which

is generally discussed in one monograph published by the author [4]. Fujita’s USCI

approach has provided us with systematic utilities for discussing symmetry-itemized

combinatorial enumeration of (stereo)isomers.

Thus, the concepts of unit subduced cycle indices (USCIs) [7] and subductions of

coset representations (SCR) [6] were introduced by the author (Fujita) as a sub-

stantial extension of Burnside’s tables of marks [1]. The concept of USCIs is further

extended by introducing the concept of chirality fittingness (CF) via the concept

of sphericity for an orbit [8, 9], so as to develop unit subduced cycle indices with

chirality fittingness (USCI-CFs). The resulting USCI-CFs enable us to accomplish

symmetry-itemized combinatorial enumeration of (stereo)isomers as 3D objects.

Moreover, the concept of USCI-CFs has been recognized to play an important role in

symmetry-itemized enumerations of 3D objects under respective point groups [4,10–

12]. The resulting utilities are useful to combinatorial enumerations of stereoisomers,

so as to be referred collectively under the name of Fujita’s USCI approach.

• Fujita’s proligand method for gross enumeration of isomers as 3D-objects

(as well as graphs) [5]. On the other hand, the concept of sphericity of a cycle [13]
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is the basis of Fujita’s proligand method, which is generally discussed in another

monograph published by the author [5]. Fujita’s proligand method has provided us

with systematic utilities for discussing gross enumeration of (stereo)isomers without

symmetry-itemization.

Thereby, Pólya’s enumeration method concerning graphs [2, 3], which is originally

incapable of treating chiral proligands, has been extended to develop the proligand

method [13–15], which is capable of treating chiral as well as achiral proligands for

covering enumerations of 3D structures as well as graphs [5].

• Fujita’s stereoisogram approach by considering chirality/achirality and

RS -stereogenicity/RS -astereogenicity as two-kinds of handedness [11,12].

Recently, I have proposed the concept of stereoisograms controlled by newly-defined

RS -stereoisomeric groups [16, 17]. The vertical directions of a stereoisogram indi-

cates chirality as the first kind of handedness, while the horizontal directions of a

stereoisogram indicates RS -stereogenicity as the second kind of handedness. Chi-

rality for supporting Le Bel’s way and RS -stereogenicity for supporting van’t Hoff’s

way are discussed from a viewpoint of two kinds of handedness [11, 12]. After scle-

rality is added as the third aspect along the diagonal directions, the two kinds of

handedness are integrated into RS -stereoisomerism [18].

Tables of marks (mark tables) and USCI-CF tables are essential tools during the

enumeration processes of Fujita’s USCI approach (cf. Appendices of Ref. [4]). They have

been originally prepared in terms of the FORTRAN77 language (cf. note 24 of Ref. [6]

and note 17 of Ref. [19]). However, the procedures based on the FORTRAN77 language

have been rather tedious, even if the subsequent calculation processes of enumeration

can rely on more convenient computer algebraic systems such as the Maple system, the

Mathematica system, and the REDUCE system.

Recently, the GAP (Groups, Algorithms, Programming) system [20] (the current ver-

sion is GAP 4.11.1 released on 02 March 2021) is widely accepted as a system for compu-

tational discrete algebra, with particular emphasis on Computational Group Theory. In

particular, useful functions concerning tables of marks (mark tables) are now available,

e.g., the GAP function TableOfMarks.

On the other hand, USCI-CF tables for pursuing Fujita’s USCI approach should meet

the concepts of sphericity for an orbit and chirality fittingness (CF). Hence, the author
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Figure 1. Representative D6h-skeletons: a benzene skeleton (1), a Haworth-
projected skeleton (2), a superphane skeleton (3), and a coronene skele-
ton (4)

(Fujita) has extended permutation groups by previously-defined combined-permutation

representations (CPRs) [21–23]. The feasibility of CPRs has been examined by treating

Td-skeletons [24], Oh-skeletons [25], and D3h-skeletons [26] under the GAP system, where

concordant generations of “standard” mark tables and “standard” USCI-CF tables are

necessary to absorb the differences due to the variety of Td-, Oh-, or D3h-skeletons.

In the present article, various skeletons of D6h-symmetry are testified to unify mark

tables and USCI-CF tables into the respective “standard” formats for the purpose of

pursuing more efficient procedures of symmetry-itemized enumeration under the point

group D6h.

2 D6h-skeletons to be testified

2.1 Previous studies on D6h-skeletons

Figure 1 shows representative D6h-skeletons: a benzene skeleton (1), a Haworth-projected

skeleton (2), a superphane skeleton (3), and a coronene skeleton (4).

Symmetry-itemized enumeration and symmetry characterization of isomers derived

from a benzene skeleton 1 as well as from a coronene skeleton 4 have been discussed [27]

as an important section for developing the USCI approach. A D6h-skeleton 2 of Haworth-

type projection has been traditionally used to discuss the stereoisomers of inositols on

the analogy of sugar chemistry. In this treatment, a cyclohexane ring is considered to

be to be planar and to have upward (β) and downward (α) faces in a dihedral fashion,

where the twelve positions (six upward (1 to 6) and six downward positions (7 to 12))

are considered as substitution positions. This Haworth-projected skeleton 2 has been

used to α, β-itemized enumeration of inositol derivatives by extending Fujita’s proligand
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method [28]. Strictly speaking, such a Haworth-projected skeleton should be replaced by

two-chair forms of a cyclopropane skeleton. The interconversion between the two-chair

forms has been discussed by proposing a pseudo-point group D̂6h [29–31]. The twelve

bridge positions of a superphane ([26](1,2,3,4,5,6)cyclophane) skeleton (3) can be replaced

by divalent units, where resulting isomers are counted by the PCI (partial-cycle-index)

method of the USCI approach [32].

2.2 Basic properties of the point group D6h

The skeletons depicted in Figure 1 belong to the same point group D6h (order 24), which

is algebraically defined by a multiplication table containing 24 symmetry operations. To

conduct combinatorial enumeration, the skeletons are differentiated by their coset rep-

resentations (CRs, (Gi\)D6h), which are permutation representations defined by the re-

spective subgroups, Gi (⊂ D6h).

Each skeleton is specified by set(s) of fixed (stabilized) entities (e.g., points, vertices,

and edges), each of which is fixed (stabilized) under a subgroup Gi (⊂ D6h). For example,

the benzene skeleton (1) has six vertices, each of which is regarded as a fixed point under

the subgroup C ′
2v. The subgroup C ′

2v is contained as a subgroup listed in a non-redundant

set of subgroups (SSG) for D6h, which is a list of subgroups Gi (⊂ D6h) collected in an

ascending order of sizes (orders), i.e.,

SSGD6h
= { C1︸︷︷︸

1

, C2︸︷︷︸
2

, C ′
2︸︷︷︸

3

, C ′′
2︸︷︷︸
4

, Cs︸︷︷︸
5

, C ′
s︸︷︷︸

6

, C ′′
s︸︷︷︸
7

, Ci︸︷︷︸
8

, C3︸︷︷︸
9

, D2︸︷︷︸
10

,

C2v︸︷︷︸
11

, C ′
2v︸︷︷︸

12

, C ′′
2v︸︷︷︸

13

, C2h︸︷︷︸
14

, C ′
2h︸︷︷︸

15

, C ′′
2h︸︷︷︸

16

, C6︸︷︷︸
17

, D3︸︷︷︸
18

, D ′
3︸︷︷︸

19

, C3v︸︷︷︸
20

,

C ′
3v︸︷︷︸

21

, C3h︸︷︷︸
22

, C3i︸︷︷︸
23

,D2h︸︷︷︸
24

, D6︸︷︷︸
25

, C6v︸︷︷︸
26

, C6h︸︷︷︸
27

,D3h︸︷︷︸
28

,D ′
3h︸︷︷︸

29

,D3d︸︷︷︸
30

,D ′
3d︸︷︷︸

31

,D6h︸︷︷︸
32

}. (1)

The word “non-redundant” means that an appropriate subgroup is selected as a repre-

sentative, if there exist two or more conjugate subgroups. In the present article, the

alignment of subgroups shown in Eq. 1 is adopted as a standard alignment, as indicated

by a sequential number under a brace below each subgroup. Note that the subgroup C ′
2v

for a benzene skeleton appears as the 12th subgroup of SSGD6h
(Eq. 1).

According to a coset decomposition by each subgroup of the SSG, we have a set of
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coset representations (SCR) as follows:

SCRD6h
= {(C1\)D6h, (C2\)D6h, (C

′
2\)D6h, (C

′′
2 \)D6h, (Cs\)D6h,

(C ′
s\)D6h, (C

′′
s \)D6h, (Ci\)D6h, (C3\)D6h, (D2\)D6h, (C2v\)D6h,

(C ′
2v\)D6h, (C

′′
2v\)D6h, (C2h\)D6h, (C

′
2h\)D6h, (C

′′
2h\)D6h, (C6\)D6h,

(D3\)D6h, (D
′
3\)D6h, (C3v\)D6h, (C

′
3v\)D6h, (C3h\)D6h, (C3i\)D6h,

(D2h\)D6h, (D6\)D6h, (C6v\)D6h, (C6h\)D6h, (D3h\)D6h,

(D ′
3h\)D6h, (D3d\)D6h, (D

′
3d\)D6h, (D6h\)D6h} (2)

Such D6h-skeletons as collected in Figure 1 are differentiated by means of respective

CRs. For example, the six vertices of the benzene skeleton (1 in Figure 1) are governed

by the CR (C ′
2v\)D6h, the degree of which is calculated to be |D6h|/|C ′

2v| = 24/4 = 6; the

twelve vertices of the D6h-skeleton 2 of Haworth-type projection (Figure 1) are governed

by the CR (Cs\)D6h, the degree of which is calculated to be |D6h|/|Cs| = 24/2 = 12;

the twelve bridge positions of a superphane ([26](1,2,3,4,5,6)cyclophane) skeleton (3) are

governed by the CR (Cs\)D6h, the degree of which is calculated to be |D6h|/|Cs| =
24/2 = 12; and the twelve vertices of the coronene skeleton 4 (Figure 1) are governed by

the CR (C ′′
s \)D6h, the degree of which is calculated to be |D6h|/|C ′′

s | = 24/2 = 12.

The modes of such differentiation are explained by means of a mark table (a table

of marks introduced by Burnside [1]). The mark table of D6h is shown in Figure 2.

The standard mark table (Figure 2) is illustrated in the form of a matrix form of the

GAP system, where each row in an inner pair of square brackets shows a row vector

corresponding to the CR (Gi\)D6h. Note that the standard mark table (Figure 2) is found

to be a lower-triangular matrix, i.e., all values are zero in the upper-right triangular part.

Such a set of a standard mark table and its inverse has been calculated originally by a

FORTRAN77 program [27] under the research environment of the author. The standard

mark table shown here (Figure 2) is calculated by starting from the inverse mark table

reported in Ref. [27].

3 Permutation groups corresponding to the point

group D6h

The GAP system stresses permutation groups, where a permutation group (PG) is derived

from each of theD6h-skeletons (e.g., Figure 1) by using the corresponding set of generators.
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1: [ [ 24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
2: [ 12,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
3: [ 12,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
4: [ 12,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
5: [ 12,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
6: [ 12,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
7: [ 12,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
8: [ 12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
9: [ 8,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
10: [ 6,6,2,2,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
11: [ 6,6,0,0,2,2,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
12: [ 6,0,2,0,2,0,6,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
13: [ 6,0,0,2,0,2,6,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
14: [ 6,6,0,0,0,0,6,6,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
15: [ 6,0,2,0,0,2,0,6,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
16: [ 6,0,0,2,2,0,0,6,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
17: [ 4,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
18: [ 4,0,4,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
19: [ 4,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0 ],
20: [ 4,0,0,0,4,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0 ],
21: [ 4,0,0,0,0,4,0,0,4,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0 ],
22: [ 4,0,0,0,0,0,4,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0 ],
23: [ 4,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0 ],
24: [ 3,3,1,1,1,1,3,3,0,1,1,1,1,3,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0 ],
25: [ 2,2,2,2,0,0,0,0,2,2,0,0,0,0,0,0,2,2,2,0,0,0,0,0,2,0,0,0,0,0,0,0 ],
26: [ 2,2,0,0,2,2,0,0,2,0,2,0,0,0,0,0,2,0,0,2,2,0,0,0,0,2,0,0,0,0,0,0 ],
27: [ 2,2,0,0,0,0,2,2,2,0,0,0,0,2,0,0,2,0,0,0,0,2,2,0,0,0,2,0,0,0,0,0 ],
28: [ 2,0,2,0,2,0,2,0,2,0,0,2,0,0,0,0,0,2,0,2,0,2,0,0,0,0,0,2,0,0,0,0 ],
29: [ 2,0,0,2,0,2,2,0,2,0,0,0,2,0,0,0,0,0,2,0,2,2,0,0,0,0,0,0,2,0,0,0 ],
30: [ 2,0,2,0,0,2,0,2,2,0,0,0,0,0,2,0,0,2,0,0,2,0,2,0,0,0,0,0,0,2,0,0 ],
31: [ 2,0,0,2,2,0,0,2,2,0,0,0,0,0,0,2,0,0,2,2,0,0,2,0,0,0,0,0,0,0,2,0 ],
32: [ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ] ]

Figure 2. Standard mark table of the point group D6h (GAP matrix expression).
For the sake of convenience, the sequential number with a colon is added
at the left-most column to show each CR (Eq. 2) in accord with the
sequential number shown in Eq. 1.

As a result, the mark table (table of marks) of a PG based on one set of generators is

different from a standard mark table (Figure 2), when it is produced by the GAP system.

3.1 CPR for a benzene skeleton (1) and the corresponding mark
table

A set of generators gen benz for characterizing the six positions of the benzene skeleton

(1 in Figure 1) produces a permutation group D6h benz of order 24, which is isomorphic

to the point group D6h of order 24.

gap> #generators for D6h_benz

gap> gen_benz := [(1,2,3,4,5,6), (1,4)(2,3)(5,6), (7,8)];;

gap> D6h_benz := Group(gen_benz); #benzene skeleton

Group([ (1,2,3,4,5,6), (1,4)(2,3)(5,6), (7,8) ])

gap> Display(Size(D6h_benz));

24



488

1: 24
2: 12 4
3: 12 . 12
4: 12 . . 12
5: 12 . . . 4
6: 12 . . . . 4
7: 12 . . . . . 12
8: 12 . . . . . . 4
9: 8 . . . . . . . 8

10: 6 . 6 6 . . 6 . . 6
11: 6 2 . 6 . 2 . . . . 2
12: 6 2 6 . 2 . . . . . . 2
13: 6 . . 6 2 . . 2 . . . . 2
14: 6 . 6 . . 2 . 2 . . . . . 2
15: 6 2 . . . . 6 2 . . . . . . 2
16: 6 . . . 2 2 6 . . . . . . . . 2
17: 4 . 4 . . . . . 4 . . . . . . . 4
18: 4 4 . . . . . . 4 . . . . . . . . 4
19: 4 . . . 4 . . . 4 . . . . . . . . . 4
20: 4 . . 4 . . . . 4 . . . . . . . . . . 4
21: 4 . . . . . 4 . 4 . . . . . . . . . . . 4
22: 4 . . . . 4 . . 4 . . . . . . . . . . . . 4
23: 4 . . . . . . 4 4 . . . . . . . . . . . . . 4
24: 3 1 3 3 1 1 3 1 . 3 1 1 1 1 1 1 . . . . . . . 1
25: 2 . 2 2 . . 2 . 2 2 . . . . . . 2 . . 2 2 . . . 2
26: 2 2 . 2 . 2 . . 2 . 2 . . . . . . 2 . 2 . 2 . . . 2
27: 2 2 2 . 2 . . . 2 . . 2 . . . . 2 2 2 . . . . . . . 2
28: 2 . . 2 2 . . 2 2 . . . 2 . . . . . 2 2 . . 2 . . . . 2
29: 2 . 2 . . 2 . 2 2 . . . . 2 . . 2 . . . . 2 2 . . . . . 2
30: 2 2 . . . . 2 2 2 . . . . . 2 . . 2 . . 2 . 2 . . . . . . 2
31: 2 . . . 2 2 2 . 2 . . . . . . 2 . . 2 . 2 2 . . . . . . . . 2
32: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3. Mark table (GAP expression, tom D6h benz) of the point group D6h by
starting from the the set of generators gen benz for characterizing the
six positions of the benzene skeleton (1 in Figure 1).

Note that the set of generators gen benz is adopted as a combined-permutation rep-

resentation (CPR) which stabilizes the six vertices (1, 2, . . ., 6) of the benzene skeleton

and contains a 2-cycle (7,8) due to a mirror-permutation. Thus, the CPR of degree 8

(= 6 + 2) for the benzene skeleton is used to treat a reflection.

The GAP function TableOfMarks based on a permutation group (D6h benz) generates

the corresponding mark table named tom D6h benz, as follows:

gap> tom_D6h_benz := TableOfMarks(D6h_benz);;

gap> Display(tom_D6h_benz);

This code generates the mark table (GAP expression, tom D6h benz) shown in Figure

3, in which each dot (.) shows a zero value; and a upper-triangular blank space indicates

the lower-triangular characteristics of the mark table.

The mark table (Figure 3) is different from the standard mark table (Figure 2) de-

scribed above, even if its GAP expression is transformed into a GAP matrix expression.

Each row of the mark table (numbered sequentially from 1 to 32) corresponds to

a subgroup, the generator of which (named sequentially from gen[1] to gen[32]) is

calculated by using the GAP command RepresentativeTom as follows:
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gap> gen := [];;

gap> for i in [1..Size(OrdersTom(tom_D6h_benz))] do

> r_tom := RepresentativeTom(tom_D6h_benz,i);

> gen[i] := GeneratorsOfGroup (r_tom);

> Print("gen[", i, "]␣:=␣", gen[i], "\n");

> od;

gen[1] := [ ]

gen[2] := [ (2,6)(3,5) ]

gen[3] := [ (7,8) ]

gen[4] := [ (1,4)(2,5)(3,6) ]

gen[5] := [ (2,6)(3,5)(7,8) ]

gen[6] := [ (1,2)(3,6)(4,5) ]

gen[7] := [ (1,4)(2,5)(3,6)(7,8) ]

gen[8] := [ (1,2)(3,6)(4,5)(7,8) ]

gen[9] := [ (1,3,5)(2,4,6) ]

gen[10] := [ (7,8), (1,4)(2,5)(3,6) ]

gen[11] := [ (2,6)(3,5), (1,4)(2,5)(3,6) ]

gen[12] := [ (7,8), (2,6)(3,5) ]

gen[13] := [ (2,6)(3,5)(7,8), (1,4)(2,5)(3,6) ]

gen[14] := [ (7,8), (1,2)(3,6)(4,5) ]

gen[15] := [ (1,4)(2,5)(3,6)(7,8), (2,6)(3,5) ]

gen[16] := [ (1,3)(4,6)(7,8), (1,6)(2,5)(3,4) ]

gen[17] := [ (1,3,5)(2,4,6), (7,8) ]

gen[18] := [ (1,3,5)(2,4,6), (2,6)(3,5) ]

gen[19] := [ (1,3,5)(2,4,6), (2,6)(3,5)(7,8) ]

gen[20] := [ (1,3,5)(2,4,6), (1,2,3,4,5,6) ]

gen[21] := [ (1,3,5)(2,4,6), (1,2,3,4,5,6)(7,8) ]

gen[22] := [ (1,3,5)(2,4,6), (1,2)(3,6)(4,5) ]

gen[23] := [ (1,3,5)(2,4,6), (1,2)(3,6)(4,5)(7,8)]

gen[24] := [ (7,8), (2,6)(3,5), (1,4)(2,5)(3,6) ]

gen[25] := [ (1,3,5)(2,4,6), (7,8), (1,2,3,4,5,6)]

gen[26] := [ (1,3,5)(2,4,6), (2,6)(3,5), (1,2,3,4,5,6) ]

gen[27] := [ (1,3,5)(2,4,6), (7,8), (2,6)(3,5) ]

gen[28] := [ (1,3,5)(2,4,6), (2,6)(3,5)(7,8), (1,2,3,4,5,6) ]

gen[29] := [ (1,3,5)(2,4,6), (7,8), (1,2)(3,6)(4,5) ]

gen[30] := [ (1,3,5)(2,4,6), (2,6)(3,5), (1,2,3,4,5,6)(7,8) ]

gen[31] := [ (1,3,5)(2,4,6), (2,6)(3,5)(7,8), (1,2,3,4,5,6)(7,8) ]

gen[32] := [ (1,2,3,4,5,6),(1,4)(2,3)(5,6), (7,8)]

gap>

Each set of generators (gen[i], i = 1 to 32) generates a non-redundant set of sub-

groups, although its alignment is different from Eq. 1. For example, the subgroup gen-

erated from gen[4] is found to correspond to the point group C2, which is the second

subgroup appearing in SSGD6h
(Eq. 1). This correspondence is represented by the symbol

4︷︸︸︷
C2︸︷︷︸
2

, where the upper number 4 is concerned with the SSG for the mark table tom D6h benz

(named SSGbenz

D6h
), while the lower number 2 is concerned with SSGD6h

(Eq. 1). The re-

maining mode of correspondence is similarly obtained, so as to give SSGbenz

D6h
for the mark

table tom D6h benz as follows:
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SSGbenz

D6h
= {

1︷︸︸︷
C1︸︷︷︸
1

,

2︷︸︸︷
C ′

2︸︷︷︸
3

,

3︷︸︸︷
C ′′

s︸︷︷︸
7

,

4︷︸︸︷
C2︸︷︷︸
2

5︷︸︸︷
Cs︸︷︷︸
5

,

6︷︸︸︷
C ′′

2︸︷︷︸
4

,

7︷︸︸︷
Ci︸︷︷︸
8

,

8︷︸︸︷
C ′

s︸︷︷︸
6

,

9︷︸︸︷
C3︸︷︷︸
9

,

10︷︸︸︷
C2h︸︷︷︸
14

,

11︷︸︸︷
D2︸︷︷︸
10

,

12︷︸︸︷
C ′

2v︸︷︷︸
12

,

13︷︸︸︷
C2v︸︷︷︸
11

,

14︷︸︸︷
C ′′

2v︸︷︷︸
13

,

15︷︸︸︷
C ′

2h︸︷︷︸
15

,

16︷︸︸︷
C ′′

2h︸︷︷︸
16

,

17︷︸︸︷
C3h︸︷︷︸
22

,

18︷︸︸︷
D3︸︷︷︸
18

,

19︷︸︸︷
C3v︸︷︷︸
20

,

20︷︸︸︷
C6︸︷︷︸
17

,

21︷︸︸︷
C3i︸︷︷︸
23

,

22︷︸︸︷
D ′

3︸︷︷︸
19

,

23︷︸︸︷
C ′

3v︸︷︷︸
21

,

24︷︸︸︷
D2h︸︷︷︸
24

,

25︷︸︸︷
C6h︸︷︷︸
27

,

26︷︸︸︷
D6︸︷︷︸
25

,

27︷︸︸︷
D3h︸︷︷︸
28

,

28︷︸︸︷
C6v︸︷︷︸
26

,

29︷︸︸︷
D ′

3h︸︷︷︸
29

,

30︷︸︸︷
D3d︸︷︷︸
30

,

31︷︸︸︷
D ′

3d︸︷︷︸
31

,

32︷︸︸︷
D6h︸︷︷︸
32

}. (3)

where the upper numbers are taken from the leftmost column of the calculated mark

table tom D6h benz (Figure 3), while the lower numbers are taken from SSGD6h
(Eq. 1),

which corresponds to the standard mark table (Figure 2). The mark table tom D6h benz

(Figure 3) due to SSGbenz

D6h
(Eq. 3) can be converted into the mark table test sort due

to SSGD6h
(Eq. 1) by using the GAP function SortedTom as follows:

gap> perm_benz :=

> PermList([1,3,7,2,5,4,8,6,9,14,10,12,11,13,15,16,22,18,20,17,

> 23,19,21,24,27,25,28,26,29,30,31,32]);

(2,3,7,8,6,4)(10,14,13,11)(17,22,19,20)(21,23)(25,27,28,26)

gap> test_sort := SortedTom(tom_D6h_benz,perm_benz);;

gap> Display(test_sort);

1: 24

2: 12 12

3: 12 . 4

4: 12 . . 4

5: 12 . . . 4

6: 12 . . . . 4

7: 12 . . . . . 12

8: 12 . . . . . . 12

9: 8 . . . . . . . 8

10: 6 6 2 2 . . . . . 2

(omitted)

where the permutation perm benz is calculated by applying the GAP function PermList

to a list derived from the lower numbering in Eq. 3. The resulting sorted mark table

test sort, if the former is transformed into the GAP matrix format, is identical with the

standard mark table shown in Figure 2.

3.2 CPR for a Haworth-projected skeleton (2) and the corre-
sponding mark table

The twelve positions of a Haworth-projected skeleton (2) shown in Figure 1 is charac-

terized by a permutation group D6h haworth of order 24, which is generated by apply-

ing the GAP function Group to a set of generators gen haworth. The resulting group
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1: 24
2: 12 4
3: 12 . 4
4: 12 . . 12
5: 12 . . . 12
6: 12 . . . . 4
7: 12 . . . . . 4
8: 12 . . . . . . 12
9: 8 . . . . . . . 8

10: 6 . 2 6 . . 2 . . 2
11: 6 2 . 6 . 2 . . . . 2
12: 6 2 2 . 6 . . . . . . 2
13: 6 . . 6 6 . . 6 . . . . 6
14: 6 . 2 . . 2 . 6 . . . . . 2
15: 6 2 . . . . 2 6 . . . . . . 2
16: 6 . . . 6 2 2 . . . . . . . . 2
17: 4 . 4 . . . . . 4 . . . . . . . 4
18: 4 4 . . . . . . 4 . . . . . . . . 4
19: 4 . . . 4 . . . 4 . . . . . . . . . 4
20: 4 . . 4 . . . . 4 . . . . . . . . . . 4
21: 4 . . . . . 4 . 4 . . . . . . . . . . . 4
22: 4 . . . . 4 . . 4 . . . . . . . . . . . . 4
23: 4 . . . . . . 4 4 . . . . . . . . . . . . . 4
24: 3 1 1 3 3 1 1 3 . 1 1 1 3 1 1 1 . . . . . . . 1
25: 2 . 2 2 . . 2 . 2 2 . . . . . . 2 . . 2 2 . . . 2
26: 2 2 . 2 . 2 . . 2 . 2 . . . . . . 2 . 2 . 2 . . . 2
27: 2 2 2 . 2 . . . 2 . . 2 . . . . 2 2 2 . . . . . . . 2
28: 2 . . 2 2 . . 2 2 . . . 2 . . . . . 2 2 . . 2 . . . . 2
29: 2 . 2 . . 2 . 2 2 . . . . 2 . . 2 . . . . 2 2 . . . . . 2
30: 2 2 . . . . 2 2 2 . . . . . 2 . . 2 . . 2 . 2 . . . . . . 2
31: 2 . . . 2 2 2 . 2 . . . . . . 2 . . 2 . 2 2 . . . . . . . . 2
32: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 4. Mark table (GAP expression, tom D6h haworth) of the point group D6h

by starting from the the set of generators gen haworth for characteriz-
ing the twelve positions of the Haworth-projected skeleton (2) shown in
Figure 1.

D6h haworth is isomorphic to the point group D6h of order 24.

gap> gen_haworth := [(1,2,3,4,5,6)(7,8,9,10,11,12), (1,10)(2,9)(3,8)(4,7)(5,12)(6,11),

> (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,14)];;

gap> D6h_haworth := Group(gen_haworth); #[6]haworth skeleton

Group([ (1,2,3,4,5,6)(7,8,9,10,11,12), (1,10)(2,9)(3,8)(4,7)(5,12)(6,11),

(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,14) ])

gap> Display(Size(D6h_haworth));

24

Note that the set of generators gen haworth is adopted as a combined-permutation

representation (CPR) which stabilizes the twelve vertices of the Haworth-projected skele-

ton (2) shown in Figure 1 and contains a 2-cycle (13,14) due to a mirror-permutation.

Thus, the CPR of degree 14 (= 12 + 2) for a Haworth-projected skeleton is used to treat

a reflection.

The corresponding mark table tom D6h haworth can be obtained by inputting the

command TableOfMarks(D6h haworth).

gap> tom_D6h_haworth := TableOfMarks(D6h_haworth);;

gap> Display(tom_D6h_haworth);

The resulting mark table tom D6h haworth (Figure 4) is different from the standard

mark table (Figure 2) and, at the same time, is different from the mark table tom D6h benz

(Figure 3) described above.
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The comparison between the mark table tom D6h haworth (Figure 4) and the standard

mark table (Figure 2) results in the following SSGhaworth

D6h
(Eq. 4).

SSGhaworth

D6h
= {

1︷︸︸︷
C1︸︷︷︸
1

,

2︷︸︸︷
C ′′

2︸︷︷︸
4

,

3︷︸︸︷
Cs︸︷︷︸
5

,

4︷︸︸︷
C2︸︷︷︸
2

5︷︸︸︷
Ci︸︷︷︸
8

,

6︷︸︸︷
C ′

2︸︷︷︸
3

,

7︷︸︸︷
C ′

s︸︷︷︸
6

,

8︷︸︸︷
C ′′

s︸︷︷︸
7

,

9︷︸︸︷
C3︸︷︷︸
9

,

10︷︸︸︷
C2v︸︷︷︸
11

,

11︷︸︸︷
D2︸︷︷︸
10

,

12︷︸︸︷
C ′′

2h︸︷︷︸
16

,

13︷︸︸︷
C2h︸︷︷︸
14

,

14︷︸︸︷
C ′

2v︸︷︷︸
12

,

15︷︸︸︷
C ′′

2v︸︷︷︸
13

,

16︷︸︸︷
C ′

2h︸︷︷︸
15

,

17︷︸︸︷
C3v︸︷︷︸
20

,

18︷︸︸︷
D ′

3︸︷︷︸
19

,

19︷︸︸︷
C3i︸︷︷︸
23

,

20︷︸︸︷
C6︸︷︷︸
17

,

21︷︸︸︷
C ′

3v︸︷︷︸
21

,

22︷︸︸︷
D3︸︷︷︸
18

,

23︷︸︸︷
C3h︸︷︷︸
22

,

24︷︸︸︷
D2h︸︷︷︸
24

,

25︷︸︸︷
C6v︸︷︷︸
26

,

26︷︸︸︷
D6︸︷︷︸
25

,

27︷︸︸︷
D ′

3d︸︷︷︸
31

,

28︷︸︸︷
C6h︸︷︷︸
27

,

29︷︸︸︷
D3h︸︷︷︸
28

,

30︷︸︸︷
D ′

3h︸︷︷︸
29

,

31︷︸︸︷
D3d︸︷︷︸
30

,

32︷︸︸︷
D6h︸︷︷︸
32

}. (4)

where the upper numbers are taken from the leftmost column of the calculated mark table

tom D6h haworth, while the lower numbers are taken from SSGD6h
(Eq. 1). The lower

numbers in Eq. 4 result in the appearance of perm haworth by using the GAP function

PermList. Thereby, the mark table tom D6h haworth (Figure 4) due to SSGhaworth

D6h
(Eq.

4) can be converted into the mark table test2 sort due to SSGD6h
(Eq. 1) by using the

GAP function SortedTom as follows:

gap> perm_haworth := PermList([1,4,5,2,8,3,6,7,9,11,10,16,14,12,13,15,20,19,23,17,

> 21,18,22,24,26,25,31,27,28,29,30,32]);

(2,4)(3,5,8,7,6)(10,11)(12,16,15,13,14)(17,20)(18,19,23,22)(25,26)(27,31,30,29,28)

gap> tom_D6h_haworth := TableOfMarks(D6h_haworth);;

gap> test2_sort := SortedTom(tom_D6h_haworth,perm_haworth);;

gap> Display(test2_sort);

1: 24

2: 12 12

3: 12 . 4

4: 12 . . 4

5: 12 . . . 4

6: 12 . . . . 4

7: 12 . . . . . 12

8: 12 . . . . . . 12

9: 8 . . . . . . . 8

10: 6 6 2 2 . . . . . 2

(omitted)

The resulting sorted mark table test2 sort is identical with the sorted mark table

test sort. Then, if the mark table test2 sort is transformed into the GAP matrix

format, it is identical with the standard mark table shown in Figure 2.

3.3 CPR for a superphane skeleton (3) and the corresponding
mark table

The twelve chain positions of a superphane skeleton (3) (Figure 1) are characterized by

a permutation group D6h phane of order 24, which is generated by applying the GAP

function Group to a set of generators gen phane.
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The set of generators gen phane for characterizing the superphane skeleton (3) is

identical with the set of generators gen haworth for characterizing the Haworth-projected

skeleton (2) (Figure 1). As a result, the resulting group D6h phane (as well as

D6h haworth) is isomorphic to the point group D6h of order 24.

gap> gen_phane := [(1,2,3,4,5,6)(7,8,9,10,11,12), (1,10)(2,9)(3,8)(4,7)(5,12)(6,11),

> (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,14)];;

gap> D6h_phane := Group(gen_haworth); #superphane skeleton

Group([ (1,2,3,4,5,6)(7,8,9,10,11,12), (1,10)(2,9)(3,8)(4,7)(5,12)(6,11),

(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,14) ])

gap> Display(Size(D6h_phane));

24

The SSG for the superphane 3 (SSGphane

D6h
) is identical with SSGhaworth

D6h
(Eq. 4) for the

Haworth-projected skeleton 2 (Figure 1), as shown in Eq. 5.

SSGphane

D6h
= SSGhaworth

D6h

= {
1︷︸︸︷
C1︸︷︷︸
1

,

2︷︸︸︷
C ′′

2︸︷︷︸
4

,

3︷︸︸︷
Cs︸︷︷︸
5

,

4︷︸︸︷
C2︸︷︷︸
2

5︷︸︸︷
Ci︸︷︷︸
8

,

6︷︸︸︷
C ′

2︸︷︷︸
3

,

7︷︸︸︷
C ′

s︸︷︷︸
6

,

8︷︸︸︷
C ′′

s︸︷︷︸
7

,

9︷︸︸︷
C3︸︷︷︸
9

,

10︷︸︸︷
C2v︸︷︷︸
11

,

11︷︸︸︷
D2︸︷︷︸
10

,

12︷︸︸︷
C ′′

2h︸︷︷︸
16

,

13︷︸︸︷
C2h︸︷︷︸
14

,

14︷︸︸︷
C ′

2v︸︷︷︸
12

,

15︷︸︸︷
C ′′

2v︸︷︷︸
13

,

16︷︸︸︷
C ′

2h︸︷︷︸
15

,

17︷︸︸︷
C3v︸︷︷︸
20

,

18︷︸︸︷
D ′

3︸︷︷︸
19

,

19︷︸︸︷
C3i︸︷︷︸
23

,

20︷︸︸︷
C6︸︷︷︸
17

,

21︷︸︸︷
C ′

3v︸︷︷︸
21

,

22︷︸︸︷
D3︸︷︷︸
18

,

23︷︸︸︷
C3h︸︷︷︸
22

,

24︷︸︸︷
D2h︸︷︷︸
24

,

25︷︸︸︷
C6v︸︷︷︸
26

,

26︷︸︸︷
D6︸︷︷︸
25

,

27︷︸︸︷
D ′

3d︸︷︷︸
31

,

28︷︸︸︷
C6h︸︷︷︸
27

,

29︷︸︸︷
D3h︸︷︷︸
28

,

30︷︸︸︷
D ′

3h︸︷︷︸
29

,

31︷︸︸︷
D3d︸︷︷︸
30

,

32︷︸︸︷
D6h︸︷︷︸
32

}. (5)

Because the group D6h phane is identical with the group D6h haworth, the mark table

tom D6h phane is identical with tom D6h haworth (Figure 4), the sorted mark table due

to tom D6h phane and Eq. 5 is identical with the sorted mark table test sort, which is

calculated by means of tom D6h haworth and Eq. 4.

3.4 CPR for a coronene skeleton (4) and the

The twelve vertices of the coronene skeleton 4 (Figure 1) are characterized by a permuta-

tion group D6h coronene of order 24, which is generated by applying the GAP function

Group to a set of generators gen coronene.

gap> gen_coronene := [(1,3,5,7,9,11)(2,4,6,8,10,12), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10), (13,14)];;

gap> D6h_coronene := Group(gen_coronene); #coronene skeleton

Group([ (1,3,5,7,9,11)(2,4,6,8,10,12), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10), (13,14) ])

gap> Display(Size(D6h_coronene));

24

Note that the set of generators gen coronene is adopted as a combined-permutation

representation (CPR) which stabilizes the twelve vertices of the coronene skeleton (4)
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1: 24
2: 12 4
3: 12 . 12
4: 12 . . 12
5: 12 . . . 4
6: 12 . . . . 4
7: 12 . . . . . 12
8: 12 . . . . . . 4
9: 8 . . . . . . . 8

10: 6 . 6 6 . . 6 . . 6
11: 6 2 . 6 . 2 . . . . 2
12: 6 2 6 . 2 . . . . . . 2
13: 6 . . 6 2 . . 2 . . . . 2
14: 6 . 6 . . 2 . 2 . . . . . 2
15: 6 2 . . . . 6 2 . . . . . . 2
16: 6 . . . 2 2 6 . . . . . . . . 2
17: 4 . 4 . . . . . 4 . . . . . . . 4
18: 4 4 . . . . . . 4 . . . . . . . . 4
19: 4 . . . 4 . . . 4 . . . . . . . . . 4
20: 4 . . 4 . . . . 4 . . . . . . . . . . 4
21: 4 . . . . . 4 . 4 . . . . . . . . . . . 4
22: 4 . . . . 4 . . 4 . . . . . . . . . . . . 4
23: 4 . . . . . . 4 4 . . . . . . . . . . . . . 4
24: 3 1 3 3 1 1 3 1 . 3 1 1 1 1 1 1 . . . . . . . 1
25: 2 . 2 2 . . 2 . 2 2 . . . . . . 2 . . 2 2 . . . 2
26: 2 2 . 2 . 2 . . 2 . 2 . . . . . . 2 . 2 . 2 . . . 2
27: 2 2 2 . 2 . . . 2 . . 2 . . . . 2 2 2 . . . . . . . 2
28: 2 . . 2 2 . . 2 2 . . . 2 . . . . . 2 2 . . 2 . . . . 2
29: 2 . 2 . . 2 . 2 2 . . . . 2 . . 2 . . . . 2 2 . . . . . 2
30: 2 2 . . . . 2 2 2 . . . . . 2 . . 2 . . 2 . 2 . . . . . . 2
31: 2 . . . 2 2 2 . 2 . . . . . . 2 . . 2 . 2 2 . . . . . . . . 2
32: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 5. Mark table (GAP expression, tom D6h coronene) of the point groupD6h

by starting from the the set of generators gen coronene for characteriz-
ing the twelve positions of the coronene skeleton (4) shown in Figure 1.

and contains a 2-cycle (13,14) due to a mirror-permutation. Thus, the CPR of degree

14 (= 12 + 2) for a coronene skeleton is used to treat a reflection. The mark table

tom D6h coronene is obtained by using the GAP function TableOfMarks as follows:

gap> tom_D6h_coronene := TableOfMarks(D6h_coronene);;

gap> Display(tom_D6h_coronene);

The resulting mark table tom D6h coronene (Figure 5) is different in the sequence of

subgroups from the standard mark table (Figure 2) and, at the same time, is different

from the mark table tom D6h benz (Figure 3) described above.

The comparison between the mark table tom D6h coronene (Figure 5) and the stan-

dard mark table (Figure 2) results in the following SSGcoronene

D6h
(Eq. 6).

SSGcoronene

D6h
= {

1︷︸︸︷
C1︸︷︷︸
1

,

2︷︸︸︷
C ′′

2︸︷︷︸
4

,

3︷︸︸︷
C ′′

s︸︷︷︸
7

,

4︷︸︸︷
C2︸︷︷︸
2

5︷︸︸︷
C ′

s︸︷︷︸
6

,

6︷︸︸︷
C ′

2︸︷︷︸
3

,

7︷︸︸︷
Ci︸︷︷︸
8

,

8︷︸︸︷
Cs︸︷︷︸
5

,

9︷︸︸︷
C3︸︷︷︸
9

,

10︷︸︸︷
C2h︸︷︷︸
14

,

11︷︸︸︷
D2︸︷︷︸
10

,

12︷︸︸︷
C ′′

2v︸︷︷︸
13

,

13︷︸︸︷
C2v︸︷︷︸
11

,

14︷︸︸︷
C ′

2v︸︷︷︸
12

,

15︷︸︸︷
C ′′

2h︸︷︷︸
16

,

16︷︸︸︷
C ′

2h︸︷︷︸
15

,

17︷︸︸︷
C3h︸︷︷︸
22

,

18︷︸︸︷
D ′

3︸︷︷︸
19

,

19︷︸︸︷
C ′

3v︸︷︷︸
21

,

20︷︸︸︷
C6︸︷︷︸
17

,

21︷︸︸︷
C3i︸︷︷︸
23

,

22︷︸︸︷
D3︸︷︷︸
18

,

23︷︸︸︷
C3v︸︷︷︸
20

,

24︷︸︸︷
D2h︸︷︷︸
24

,

25︷︸︸︷
C6h︸︷︷︸
27

,

26︷︸︸︷
D6︸︷︷︸
25

,

27︷︸︸︷
D ′

3h︸︷︷︸
29

,

28︷︸︸︷
C6v︸︷︷︸
26

,

29︷︸︸︷
D3h︸︷︷︸
28

,

30︷︸︸︷
D ′

3d︸︷︷︸
31

,

31︷︸︸︷
D3d︸︷︷︸
30

,

32︷︸︸︷
D6h︸︷︷︸
32

}. (6)
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where the upper numbers are taken from the leftmost column of the calculated mark

table tom D6h coronene (Figure 5), while the lower numbers are taken from SSGD6h

(Eq. 1), which corresponds to the standard mark table (Figure 2). The mark table

tom D6h coronene (Figure 5) due to SSGcoronene

D6h
(Eq. 6) can be converted into the mark

table test3 sort due to SSGD6h
(Eq. 1) by using the GAP function SortedTom as follows:

gap> perm_coronene := PermList([1,4,7,2,6,3,8,5,9,14,10,13,11,12,16,15,22,19,21,17,

> 23,18,20,24,27,25,29,26,28,31, 30,32]);

(2,4)(3,7,8,5,6)(10,14,12,13,11)(15,16)(17,22,18,19,21,23,20)(25,27,29,28,26)(30,31)

gap> tom_D6h_coronene := TableOfMarks(D6h_coronene);;

gap> test3_sort := SortedTom(tom_D6h_coronene,perm_coronene);;

gap> Display(test3_sort);

1: 24

2: 12 12

3: 12 . 4

4: 12 . . 4

5: 12 . . . 4

6: 12 . . . . 4

7: 12 . . . . . 12

8: 12 . . . . . . 12

9: 8 . . . . . . . 8

10: 6 6 2 2 . . . . . 2

(omitted)

The resulting sorted mark table test3 sort is identical with the sorted mark table

test sort. Then, if the mark table test3 sort is transformed into the GAP matrix

format, it is identical with the standard mark table shown in Figure 2.

4 Concordant construction of a standard mark table

and a standard USCI-CF table for D6h

As shown in the preceding section, the mark tables stemmed from the various skeletons

of D6h (1–4 in Figure 1) are different in their sequences of subgroups, where they obey

the respective SSGs, i.e., SSGbenz

D6h
(Eq. 3) for the benzene skeleton 1, SSGhaworth

D6h
(Eq.

4) for the Haworth-projected skeleton 2, SSGphane

D6h
(Eq. 5 for the superphane skeleton

3, and SSGcoronene

D6h
(Eq. 6) for the coronene skeleton 4. As described above, these mark

tables with different appearances can be converted into a single format (called a standard

mark table, Figure 2) based on SSGD6h
(Eq. 1), even if the corresponding different sets

of generators are used. This is because the mark table and the USCI-CF table reported

in a previous article [33] are based on SSGD6h
(Eq. 1).

The author (Fujita) has developed GAP functions for concordant generation of mark

tables and USCI-CF tables, i.e., MarkTableforUSCI and constructUSCITable (contained

in the file USCICF.genfunc; cf. Appendix A in [24]). They are here examined to be

capable of concordant construction of a mark table and a USCI-CF table by starting
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from a CPR based on any of D6h-skeletons (1–4). To assure the concordance, a list of

subgroups derived from each SSG (Eq. 3–Eq. 6) is given as a list of sets of generators

gen[1]–gen[32].

As shown in the Source Code 1 named SubDh6h6-X.gap (Appendix A), for example,

the CPR D6h benz based on the benzene skeleton 1 is characterized by the sets of gen-

erators gen[1]–gen[32], which are shown as the list derived from SSGbenz

D6h
(Eq. 3). The

set of generators (gen benz) for generating the CPR D6h benz and the corresponding set

of generators (gen benzx) for specifying the point group D6 are written as an argument

in the GAP function Group.

The Source Code 1 (SubDh6h6-X.gap, Appendix A) is stored in an appropriate di-

rectory, in which the file USCICF.gapfunc containing the newly-devised GAP functions

MarkTableforUSCI and constructUSCITable are also stored. To execute the Source

Code 1 (SubDh6h6-X.gap, Appendix A), the Read command shown in the top line is

copied and pasted after the command prompt gap>. The calculation result is output into

the log file named SubD6h6Xlog.txt.

The devised GAP function MarkTableforUSCI generates the standard mark table (Fig-

ure 2), which corresponds to SSGD6h
(Eq. 1) and so identical with test sort calculated

by using the GAP function SortedTom.

Such a standard mark table as Figure 2 is linked with a USCI-CF table (USCITableD6h,

Figure 6), which is generated by the other devised GAP function constructUSCITable

appearing in the above Source Code 1 (SubDh6h6-X.gap).

The USCI-CF table (USCITableD6h) shown in Figure 6 follows the convention of the

GAP system for printing a matrix format, where a nested list of the GAP system is

used. Each list in an inner pair of square brackets is a row vector of the matrix, which

corresponds to a coset representation (CR) (Gi\)D6h. For the sake of convenience, the

sequence numbers (1) to (32) are added to show the correspondence to (Gi\)D6h (i =

1 · · · 32) in accord with Eq. 1 and Eq. 2. Each term at the intersection between the

(Gi\)D6h-row and the Gj-column is calculated by means of SCR (subduction of the CR)

(Gi\)D6h ↓ Gj. An outer pair of square brackets contains the thirty-two of such row

vectors to indicate the whole format of the matrix.
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##USCI-CF table (USCITableD6h) :

[(1) [ b_1^24, b_2^12, b_2^12, b_2^12, c_2^12, c_2^12, c_2^12, c_2^12, b_3^8, b_4^6, c_4^6, c_4^6, c_4^6, c_4^6,

c_4^6, c_4^6, b_6^4, b_6^4, b_6^4, c_6^4, c_6^4, c_6^4, c_6^4, c_8^3, b_12^2, c_12^2, c_12^2, c_12^2,

c_12^2, c_12^2, c_12^2, c_24 ],

(2) [ b_1^12, b_1^12, b_2^6, b_2^6, c_2^6, c_2^6, c_2^6, c_2^6, b_3^4, b_2^6, c_2^6, c_4^3,

c_4^3, c_2^6, c_4^3, c_4^3, b_3^4, b_6^2, b_6^2, c_6^2, c_6^2, c_6^2, c_6^2, c_4^3,

b_6^2, c_6^2, c_6^2, c_12, c_12, c_12, c_12, c_12 ],

(3) [ b_1^12, b_2^6, b_1^4*b_2^4, b_2^6, c_2^6, c_2^6, c_2^6, c_2^6, b_3^4, b_2^2*b_4^2, c_4^3,

c_2^2*c_4^2, c_4^3, c_4^3, c_2^2*c_4^2, c_4^3, b_6^2, b_3^4, b_6^2, c_6^2, c_6^2, c_6^2,

c_6^2, c_4*c_8, b_6^2, c_12, c_12, c_6^2, c_12, c_6^2, c_12, c_12 ],

(4) [ b_1^12, b_2^6, b_2^6, b_1^4*b_2^4, c_2^6, c_2^6, c_2^6, c_2^6, b_3^4, b_2^2*b_4^2, c_4^3,

c_4^3, c_2^2*c_4^2, c_4^3, c_4^3, c_2^2*c_4^2, b_6^2, b_6^2, b_3^4, c_6^2, c_6^2, c_6^2,

c_6^2, c_4*c_8, b_6^2, c_12, c_12, c_12, c_6^2, c_12, c_6^2, c_12 ],

(5) [ b_1^12, b_2^6, b_2^6, b_2^6, c_2^4*a_1^4, c_2^6, c_2^6, c_2^6, b_3^4, b_4^3, c_4^2*a_2^2,

c_4^2*a_2^2, c_4^3, c_4^3, c_4^3, c_4^2*a_2^2, b_6^2, b_6^2, b_6^2, a_3^4, c_6^2,

c_6^2, c_6^2, c_8*a_4, b_12, a_6^2, c_12, a_6^2, c_12, c_12, a_6^2, a_12 ],

(6) [ b_1^12, b_2^6, b_2^6, b_2^6, c_2^6, c_2^4*a_1^4, c_2^6, c_2^6, b_3^4, b_4^3, c_4^2*a_2^2,

c_4^3, c_4^2*a_2^2, c_4^3, c_4^2*a_2^2, c_4^3, b_6^2, b_6^2, b_6^2, c_6^2, a_3^4, c_6^2,

c_6^2, c_8*a_4, b_12, a_6^2, c_12, c_12, a_6^2, a_6^2, c_12, a_12 ],

(7) [ b_1^12, b_2^6, b_2^6, b_2^6, c_2^6, c_2^6, a_1^12, c_2^6, b_3^4, b_4^3, c_4^3, a_2^6,

a_2^6, a_2^6, c_4^3, c_4^3, b_6^2, b_6^2, b_6^2, c_6^2, c_6^2, a_3^4, c_6^2, a_4^3,

b_12, c_12, a_6^2, a_6^2, a_6^2, c_12, c_12, a_12 ],

(8) [ b_1^12, b_2^6, b_2^6, b_2^6, c_2^6, c_2^6, c_2^6, a_1^12, b_3^4, b_4^3, c_4^3, c_4^3,

c_4^3, a_2^6, a_2^6, a_2^6, b_6^2, b_6^2, b_6^2, c_6^2, c_6^2, c_6^2, a_3^4, a_4^3,

b_12, c_12, a_6^2, c_12, c_12, a_6^2, a_6^2, a_12 ],

(9) [ b_1^8, b_2^4, b_2^4, b_2^4, c_2^4, c_2^4, c_2^4, c_2^4, b_1^8, b_4^2, c_4^2, c_4^2,

c_4^2, c_4^2, c_4^2, c_4^2, b_2^4, b_2^4, b_2^4, c_2^4, c_2^4, c_2^4, c_2^4,c_8,

b_4^2, c_4^2, c_4^2, c_4^2, c_4^2, c_4^2, c_4^2,c_8 ],

(10) [ b_1^6, b_1^6, b_1^2*b_2^2, b_1^2*b_2^2, c_2^3, c_2^3, c_2^3, c_2^3, b_3^2, b_1^2*b_2^2,

c_2^3, c_2*c_4, c_2*c_4, c_2^3, c_2*c_4, c_2*c_4, b_3^2, b_3^2, b_3^2,c_6,c_6,c_6,c_6, c_2*c_4,

b_3^2, c_6,c_6,c_6,c_6,c_6,c_6,c_6 ],

(11) [ b_1^6, b_1^6, b_2^3, b_2^3, c_2^2*a_1^2, c_2^2*a_1^2, c_2^3, c_2^3, b_3^2, b_2^3,

c_2^2*a_1^2, c_4*a_2, c_4*a_2, c_2^3, c_4*a_2, c_4*a_2, b_3^2,b_6,b_6, a_3^2, a_3^2,c_6,c_6,

c_4*a_2,b_6, a_3^2,c_6,a_6,a_6,a_6,a_6,a_6 ],

(12) [ b_1^6, b_2^3, b_1^2*b_2^2, b_2^3, c_2^2*a_1^2, c_2^3, a_1^6, c_2^3, b_3^2, b_2*b_4,

c_4*a_2, a_1^2*a_2^2, a_2^3, a_2^3, c_2*c_4, c_4*a_2, b_6, b_3^2,b_6, a_3^2,c_6,

a_3^2,c_6, a_2*a_4,b_6, a_6,a_6, a_3^2,a_6,c_6,a_6,a_6 ],

(13) [ b_1^6, b_2^3, b_2^3, b_1^2*b_2^2, c_2^3, c_2^2*a_1^2, a_1^6, c_2^3, b_3^2, b_2*b_4,

c_4*a_2, a_2^3, a_1^2*a_2^2, a_2^3, c_4*a_2, c_2*c_4, b_6,b_6, b_3^2,c_6, a_3^2, a_3^2,c_6,

a_2*a_4,b_6, a_6,a_6,a_6, a_3^2,a_6,c_6,a_6 ],

(14) [ b_1^6, b_1^6, b_2^3, b_2^3, c_2^3, c_2^3, a_1^6, a_1^6, b_3^2, b_2^3, c_2^3,

a_2^3, a_2^3, a_1^6, a_2^3, a_2^3, b_3^2,b_6,b_6,c_6,c_6, a_3^2, a_3^2, a_2^3,b_6, c_6,

a_3^2,a_6,a_6,a_6,a_6,a_6 ],

(15) [ b_1^6, b_2^3, b_1^2*b_2^2, b_2^3, c_2^3, c_2^2*a_1^2, c_2^3, a_1^6, b_3^2, b_2*b_4, c_4*a_2,

c_2*c_4, c_4*a_2, a_2^3, a_1^2*a_2^2, a_2^3, b_6, b_3^2,b_6,c_6, a_3^2,c_6, a_3^2,

a_2*a_4,b_6, a_6,a_6,c_6,a_6, a_3^2,a_6,a_6 ],

(16) [ b_1^6, b_2^3, b_2^3, b_1^2*b_2^2, c_2^2*a_1^2, c_2^3, c_2^3, a_1^6, b_3^2, b_2*b_4,

c_4*a_2, c_4*a_2, c_2*c_4, a_2^3, a_2^3, a_1^2*a_2^2, b_6,b_6, b_3^2, a_3^2,c_6,c_6, a_3^2,

a_2*a_4,b_6, a_6,a_6,a_6,c_6,a_6, a_3^2,a_6 ],

(17) [ b_1^4, b_1^4, b_2^2, b_2^2, c_2^2, c_2^2, c_2^2, c_2^2,b_1^4, b_2^2, c_2^2,c_4,c_4, c_2^2,c_4,

c_4, b_1^4, b_2^2, b_2^2, c_2^2, c_2^2, c_2^2, c_2^2,c_4, b_2^2, c_2^2, c_2^2,c_4,c_4,c_4,c_4,c_4 ],

(18) [ b_1^4, b_2^2, b_1^4, b_2^2, c_2^2, c_2^2, c_2^2, c_2^2, b_1^4, b_2^2,c_4, c_2^2,c_4,c_4, c_2^2,

c_4, b_2^2, b_1^4, b_2^2, c_2^2, c_2^2, c_2^2, c_2^2,c_4, b_2^2, c_4,c_4, c_2^2,c_4, c_2^2,c_4,c_4 ],

(19) [ b_1^4, b_2^2, b_2^2, b_1^4, c_2^2, c_2^2, c_2^2, c_2^2, b_1^4, b_2^2,c_4,c_4, c_2^2,c_4,c_4,

c_2^2, b_2^2, b_2^2, b_1^4, c_2^2, c_2^2, c_2^2, c_2^2,c_4, b_2^2, c_4,c_4,c_4, c_2^2,c_4, c_2^2,c_4 ],

(20) [ b_1^4, b_2^2, b_2^2, b_2^2, a_1^4, c_2^2, c_2^2, c_2^2, b_1^4,b_4, a_2^2, a_2^2,c_4,c_4,c_4,

a_2^2, b_2^2, b_2^2, b_2^2, a_1^4, c_2^2, c_2^2, c_2^2,a_4,b_4, a_2^2,c_4, a_2^2,c_4,c_4, a_2^2,a_4 ],

(21) [ b_1^4, b_2^2, b_2^2, b_2^2, c_2^2, a_1^4, c_2^2, c_2^2, b_1^4,b_4, a_2^2,c_4, a_2^2,c_4, a_2^2,

c_4, b_2^2, b_2^2, b_2^2, c_2^2, a_1^4, c_2^2, c_2^2,a_4,b_4, a_2^2,c_4,c_4, a_2^2, a_2^2,c_4,a_4 ],

(22) [ b_1^4, b_2^2, b_2^2, b_2^2, c_2^2, c_2^2, a_1^4, c_2^2, b_1^4,b_4,c_4, a_2^2, a_2^2, a_2^2,c_4,

c_4, b_2^2, b_2^2, b_2^2, c_2^2, c_2^2, a_1^4, c_2^2,a_4,b_4, c_4, a_2^2, a_2^2, a_2^2,c_4,c_4,a_4 ],

(23) [ b_1^4, b_2^2, b_2^2, b_2^2, c_2^2, c_2^2, c_2^2, a_1^4, b_1^4,b_4,c_4,c_4,c_4, a_2^2, a_2^2,

a_2^2, b_2^2, b_2^2, b_2^2, c_2^2, c_2^2, c_2^2, a_1^4,a_4,b_4, c_4, a_2^2,c_4,c_4, a_2^2, a_2^2,a_4 ],

(24) [ b_1^3, b_1^3, b_1*b_2, b_1*b_2, c_2*a_1, c_2*a_1, a_1^3, a_1^3, b_3, b_1*b_2, c_2*a_1, a_1*a_2, a_1*a_2,

a_1^3, a_1*a_2, a_1*a_2, b_3,b_3,b_3,a_3,a_3,a_3,a_3, a_1*a_2,b_3, a_3,a_3,a_3,a_3,a_3,a_3,a_3 ],

(25) [ b_1^2, b_1^2, b_1^2, b_1^2,c_2,c_2,c_2,c_2, b_1^2, b_1^2,c_2,c_2,c_2,c_2,c_2,

c_2, b_1^2, b_1^2, b_1^2,c_2,c_2,c_2,c_2,c_2, b_1^2, c_2,c_2,c_2,c_2,c_2,c_2,c_2 ],

(26) [ b_1^2, b_1^2,b_2,b_2, a_1^2, a_1^2,c_2,c_2, b_1^2,b_2, a_1^2,a_2,a_2,c_2,a_2,

a_2, b_1^2,b_2,b_2, a_1^2, a_1^2,c_2,c_2,a_2,b_2, a_1^2,c_2,a_2,a_2,a_2,a_2,a_2 ],

(27) [ b_1^2, b_1^2,b_2,b_2,c_2,c_2, a_1^2, a_1^2, b_1^2,b_2,c_2,a_2,a_2, a_1^2,a_2,

a_2, b_1^2,b_2,b_2,c_2,c_2, a_1^2, a_1^2,a_2,b_2, c_2, a_1^2,a_2,a_2,a_2,a_2,a_2 ],

(28) [ b_1^2,b_2, b_1^2,b_2, a_1^2,c_2, a_1^2,c_2, b_1^2,b_2,a_2, a_1^2,a_2,a_2,c_2,

a_2, b_2, b_1^2,b_2, a_1^2,c_2, a_1^2,c_2,a_2,b_2, a_2,a_2, a_1^2,a_2,c_2,a_2,a_2 ],

(29) [ b_1^2,b_2,b_2, b_1^2,c_2, a_1^2, a_1^2,c_2, b_1^2,b_2,a_2,a_2, a_1^2,a_2,a_2,

c_2, b_2,b_2, b_1^2,c_2, a_1^2, a_1^2,c_2,a_2,b_2, a_2,a_2,a_2, a_1^2,a_2,c_2,a_2 ],

(30) [ b_1^2,b_2, b_1^2,b_2,c_2, a_1^2,c_2, a_1^2, b_1^2,b_2,a_2,c_2,a_2,a_2, a_1^2,

a_2, b_2, b_1^2,b_2,c_2, a_1^2,c_2, a_1^2,a_2,b_2, a_2,a_2,c_2,a_2, a_1^2,a_2,a_2 ],

(31) [ b_1^2,b_2,b_2, b_1^2, a_1^2,c_2,c_2, a_1^2, b_1^2,b_2,a_2,a_2,c_2,a_2,a_2,

a_1^2, b_2,b_2, b_1^2, a_1^2,c_2,c_2, a_1^2,a_2,b_2, a_2,a_2,a_2,c_2,a_2, a_1^2,a_2 ],

(32) [ b_1,b_1,b_1,b_1,a_1,a_1,a_1,a_1, b_1,b_1,a_1,a_1,a_1,a_1,a_1,

a_1, b_1,b_1,b_1,a_1,a_1,a_1,a_1,a_1,b_1, a_1,a_1,a_1,a_1,a_1,a_1,a_1 ] ]

Figure 6. Standard USCI-CF Table of D6h (USCITableD6h). Each row with an
inner pair of brackets corresponds to the coset representation (CR)
(Gi\)D6h and contains 32 USCI-CFs (unit subduced cycle indices
with chirality fittingness) assigned to the respective subgroups Gj .
Each USCI-CF at the intersection between the (Gi\)D6h-row and the
Gj-column is calculated by means of SCR (subduction of the CR)
(Gi\)D6h ↓ Gj .
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5 Generation of SCI-CFs

In general, a given skeleton has one or more orbits, where each orbit is governed by a

coset representation (CR). In the preceding section, each of the D6h-skeletons collected

in Figure 1 has been examined by emphasizing one orbit.

As calculated in Source Code 1 (SubDh6h6-X.gap, Appendix A) for the benzene skele-

ton 1, for example, the fixed-point vector (FPVbenz) is calculated by using the newly-

devised GAP function calculateFPvector; and the list of SCI-CFs (l SCICF benz) is

calculated by using the newly-devised GAP function constructSCICF. The corresponding

outputs in the log file SubDh6h6-Xlog.txt are as follows:

#Fixed point vector for benzene #FPVbenz

[ 6, 0, 2, 0, 2, 0, 6, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

#Orbits for benzene #Orbit_benz

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

#SCI-CF for benzene #l_SCICF_benz

[ b_1^6, b_2^3, b_1^2*b_2^2, b_2^3, c_2^2*a_1^2, c_2^3, a_1^6, c_2^3, b_3^2, b_2*b_4,

c_4*a_2, a_1^2*a_2^2, a_2^3, a_2^3, c_2*c_4, c_4*a_2, b_6, b_3^2, b_6, a_3^2,

c_6, a_3^2, c_6, a_2*a_4, b_6, a_6, a_6, a_3^2, a_6, c_6, a_6, a_6 ]

Thus, the fixed-point vector (FPVbenz) is identical with the 12th row of the standard

mark table (its matrix format (Figure 2) or test sort). This is confirmed by the output

of Orbit benz, in which the 12th value 1 indicates the appearance of the subgroup C ′
2v.

Hence, the six vertices of the benzene skeleton 1 belong to one orbit governed by the coset

representation (C ′
2v\)D6h (size: |D6h|/|C ′

2v| = 24/4 = 6).

The SCI-CF for benzene (l SCICF benz) calculated by the newly-devised GAP func-

tion constructSCICF is identical with the 12th row of the standard USCI-CF table of

D6h (USCITableD6h) shown in Figure 6 because of the presence of one orbit.

In similar ways as Source Code 1 (SubDh6h6-X.gap, Appendix A), FPVs, CRs, and

SCI-CFs of the skeletons 1–4 (Figure 1) are calculated as collected in Table 1, where

the respective SSGs are taken into consideration, i.e., SSGbenz

D6h
(Eq. 3) for the benzene

skeleton 1, SSGhaworth

D6h
(Eq. 4) for the Haworth-projected skeleton 2, SSGphane

D6h
(Eq. 5) for

the superphane skeleton 3, and SSGcoronene

D6h
(Eq. 6) for the coronene skeleton 4.

It should be noted that the present article deals with cases in which each skeleton

is considered to contain one orbit corresponding to a single CR, i.e., (Gi\)D6h. How-

ever, a general case would contain one or more orbits corresponding to a summed CR,

i.e.,
∑

i(Gi\)D6h. The subduction process operated onto a single CR expressed by a

symbol (Gi\)D6h ↓ Gj, where each term at the intersection between i-th row and
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Table 1. FPV, CR, and SCI-CF for Each D6h-Skeleton 1—4

FPV CR list of SCI-CFs

1 [ 6, 0, 2, 0, 2, 0, 6, 0, 0, 0,
0, 2, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
(the 12th row of Figure 2)

(C ′
2v\)D6h [b61, b

3
2, b

2
1 ∗ b22, b32, c22 ∗ a21,

c32, a
6
1, c

3
2, b

2
3, b2 ∗ b4,

c4 ∗ a2, a21 ∗ a22, a32, a32, c2 ∗ c4,
c4 ∗ a2, b6, b23, b6, a23,
c6, a

2
3, c6, a2 ∗ a4, b6,

a6, a6, a
2
3, a6, c6, a6, a6]

(the 12th row of Figure 6)

2 [ 12, 0, 0, 0, 4, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
(the 5th row of Figure 2)

(Cs\)D6h [b112, b
6
2, b

6
2, b

6
2, c

4
2 ∗ a41,

c62, c
6
2, c

6
2, b

4
3, b

3
4,

c24 ∗ a22, c24 ∗ a22, c34, c34, c34,
c24 ∗ a22, b26, b26, b26, a43,
c26, c

2
6, c

2
6, c8 ∗ a4, b12,

a26, c12, a
2
6, c12, c12, a

2
6, a12]

(the 5th row of Figure 6)

3 [ 12, 0, 0, 0, 4, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
(the 5th row of Figure 2)

(Cs\)D6h [b112, b
6
2, b

6
2, b

6
2, c

4
2 ∗ a41,

c62, c
6
2, c

6
2, b

4
3, b

3
4,

c24 ∗ a22, c24 ∗ a22, c34, c34, c34,
c24 ∗ a22, b26, b26, b26, a43,
c26, c

2
6, c

2
6, c8 ∗ a4, b12,

a26, c12, a
2
6, c12, c12, a

2
6, a12]

(the 5th row of Figure 6)

4 [ 12, 0, 0, 0, 0, 0, 12, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
(the 7th row of Figure 2)

(C ′′
s \)D6h [b112, b

6
2, b

6
2, b

6
2, c

6
2,

c62, a
1
12, c

6
2, b

4
3, b

3
4,

c34, a
6
2, a

6
2, a

6
2, c

3
4,

c34, b
2
6, b

2
6, b

2
6, c

2
6,

c26, a
4
3, c

2
6, a

3
4, b12,

c12, a
2
6, a

2
6, a

2
6, c12, c12, a12]

(the 7th row of Figure 6)

j-the column is represented by USCI-CFij. The subduction process operated onto a

summed CR expressed by a symbol
∑

i(Gi\)D6h ↓ Gj, which corresponds to SCI-CFj

(=
∏

i USCI− CFij). When one orbit relates to the (Gi\)D6h-row (the i-th row), SCI-

CFj is equal to USCI-CFij, e.g., as found in the 12th row of Figure 6 for the benzene

skeleton.

Although the respective combined-permutation representations (CPRs) are different,

the standard mark table (its matrix format (Figure 2) or test sort) and the standard

USCI-CF table (USCITableD6h shown in Figure 6) are commonly obtained, so as to

characterize the point group D6h algebraically. Thus, the FPVs, CRs, and SCI-CFs
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collected in Table 1 are commonly based on the standard mark table (Figure 2) and the

standard USCI-CF table (Figure 6) for the point group D6h.

6 Generation of PCI-CFs

Fujita’s USCI approach [4, 10] supports four methods of combinatorial enumeration, i.e.,

(1) the FPM (fixed-point matrix) method, which is based on generating functions derived

from subduced cycle indices (SCIs) and mark tables [7–9]; (2) the PCI (partial-cycle-index)

method, which is based on generating functions derived from partial cycle indices (PCIs)

[34, 35]; (3) the elementary superposition method [36]; and (4) the partial superposition

method [34,36]. Among them, the partial-cycle-index (PCI) method [34,35] will be applied

here to D6h-skeletons (Figure 1).

6.1 PCI-CFs for the benzene skeleton 1

As shown in the last part of Source Code 1 (SubDh6h6-X.gap, Appendix A), the list

of PCI-CFs (l PCICF benz) for the benzene skeleton 1 has been obtained from the list

of SCI-CFs (l SCICF benz, i.e., the first row at the list of SCI-CFs-column of Table 1),

which is multiplied by the inverse of the mark table Inverse(Matrix tomD6hbenz), as

follows.

Display("#list␣of␣PCI-CFs␣for␣benzene");

l_PCICF_benz := l_SCICF_benz * Inverse(Matrix_tomD6h_benz);

Display(l_PCICF_benz);

The output in the corresponding log file is a matrix format with a single row, which

contains a list of 32 PCI-CFs for the respective subgroups:

#list of PCI-CFs for benzene

[ 1/24*b_1^6-1/24*a_1^6-1/8*b_1^2*b_2^2-1/8*c_2^2*a_1^2+1/4*a_1^2*a_2^2 -1/6*b_2^3-1/6*c_2^3+1/3*a_2^3

+1/4*b_2*b_4+1/4*c_2*c_4+1/12*b_3^2+1/2*c_4*a_2-a_2*a_4-1/12*a_3^2-1/12*c_6-1/12*b_6+1/6*a_6,

1/12*b_2^3-1/12*a_2^3-1/4*b_2*b_4-1/4*c_4*a_2+1/2*a_2*a_4+1/6*b_6-1/6*a_6,

(omitted)

a_6 ]

This list is transformed into the respective PCI-CF for each subgroup, i.e., PCICF[1]–

PCICF[32]:

#PCI-CFs for subgroups

PCI-CF[1] := 1/24*b_1^6-1/24*a_1^6-1/8*b_1^2*b_2^2-1/8*c_2^2*a_1^2+1/4*a_1^2*a_2^2-1/6*b_2^3-1/6*c_2^3

+1/3*a_2^3+1/4*b_2*b_4+1/4*c_2*c_4+1/12*b_3^2+1/2*c_4*a_2-a_2*a_4-1/12*a_3^2-1/12*c_6-1/12*b_6+1/6*a_6

PCI-CF[2] := 1/12*b_2^3-1/12*a_2^3-1/4*b_2*b_4-1/4*c_4*a_2+1/2*a_2*a_4+1/6*b_6-1/6*a_6

PCI-CF[3] := 1/4*b_1^2*b_2^2-1/4*a_1^2*a_2^2-1/4*b_2*b_4-1/4*c_2*c_4-1/4*b_3^2+1/2*a_2*a_4+1/4*a_3^2

+1/4*c_6+1/4*b_6-1/2*a_6

PCI-CF[4] := 1/4*b_2^3-1/4*a_2^3-1/4*b_2*b_4-1/4*c_4*a_2+1/2*a_2*a_4

PCI-CF[5] := 1/4*c_2^2*a_1^2-1/4*a_1^2*a_2^2-1/2*c_4*a_2+1/2*a_2*a_4

PCI-CF[6] := 1/4*c_2^3-1/4*a_2^3-1/4*c_2*c_4-1/4*c_4*a_2+1/2*a_2*a_4

PCI-CF[7] := 1/12*a_1^6-1/4*a_1^2*a_2^2-1/3*a_2^3+1/2*a_2*a_4+1/6*a_3^2-1/6*a_6

PCI-CF[8] := 1/12*c_2^3-1/12*a_2^3-1/4*c_2*c_4-1/4*c_4*a_2+1/2*a_2*a_4+1/6*c_6-1/6*a_6

PCI-CF[9] := 0
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PCI-CF[10] := 1/2*b_2*b_4-1/2*a_2*a_4-1/2*b_6+1/2*a_6

PCI-CF[11] := 1/2*c_4*a_2-1/2*a_2*a_4

PCI-CF[12] := 1/2*a_1^2*a_2^2-1/2*a_2*a_4-1/2*a_3^2+1/2*a_6

PCI-CF[13] := 1/2*a_2^3-1/2*a_2*a_4

PCI-CF[14] := 1/6*a_2^3-1/2*a_2*a_4+1/3*a_6

PCI-CF[15] := 1/2*c_2*c_4-1/2*a_2*a_4-1/2*c_6+1/2*a_6

PCI-CF[16] := 1/2*c_4*a_2-1/2*a_2*a_4

PCI-CF[17] := 0

PCI-CF[18] := 1/4*b_3^2-1/4*a_3^2-1/4*c_6-1/4*b_6+1/2*a_6

PCI-CF[19] := 0

PCI-CF[20] := 0

PCI-CF[21] := 0

PCI-CF[22] := 0

PCI-CF[23] := 0

PCI-CF[24] := a_2*a_4-a_6

PCI-CF[25] := 1/2*b_6-1/2*a_6

PCI-CF[26] := 0

PCI-CF[27] := 0

PCI-CF[28] := 1/2*a_3^2-1/2*a_6

PCI-CF[29] := 0

PCI-CF[30] := 1/2*c_6-1/2*a_6

PCI-CF[31] := 0

PCI-CF[32] := a_6

The i-th element PCI-CF[i] (i = 1, 2, · · · , 32) corresponds to the respective sub-

groups numbered sequentially, as shown in SSGD6h
(Eq. 1). Hence, the above PCI-CFs

(PCI-CF[i], i = 1, 2, . . . , 32) for the benzene skeleton 1 can be written in usual mathe-

matical notation (cf. Definition 19.6 of Ref. [4]):

PCI-CF1(C1, $d) =
1

24
b61 −

1

24
a61 −

1

8
b21b

2
2 −

1

8
c22a

2
1 +

1

4
a21a

2
2 −

1

6
b32 −

1

6
c32 +

1

3
a32 +

1

4
b2b4

+
1

4
c2c4 +

1

12
b23 +

1

2
c4a2 − a2a4 −

1

12
a23 −

1

12
c6 −

1

12
b6 +

1

6
a6 (7)

PCI-CF1(C2, $d) =
1

12
b32 −

1

12
a32 −

1

4
b2b4 −

1

4
c4a2 +

1

2
a2a4 +

1

6
b6 −

1

6
a6 (8)

PCI-CF1(C
′
2 , $d) =

1

4
b21b

2
2 −

1

4
a21a

2
2 −

1

4
b2b4 −

1

4
c2c4 −

1

4
b23 +

1

2
a2a4 +

1

4
a23

+
1

4
c6 +

1

4
b6 −

1

2
a6 (9)

PCI-CF1(C
′′
2 , $d) =

1

4
b32 −

1

4
a32 −

1

4
b2b4 −

1

4
c4a2 +

1

2
a2a4 (10)

PCI-CF1(Cs, $d) =
1

4
c22a

2
1 −

1

4
a21a

2
2 −

1

2
c4a2 +

1

2
a2a4 (11)

PCI-CF1(C
′
s , $d) =

1

4
c32 −

1

4
a32 −

1

4
c2c4 −

1

4
c4a2 +

1

2
a2a4 (12)

PCI-CF1(C
′′
s , $d) =

1

12
a61 −

1

4
a21a

2
2 −

1

3
a32 +

1

2
a2a4 +

1

6
a23 −

1

6
a6 (13)

PCI-CF1(Ci, $d) =
1

12
c32 −

1

12
a32 −

1

4
c2c4 −

1

4
c4a2 +

1

2
a2a4 +

1

6
c6 −

1

6
a6 (14)

PCI-CF1(C3, $d) = 0 (15)
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PCI-CF1(D2, $d) =
1

2
b2b4 −

1

2
a2a4 −

1

2
b6 +

1

2
a6 (16)

PCI-CF1(C2v, $d) =
1

2
c4a2 −

1

2
a2a4 (17)

PCI-CF1(C
′
2v, $d) =

1

2
a21a

2
2 −

1

2
a2a4 −

1

2
a23 +

1

2
a6 (18)

PCI-CF1(C
′′
2v, $d) =

1

2
a32 −

1

2
a2a4 (19)

PCI-CF1(C2h, $d) =
1

6
a32 −

1

2
a2a4 + 1/3a6 (20)

PCI-CF1(C
′
2h, $d) =

1

2
c2c4 −

1

2
a2a4 −

1

2
c6 +

1

2
a6 (21)

PCI-CF1(C
′′
2h, $d) =

1

2
c4a2 −

1

2
a2a4 (22)

PCI-CF1(C6, $d) = 0 (23)

PCI-CF1(D3, $d) =
1

4
b23 −

1

4
a23 −

1

4
c6 −

1

4
b6 +

1

2
a6 (24)

PCI-CF1(D
′
3 , $d) = 0 (25)

PCI-CF1(C3v, $d) = 0 (26)

PCI-CF1(C
′
3v, $d) = 0 (27)

PCI-CF1(C3h, $d) = 0 (28)

PCI-CF1(C3i, $d) = 0 (29)

PCI-CF1(D3h, $d) = a2a4 − a6 (30)

PCI-CF1(D6, $d) =
1

2
b6 −

1

2
a6 (31)

PCI-CF1(C6v, $d) = 0 (32)

PCI-CF1(C6h, $d) = 0 (33)

PCI-CF1(D3h, $d) =
1

2
a23 −

1

2
a6 (34)

PCI-CF1(D
′
3h, $d) = 0 (35)

PCI-CF1(D3d, $d) =
1

2
c6 −

1

2
a6 (36)

PCI-CF1(D
′
3d, $d) = 0 (37)

PCI-CF1(D6h, $d) = a6 (38)

where the symbol a d is replaced by the sphericity index (SI) ad for a d-membered ho-

mospheric orbit; the symbol c d is replaced by the SI cd for a d-membered enantiospheric

orbit; the symbol b d is replaced by the SI bd for a d-membered hemispheric orbit; and

totally the symbol $d is used to designate ad, cd, and bd.
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6.2 PCI-CFs for the Haworth-projected skeleton (2)

The above procedure of Source Code 1 (SubDh6h6-X.gap, Appendix A) for calculating

PCI-CFs of the benzene skeleton (Eqs. 7–38) via l SCICF benz and l PCICF benz is

applicable to the other skeletons.

The use of the set of generators gen haworth in place of gen benz of Source Code 1

(SubDh6h6-X.gap) generates the CPR D6h haworth for calculating the Haworth-projected

skeleton 2. After the selection of the set of subgroups gen[i] (i = 1, 2, · · · , 32) according
to the SSGhaworth

D6h
(Eq. 4), the corresponding FPV and the corresponding list of SCI-CFs

(Table 1) are calculated as described above. Thereby, the list of PCI-CFs is calculated,

so as to give the respective PCI-CFs for the enumeration based on the Haworth-projected

skeleton 2. These PCI-CFs in GAP expressions are converted into usual mathematical

formats as follows:

PCI-CF2(C1, $d) =
1

24
b121 − 1

8
c42a

4
1 −

7

24
b62 −

5

24
c62 −

1

24
b43 +

3

4
c24a

2
2 +

1

8
a43 +

7

12
c34

+
1

4
b34 +

5

24
c26 +

7

24
b26 − c8a4 −

3

4
a26 −

7

12
c12 −

1

4
b12 + a12 (39)

PCI-CF2(C2, $d) =
1

12
b62 −

1

4
c24a

2
2 −

1

12
c34 −

1

4
b34 −

1

12
b26 +

1

2
c8a4 +

1

4
a26

+
1

12
c12 +

1

4
b12 −

1

2
a12 (40)

PCI-CF2(C
′
2 , $d) =

1

4
b62 −

1

4
c24a

2
2 −

1

4
c34 −

1

4
b34 −

1

4
b26 +

1

2
c8a4 +

1

4
a26 +

1

4
c12

+
1

4
b12 −

1

2
a12 (41)

PCI-CF2(C
′′
2 , $d) =

1

4
b62 −

1

4
c24a

2
2 −

1

4
c34 −

1

4
b34 −

1

4
b26 +

1

2
c8a4 +

1

4
a26

+
1

4
c12 +

1

4
b12 −

1

2
a12 (42)

PCI-CF2(Cs, $d) =
1

4
c42a

4
1 −

3

4
c24a

2
2 −

1

4
a43 +

1

2
c8a4 +

3

4
a26 −

1

2
a12 (43)

PCI-CF2(C
′
s , $d) =

1

4
c62 −

1

4
c24a

2
2 −

1

2
c34 −

1

4
c26 +

1

2
c8a4 +

1

4
a26 +

1

2
c12 −

1

2
a12 (44)

PCI-CF2(C
′′
s , $d) =

1

12
c62 −

1

4
c24a

2
2 −

1

3
c34 −

1

12
c26 +

1

2
c8a4 +

1

4
a26 +

1

3
c12 −

1

2
a12 (45)

PCI-CF2(Ci, $d) =
1

12
c62 −

1

4
c24a

2
2 −

1

3
c34 −

1

12
c26 +

1

2
c8a4 +

1

4
a26 +

1

3
c12 −

1

2
a12 (46)
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PCI-CF2(C3, $d) =
1

8
b43 −

1

8
a43 −

3

8
c26 −

3

8
b26 +

3

4
a26 +

3

4
c12 +

1

4
b12 − a12 (47)

PCI-CF2(D2, $d) =
1

2
b34 −

1

2
c8a4 −

1

2
b12 +

1

2
a12 (48)

PCI-CF2(C2v, $d) =
1

2
c24a

2
2 −

1

2
c8a4 −

1

2
a26 +

1

2
a12 (49)

PCI-CF2(C
′
2v, $d) =

1

2
c24a

2
2 −

1

2
c8a4 −

1

2
a26 +

1

2
a12 (50)

PCI-CF2(C
′′
2v, $d) =

1

2
c34 −

1

2
c8a4 −

1

2
c12 +

1

2
a12 (51)

PCI-CF2(C2h, $d) =
1

6
c34 −

1

2
c8a4 −

1

6
c12 +

1

2
a12 (52)

PCI-CF2(C
′
2h, $d) =

1

2
c34 −

1

2
c8a4 −

1

2
c12 +

1

2
a12 (53)

PCI-CF2(C
′′
2h, $d) =

1

2
c24a

2
2 −

1

2
c8a4 −

1

2
a26 +

1

2
a12 (54)

PCI-CF2(C6, $d) =
1

4
b26 −

1

4
a26 −

1

4
c12 −

1

4
b12 +

1

2
a12 (55)

PCI-CF2(D3, $d) =
1

4
b26 −

1

4
a26 −

1

4
c12 −

1

4
b12 +

1

2
a12 (56)

PCI-CF2(D
′
3 , $d) =

1

4
b26 −

1

4
a26 −

1

4
c12 −

1

4
b12 +

1

2
a12 (57)

PCI-CF2(C3v, $d) =
1

4
a43 −

3

4
a26 +

1

2
a12 (58)

PCI-CF2(C
′
3v, $d) =

1

4
c26 −

1

4
a26 −

1

2
c12 +

1

2
a12 (59)

PCI-CF2(C3h, $d) =
1

4
c26 −

1

4
a26 −

1

2
c12 +

1

2
a12 (60)

PCI-CF2(C3i, $d) =
1

4
c26 −

1

4
a26 −

1

2
c12 +

1

2
a12 (61)

PCI-CF2(D3h, $d) = c8a4 − a12 (62)

PCI-CF2(D6, $d) =
1

2
b12 −

1

2
a12 (63)

PCI-CF2(C6v, $d) =
1

2
a26 −

1

2
a12 (64)

PCI-CF2(C6h, $d) =
1

2
c12 −

1

2
a12 (65)

PCI-CF2(D3h, $d) =
1

2
a26 −

1

2
a12 (66)

PCI-CF2(D
′
3h, $d) =

1

2
c12 −

1

2
a12 (67)

PCI-CF2(D3d, $d) =
1

2
c12 −

1

2
a12 (68)

PCI-CF2(D
′
3d, $d) =

1

2
a26 −

1

2
a12 (69)

PCI-CF2(D6h, $d) = a12 (70)



505

6.3 PCI-CFs for the superphane skeleton (3)

The set of generators gen phane for characterizing the superphane skeleton (3) is identical

with the set of generators gen haworth for characterizning the Haworth-projected skeleton

(2) (Figure 1). As a result, the set of FPV, CR, and SCI-CF for the superphane skeleton

(3) is equal to the corresponding set for the Haworth-projected skeleton (2), as collected

in Table 1. Moreover, the PCI-CFs expressed by usual mathematical formats for the

Haworth-projected skeleton (2), i.e., PCI-CF2(C1, $d) –PCI-CF2(D6h, $d) (Eqs. 39–70),

are identical with the counterparts for the superphane skeleton (3), i.e., PCI-CF3(C1, $d)

–PCI-CF3(D6h, $d) (which are omitted).

6.4 PCI-CFs for the coronene skeleton (4)

In the above procedure of Source Code 1 (SubDh6h6-X.gap, Appendix A), the set of

generators gen coronene is used in place of gen benz, so as to gain the corresponding

CPR (D6h coronene), which is adopted to employ further calculations for the coronene

skeleton 4. After the selection of the set of subgroups gen[i] (i = 1, 2, · · · , 32) according
to the SSGcoronene

D6h
(Eq. 6), the corresponding FPV and the corresponding list of SCI-CFs

for the coronene skeleton 4 are calculated, as collected in Table 1. Thereby, the list of

PCI-CFs is calculated, so as to give the respective PCI-CFs for the enumeration based

on the coronene skeleton 4. These PCI-CFs in GAP expressions are converted into usual

mathematical formats as follows:

PCI-CF4(C1, $d) =
1

24
b121 − 1

24
a121 − 7

24
b62 −

7

24
c62 +

7

12
a62 −

1

24
b43 +

1

24
a43 +

3

4
c34

+
1

4
b34 − a34 +

7

24
c26 +

7

24
b26 −

7

12
a26 −

3

4
c12 −

1

4
b12 + a12 (71)

PCI-CF4(C2, $d) =
1

12
b62 −

1

12
a62 −

1

4
c34 −

1

4
b34 +

1

2
a34 −

1

12
b26 +

1

12
a26 +

1

4
c12

+
1

4
b12 −

1

2
a12 (72)

PCI-CF4(C
′
2 , $d) =

1

4
b62 −

1

4
a62 −

1

4
c34 −

1

4
b34 +

1

2
a34 −

1

4
b26 +

1

4
a26 +

1

4
c12

+
1

4
b12 −

1

2
a12 (73)

PCI-CF4(C
′′
2 , $d) =

1

4
b62 −

1

4
a62 −

1

4
c34 −

1

4
b34 +

1

2
a34 −

1

4
b26 +

1

4
a26 +

1

4
c12

+
1

4
b12 −

1

2
a12 (74)
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PCI-CF4(Cs, $d) =
1

4
c62 −

1

4
a62 −

1

2
c34 +

1

2
a34 −

1

4
c26 +

1

4
a26 +

1

2
c12 −

1

2
a12 (75)

PCI-CF4(C
′
s , $d) =

1

4
c62 −

1

4
a62 −

1

2
c34 +

1

2
a34 −

1

4
c26 +

1

4
a26 +

1

2
c12 −

1

2
a12 (76)

PCI-CF4(C
′′
s , $d) =

1

12
a121 − 7

12
a62 −

1

12
a43 +

1

2
a34 +

7

12
a26 −

1

2
a12 (77)

PCI-CF4(Ci, $d) =
1

12
c62 −

1

12
a62 −

1

2
c34 +

1

2
a34 −

1

12
c26 +

1

12
a26 +

1

2
c12 −

1

2
a12 (78)

PCI-CF4(C
,
3$d) =

1

8
b43 −

1

8
a43 −

3

8
c26 −

3

8
b26 +

3

4
a26 +

3

4
c12 +

1

4
b12 − a12 (79)

PCI-CF4(D2, $d) =
1

2
b34 −

1

2
a34 −

1

2
b12 +

1

2
a12 (80)

PCI-CF4(C2v, $d) =
1

2
c34 −

1

2
a34 −

1

2
c12 +

1

2
a12 (81)

PCI-CF4(C
′
2v, $d) =

1

2
a62 −

1

2
a34 −

1

2
a26 +

1

2
a12 (82)

PCI-CF4(C
′′
2v, $d) =

1

2
a62 −

1

2
a34 −

1

2
a26 +

1

2
a12 (83)

PCI-CF4(C2h, $d) =
1

6
a62 −

1

2
a34 −

1

6
a26 +

1

2
a12 (84)

PCI-CF4(C
′
2h, $d) =

1

2
c34 −

1

2
a34 −

1

2
c12 +

1

2
a12 (85)

PCI-CF4(C
′′
2h, $d) =

1

2
c34 −

1

2
a34 −

1

2
c12 +

1

2
a12 (86)

PCI-CF4(C6, $d) =
1

4
b26 −

1

4
a26 −

1

4
c12 −

1

4
b12 +

1

2
a12 (87)

PCI-CF4(D3, $d) =
1

4
b26 −

1

4
a26 −

1

4
c12 −

1

4
b12 +

1

2
a12 (88)

PCI-CF4(D
′
3 , $d) =

1

4
b26 −

1

4
a26 −

1

4
c12 −

1

4
b12 +

1

2
a12 (89)

PCI-CF4(C3v, $d) =
1

4
c26 −

1

4
a26 −

1

2
c12 +

1

2
a12 (90)

PCI-CF4(C
′
3v, $d) =

1

4
c26 −

1

4
a26 −

1

2
c12 +

1

2
a12 (91)

PCI-CF4(C3h, $d) =
1

4
a43 −

3

4
a26 +

1

2
a12 (92)

PCI-CF4(C3i, $d) =
1

4
c26 −

1

4
a26 −

1

2
c12 +

1

2
a12 (93)

PCI-CF4(D3h, $d) = a34 − a12 (94)

PCI-CF4(D6, $d) =
1

2
b12 −

1

2
a12 (95)

PCI-CF4(C6v, $d) =
1

2
c12 −

1

2
a12 (96)

PCI-CF4(C6h, $d) =
1

2
a26 −

1

2
a12 (97)

PCI-CF4(D3h, $d) =
1

2
a26 −

1

2
a12 (98)



507

PCI-CF4(D
′
3h, $d) =

1

2
a26 −

1

2
a12 (99)

PCI-CF4(D3d, $d) =
1

2
c12 −

1

2
a12 (100)

PCI-CF4(D
′
3d, $d) =

1

2
c12 −

1

2
a12 (101)

PCI-CF4(D6h, $d) = a12 (102)

7 Application of the PCI-CF method to symmetry-

itemized enumeration of D6h-derivatives

Source Code 2 (enumoctaX) for enumeration of Oh-derivatives has been reported by the

present author (Fujita) on page 362 of Ref. [25]. It is here applied to the enumeration

of D6h-derivatives. Source Code 2 (enumoctaX) has shown the GAP code for practical

enumeration based on the PCI-CF method, where the GAP functions developed to treat

CI-CFs [22], e.g., calcCoeffGen, are capable of treating PCI-CFs as they are. In order to

use the function calcCoeffGen, the file CICFgenCC.gapfunc (Appendix A of [22]) should

be loaded along a similar way to Appendix B of [22].

In order to show practices of enumeration procedures based on the PCI method of

Fujita’s USCI approach ( [4]), let us examine enumerations of several selected skeletons.

7.1 Enumeration of benzene derivatives

7.1.1 Calculation of symmetry-itemized numbers of benzene derivatives with
given compositions

Let us select six proligands for the benzene skeleton 1 from the following ligand inventory:

L = {H,A,B,C; p/P, q/Q, r/R, s/S}, (103)

where H, A, B, and C represent achiral proligands, while p/P · · · s/S represents a pair

of enantiomeric proligands when detached. The uppercase letter P etc. is used in place

of the symbol p etc. to simplify the source code. The letter H is used to show the

substitution of a hydrogen atom, which is usually omitted in structural formulas. For the

sake of simplicity, only four achiral proligands and only four pairs of chiral proligands are

adopted for substituting the six positions of the benzene skeleton. Then, the following
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ligand-inventory functions are calculated:

ad = Hd + Ad +Bd + Cd (104)

cd = Hd + Ad +Bd + Cd

+ 2pd/2P d/2 + 2qd/2Qd/2 + 2rd/2Rd/2 + 2sd/2Sd/2 (105)

bd = Hd + Ad +Bd + Cd

+ pd + P d + qd +Qd + rd +Rd + sd + Sd (106)

These ligand-inventory functions are introduced into the right-hand side of each PCI-

CF for the benzene skeleton 1, i.e., Eqs. 7–38. The resulting equations are expanded

to give generating functions, in which the coefficient of each term corresponding to the

composition HHAABBCCppPPqqQQrrRRssSS represents the number of the corresponding

derivatives. The non-negative superscripts satisfy the following condition:

H + A+B + C + p+ P + q +Q+ r +R + s+ S = 6. (107)

For practical enumeration, the GAP code is obtained by modifying Source Code 2

(enumoctaX) reported on page 362 of Ref. [25], where the function calcCoeffGen is used

in the subroutine function calcCoeffGenbenz for outputting enumeration results in a

tabular form. The composition HHAABBCCppPPqqQQrrRRssSS is represented by the

following partition during the process of tabulation:

[θ] = [H,A,B,C, p, P, q,Q, r, R, s, S], (108)

which is used as the argument of the function calcCoeffGen and the subroutine function

calcCoeffGenbenz. Thereby, the coefficient of the term HHAABBCCppPPqqQQrrRRssSS

appearing in each of the generating functions is extracted to give the number of pro-

molecules with the composition HHAABBCCppPPqqQQrrRRssSS and with the assigned

subgroup of D6h.

Table 2 collects the symmetry-itemized numbers of isomeric benzene derivatives with

achiral and chiral proligands, where the symmetry-itemized values for each selected com-

position (the partition [θ]) are shown in accord with the SSGD6h
(Eq. 1). The data

collected in Table 2 are consistent with those reported previously [27], which have not

relied on the GAP system.

Each row with an asterisk should be duplicated, because a pair of enantiomers is

counted once under the present enumeration of the PCI-CF method. For example, the
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Table 2. Symmetry-Itemized Numbers of Derivatives Derived from the Benzene
Skeleton 1

C1︸︷︷︸
1

C2︸︷︷︸
2

C ′
2︸︷︷︸

3

C ′′
2︸︷︷︸
4

Cs︸︷︷︸
5

C ′
s︸︷︷︸

6

C ′′
s︸︷︷︸
7

Ci︸︷︷︸
8

D2︸︷︷︸
10

C2v︸︷︷︸
11

C ′
2v︸︷︷︸

12

C ′′
2v︸︷︷︸

13

C2h︸︷︷︸
14

C ′
2h︸︷︷︸

15

C ′′
2h︸︷︷︸

16

D3︸︷︷︸
18

D2h︸︷︷︸
24

D6︸︷︷︸
25

D3h︸︷︷︸
28

D3d︸︷︷︸
30

D6h︸︷︷︸
32

[6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

[5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

[5, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]∗ 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0

[4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0]∗ 0 0 1/2 1/2 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0

[4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0

[4, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]∗ 1 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0] 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

[4, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]∗ 1 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0

[3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0]∗1/2 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0 0 0

[3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 4 0 0 0 2 0 0 0 0 0 0 0 0 0 0

[3, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]∗ 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0]∗ 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0]∗ 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]∗ 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0] 4 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0]∗ 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 4 0 0 0 3 3 1 0 0 0 0 0 0 0 0

[2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0]∗ 2 1/2 3/2 3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0] 1 0 1 1 0 2 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0

[2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0]∗ 2 1/2 3/2 3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 14 0 0 0 2 0 0 0 0 0 0 0 0 0 0

[2, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]∗ 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0] 4 0 1 0 2 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 1, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0]∗ 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0] 14 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 1, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0]∗ 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0]∗ 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0]∗ 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0] 10 0 0 0 2 6 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0]∗ 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0]∗ 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

partition [5, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]∗ of the third row (Table 2) is paired with the partition

[5, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]∗, so that these paired partitions correspond to 1/2(H5p+H5p);

then the value 1/2 at the intersection between the third row and the third column (C ′
2 )

should be duplicated to give 1 (= 1/2 × 2). Note that the columns for the respective

subgroups of an inherent zero value (Eqs. 15, 23, 25–29, 32, 33, 35, and 37) are omitted

from Table 2.
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Figure 7. Symmetry-itemized enumeration of benzene derivatives with the com-
position H3A2p (partition: [3, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]), which shows the
presence of four pairs of enantiomeric C1-derivatives and two pairs of
enantiomeric C ′

2 -derivatives.

7.1.2 Diagrammatical examination of calculation results concerning benzene
derivatives

For the purpose of confirming the validity of the PCI-CF method, let us examine several

rows among the data of Table 2. It should be noted that each pair of enantiomeric

derivative or each achiral derivative is counted once during the present enumerations.

The values at the 13th row of Table 2 with the partition [3, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]∗
should be duplicated, so as to indicate the presence of four (= 2×2) pairs of enantiomeric

C1-derivatives (5/5, 6/6, 7/7, and 8/8) and two (= 1 × 2) pairs of enantiomeric C ′
2 -

derivatives (9/9 and 10/10) of the composition H3A2p/H3A2p. These derivatives are

depicted in Figure 7. For the sake of rigidity, each pair of enantiomers is connected by

a vertical double-headed arrow, because each pair linked with a vertical double-headed

arrow is regarded as a hypothetically single object and so counted once during the present

enumeration nuder the point group D6h.

The values at the 18th row of Table 2 with the partition [3, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]

indicate the presence of four pairs of enantiomeric C1-derivatives (11/11, 12/12, 13/13,

and 14/14) and two Cs-derivatives (15 and 16) of the composition H3App. Note that

the antipodal effects of p and p are compensated during reflection, so as to result in the

appearance of the Cs-derivatives. These derivatives are depicted in Figure 8.
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Figure 8. Symmetry-itemized enumeration of benzene derivatives with the com-
position H3App (partition: [3, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]), which shows
the presence of four pairs of enantiomeric C1-derivatives and two Cs-
derivatives.

7.2 Enumeration of superphane derivatives

7.2.1 Calculation of symmetry-itemized numbers of superphane derivatives
with given compositions

Let us next examine skeletal substitution concerning the twelve methylene moieties of the

superphane skeleton 3. Then, twelve skeletal positions are replaced by bidentate moieties

selected from the following ligand inventory:

L ′ = {C,N,O, S}, (109)

where C represents a methylene moiety (CH2), N represents an amine moiety (NH), O

and S represent bidentate oxygen and sulfur. Because the absence of no chiral moiety,

equal ligand-inventory functions are used as follows:

ad = Cd +Nd +Od + Sd (110)

bd = Cd +Nd +Od + Sd (111)

cd = Cd +Nd +Od + Sd (112)

Because the PCI-CFs for enumerations based on the superphane skeleton (3), i.e.,

PCI-CF3(C1, $d) –PCI-CF3(D6h, $d), (omitted) are identical with PCI-CF2(C1, $d) –

PCI-CF2(D6h, $d) (Eqs. 39–70), the latter are used for the present calculation.
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After the ligand-inventory functions (Eqs. 110–112) are introduced into the right-hand

side of each PCI-CF (Eqs. 39–70), the resulting equations are expanded to give generating

functions, in which the coefficient of the composition CCNAOOSS represent the number

of the corresponding skeletal derivatives. The superscripts satisfy following equation:

C +N +O + S = 12. (113)

For practical enumeration, the GAP code obtained previously as Source Code 2 (enum-

octaX) on page 362 of Ref. [25] is applied to the present enumeration after appropri-

ate modifications, where the function calcCoeffGen is used in the subroutine function

calcCoeffGenphane for outputting enumeration results in a tabular form. During this

process of tabulation, the composition CCNNOOSS is represented by the following parti-

tion:

[θ] = [C,N,O, S], (114)

which is used as the argument of the function calcCoeffGen and the subroutine function

calcCoeffGenphane. Thereby, the coefficient of the term CCNNOOSS (partition: Eq.

114) appearing in each of the generating functions is extracted to give the number of pro-

molecules with the composition CCNNOOSS and with the assigned subgroup of D6h. The

resulting set of coefficients are collected in Table 3. These data are consistent with those

previously reported, which have not relied on the GAP system and have not considered

chirality fittingness (PCIs in place of PCI-CFs).

7.2.2 Diagrammatical examination of calculation results concerning super-
phane derivatives

For the purpose of confirming the validity of the PCI-CF method, let us examine several

rows among the data of Table 3, where each pair of enantiomeric derivative or each achiral

derivative is counted once during the present enumerations.

The values at the 6th row of Table 3 with the partition [10, 0, 2, 0] indicate the pres-

ence of one pair of enantiomeric C ′
2 -derivatives (17/17), one pair of enantiomeric C ′′

2 -

derivatives 18/18), one achiral Cs-derivative (19), one achiral C ′
s -derivative (20), one

achiralC2v-derivative (21), one achiralC
′
2v-derivative (22), and one achiralC ′′

2h-derivative

(23), where they have the composition C10O2 (or alternatively expressed as C10O2). These

derivatives are depicted in Figure 9.
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Table 3. Symmetry-Itemized Numbers of Derivatives Derived from the Superphane
Skeleton 3

C1︸︷︷︸
1

C2︸︷︷︸
2

C ′
2︸︷︷︸

3

C ′′
2︸︷︷︸
4

Cs︸︷︷︸
5

C ′
s︸︷︷︸

6

C ′′
s︸︷︷︸
7

Ci︸︷︷︸
8

C3︸︷︷︸
9

D2︸︷︷︸
10

C2v︸︷︷︸
11

C ′
2v︸︷︷︸

12

C ′′
2v︸︷︷︸

13

C2h︸︷︷︸
14

C ′
2h︸︷︷︸

15

C ′′
2h︸︷︷︸

16

C6︸︷︷︸
17

D3︸︷︷︸
18

D ′
3︸︷︷︸

19

C3v︸︷︷︸
20

C ′
3v︸︷︷︸

21

C3h︸︷︷︸
22

C3i︸︷︷︸
23

D2h︸︷︷︸
24

D6︸︷︷︸
25

C6v︸︷︷︸
26

C6h︸︷︷︸
27

D3h︸︷︷︸
28

D ′
3h︸︷︷︸

29

D3d︸︷︷︸
30

D ′
3d︸︷︷︸

31

D6h︸︷︷︸
32

[12, 0, 0, 0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

[11, 1, 0, 0] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[11, 0, 1, 0] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[11, 0, 0, 1] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[10, 2, 0, 0] 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[10, 0, 2, 0] 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[10, 0, 0, 2] 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[10, 1, 1, 0] 4 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[10, 1, 0, 1] 4 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[10, 0, 1, 1] 4 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[9, 3, 0, 0] 7 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

[9, 0, 3, 0] 7 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

[9, 0, 0, 3] 7 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

[9, 2, 1, 0] 24 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[9, 2, 0, 1] 24 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[9, 1, 2, 0] 24 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[9, 1, 0, 2] 24 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[9, 1, 1, 1] 52 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[9, 0, 2, 1] 24 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 4, 0, 0] 13 0 2 2 6 2 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

[8, 0, 4, 0] 13 0 2 2 6 2 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

[8, 0, 0, 4] 13 0 2 2 6 2 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

[8, 3, 1, 0] 76 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 3, 0, 1] 76 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 2, 2, 0] 102 2 7 7 15 7 2 2 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 2, 0, 2] 102 2 7 7 15 7 2 2 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 2, 1, 1] 240 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 1, 2, 1] 240 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 1, 1, 2] 240 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 0, 3, 1] 76 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 5, 0, 0] 28 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 4, 1, 0] 156 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 4, 0, 1] 156 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 3, 2, 0] 316 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 3, 0, 2] 316 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 2, 3, 0] 316 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 2, 0, 3] 316 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 1, 4, 0] 156 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 1, 0, 4] 156 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 1, 3, 1] 648 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 1, 1, 3] 648 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 6, 0, 0] 26 1 4 4 8 4 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0

[6, 5, 1, 0] 220 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 5, 0, 1] 220 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 4, 2, 0] 532 4 14 14 34 14 4 4 0 0 2 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 4, 0, 2] 532 4 14 14 34 14 4 4 0 0 2 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 3, 3, 0] 749 0 0 0 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0

[6, 3, 0, 3] 749 0 0 0 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0

[6, 2, 4, 0] 532 4 14 14 34 14 4 4 0 0 2 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 2, 0, 4] 532 4 14 14 34 14 4 4 0 0 2 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 2, 3, 1] 2284 0 0 0 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 2, 1, 3] 2284 0 0 0 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 2, 2, 2] 3366 10 30 30 78 30 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 1, 5, 0] 220 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 1, 0, 5] 220 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 1, 4, 1] 1140 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 1, 1, 4] 1140 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 1, 3, 2] 2284 0 0 0 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 1, 2, 3] 2284 0 0 0 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 9. Symmetry-itemized enumeration of superphane derivatives with the
composition C10O2 (partition: [10, 0, 2, 0]).

The values at the 10th row of Table 3 with the partition [10, 0, 1, 1] indicate the

presence of four pairs of enantiomeric C1-derivatives (24/24 –27/27) and three achiral

Cs-derivatives (28, 29, and 30), where they have the composition C10OS (or alternatively

expressed as C10OS). These derivatives are depicted in Figure 10.

7.3 Enumeration of coronene derivatives

7.3.1 Calculation of symmetry-itemized numbers of coronene derivatives
with given compositions

Let us select twelve proligands for the coronene skeleton 4 from the following ligand

inventory:

L ′′ = {H,A,B,C; p/P, q/Q}, (115)

where H, A, B, and C represent achiral proligands, while p/P or q/Q represents a pair of

enantiomeric proligands when detached. This ligand inventory is selected to be smaller

than the ligand inventory of Eq. 103. Thus only two pairs of chiral proligands are adopted

for substituting the twelve positions of the coronene skeleton, because the usage of Eq.

103 (four pairs of chiral proligands) to the term b121 causes the GAP error (“Error, reached

the pre-set memory limit”). The uppercase letter P etc. is used in place of the symbol
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Figure 10. Symmetry-itemized enumeration of superphane derivatives with the
composition C10OS (partition: [10, 0, 1, 1]).

p etc. to simplify the source code. Then, the following ligand-inventory functions are

calculated:

ad = Hd + Ad +Bd + Cd (116)

cd = Hd + Ad +Bd + Cd + 2pd/2P d/2 + 2qd/2Qd/2 (117)

bd = Hd + Ad +Bd + Cd + pd + P d + qd +Qd (118)

These ligand-inventory functions are introduced into the right-hand side of each PCI-

CF for the coronene skeleton 4, i.e., Eqs. 71–102. The resulting equations are expanded to

give generating functions, in which the coefficient of the composition HHAABBCCppPPqqQQ

represent the number of the corresponding derivatives. The superscripts satisfy following

equation:

H + A+B + C + p+ P + q +Q = 12. (119)

For practical enumeration, the GAP code is obtained by modifying Source Code 2

(enumoctaX) reported previously on page 362 of Ref. [25], where the function calcCoeffGen

is used in the subroutine function calcCoeffGencoronene for outputting enumeration

results in a tabular form. During this process of tabulation, the composition HHAABBCC-
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ppPPqqQQ is represented by the following partition:

[θ] = [H,A,B,C, p, P, q,Q], (120)

which is used as the argument of the function calcCoeffGen and the subroutine function

calcCoeffGencoronene. Thereby, the coefficient of the term HHAABBCCppPPqqQQ ap-

pearing in each of the generating functions is extracted to give the number of promolecules

with the composition HHAABBCCppPPqqQQ and with the assigned subgroup of D6h.

Table 4 (Part 1) and Table 5 (Part 2) collect the symmetry-itemized numbers of

isomeric coronene derivatives with achiral and chiral proligands, where the symmetry-

itemized values for each selected composition (the partition [θ]) are shown in accord

with the SSGD6h
(Eq. 1). Each row with an asterisk should be duplicated, because a

pair of enantiomers (as well as an achiral derivative) is counted once under the present

enumeration. The non-asterisked data collected in Tables 4 and 5 are consistent with

those reported previously [27], which have been concerned with achiral proligands only.

7.3.2 Diagrammatical examination of calculation results concerning coronene
derivatives

For the purpose of confirming the validity of the PCI-CF method, let us examine several

rows among the data of Table 4 where each pair of enantiomeric derivative or each achiral

derivative is counted once during the present enumerations.

The value 11 at the intersection between the 6th row (the partition [10, 1, 1, 0, 0, 0, 0, 0])

and C ′′
s -column in Table 4 shows the presence of eleven C ′′

s -derivatives with the compo-

sition H10AB. These derivatives are depicted in Figure 11. Note that C ′′
s -symmetry is

characterized by its horizontal mirror plane which contains the plane of coronene.

The values at the 8th row of Table 4 with the partition [10, 0, 0, 0, 1, 1, 0, 0] (the com-

position H10pp) show the presence of two pairs of enantiomeric C1-derivatives (42/42

and 43/43), three achiral Cs-derivatives (45, 46, and 47), three achiral C ′
s -derivatives

(48, 49, and 50), and one achiral Ci-derivative (44). These derivatives are depicted in

Figure 12.

Note that the mirror operation onto 42 (as well as 43) results in the appearance of its

non-superimposable mirror object 42 (as well as 43); however, the resulting enantiomeric

pair 42/42 (as well as 43/43) is counted once as a hypothetically single object during the

present enumeration under the point group D6h. As a result, the value 2 appears at the
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Table 4. Symmetry-Itemized Numbers of Derivatives Derived from the Coronene
Skeleton 4 (Part 1)

C1︸︷︷︸
1

C2︸︷︷︸
2

C ′
2︸︷︷︸

3

C ′′
2︸︷︷︸
4

Cs︸︷︷︸
5

C ′
s︸︷︷︸

6

C ′′
s︸︷︷︸
7

Ci︸︷︷︸
8

C3︸︷︷︸
9

D2︸︷︷︸
10

C2v︸︷︷︸
11

C ′
2v︸︷︷︸

12

C ′′
2v︸︷︷︸

13

C2h︸︷︷︸
14

C ′
2h︸︷︷︸

15

C ′′
2h︸︷︷︸

16

C6︸︷︷︸
17

D3︸︷︷︸
18

D ′
3︸︷︷︸

19

C3v︸︷︷︸
20

C ′
3v︸︷︷︸

21

C3h︸︷︷︸
22

C3i︸︷︷︸
23

D2h︸︷︷︸
24

D6︸︷︷︸
25

C6v︸︷︷︸
26

C6h︸︷︷︸
27

D3h︸︷︷︸
28

D ′
3h︸︷︷︸

29

D3d︸︷︷︸
30

D ′
3d︸︷︷︸

31

D6h︸︷︷︸
32

[12, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

[11, 1, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[11, 0, 0, 0, 1, 0, 0, 0]∗ 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[10, 2, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 2 0 0 0 0 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[10, 0, 0, 0, 2, 0, 0, 0]∗ 1 1/2 3/2 3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[10, 1, 1, 0, 0, 0, 0, 0] 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[10, 1, 0, 0, 1, 0, 0, 0]∗ 11/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[10, 0, 0, 0, 1, 1, 0, 0] 2 0 0 0 3 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[10, 0, 0, 0, 1, 0, 1, 0]∗ 11/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[9, 3, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

[9, 0, 0, 0, 3, 0, 0, 0]∗ 9 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[9, 2, 1, 0, 0, 0, 0, 0] 0 0 0 0 0 0 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[9, 2, 0, 0, 1, 0, 0, 0]∗ 55/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[9, 1, 0, 0, 2, 0, 0, 0]∗ 55/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[9, 0, 0, 0, 2, 1, 0, 0]∗ 55/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[9, 1, 1, 1, 0, 0, 0, 0] 0 0 0 0 0 0 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[9, 1, 1, 0, 1, 0, 0, 0]∗ 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[9, 1, 0, 0, 1, 1, 0, 0] 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[9, 0, 0, 0, 1, 1, 1, 0]∗ 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 4, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 34 0 0 0 0 6 6 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0

[8, 0, 0, 0, 4, 0, 0, 0]∗ 17 1/2 3 3 0 0 0 0 0 3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 3, 1, 0, 0, 0, 0, 0] 0 0 0 0 0 0 165 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 3, 0, 0, 1, 0, 0, 0]∗ 165/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 2, 2, 0, 0, 0, 0, 0] 0 0 0 0 0 0 230 0 0 0 0 15 15 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 2, 0, 0, 2, 0, 0, 0]∗ 115 5/2 15/215/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 0, 0, 0, 2, 2, 0, 0] 102 1 6 6 12 12 0 2 0 0 3 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 0, 0, 0, 2, 0, 2, 0]∗ 115 5/2 15/215/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 2, 1, 1, 0, 0, 0, 0] 0 0 0 0 0 0 495 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 2, 1, 0, 1, 0, 0, 0]∗ 495/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 2, 0, 0, 1, 1, 0, 0] 230 0 0 0 15 15 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 1, 1, 0, 2, 0, 0, 0]∗ 495/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 1, 1, 0, 1, 1, 0, 0] 495 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 1, 0, 0, 2, 1, 0, 0]∗ 495/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 1, 0, 0, 1, 1, 1, 0]∗ 495 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 0, 0, 0, 2, 1, 1, 0]∗ 495/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[8, 0, 0, 0, 1, 1, 1, 1] 460 0 0 0 30 30 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

❜❜ ✧✧

✧✧ ❜❜ ✧✧ ❜❜

❜❜ ✧✧

✧✧ ❜❜

✧✧❜❜

✧✧ ❜❜ ✧✧ ❜❜

✧✧ ❜❜ ✧✧ ❜❜❜❜

✧✧❜❜

✧✧

✧✧

❜❜✧✧

❜❜

BA

❜❜ ✧✧

✧✧ ❜❜ ✧✧ ❜❜

❜❜ ✧✧

✧✧ ❜❜

✧✧❜❜

✧✧ ❜❜ ✧✧ ❜❜

✧✧ ❜❜ ✧✧ ❜❜❜❜

✧✧❜❜

✧✧

✧✧

❜❜✧✧

❜❜

B

A

❜❜ ✧✧

✧✧ ❜❜ ✧✧ ❜❜

❜❜ ✧✧

✧✧ ❜❜

✧✧❜❜

✧✧ ❜❜ ✧✧ ❜❜

✧✧ ❜❜ ✧✧ ❜❜❜❜

✧✧❜❜

✧✧

✧✧

❜❜✧✧

❜❜
B

A

❜❜ ✧✧

✧✧ ❜❜ ✧✧ ❜❜

❜❜ ✧✧

✧✧ ❜❜

✧✧❜❜

✧✧ ❜❜ ✧✧ ❜❜

✧✧ ❜❜ ✧✧ ❜❜❜❜

✧✧❜❜

✧✧

✧✧

❜❜✧✧

❜❜

B

A

❜❜ ✧✧

✧✧ ❜❜ ✧✧ ❜❜

❜❜ ✧✧

✧✧ ❜❜

✧✧❜❜

✧✧ ❜❜ ✧✧ ❜❜

✧✧ ❜❜ ✧✧ ❜❜❜❜

✧✧❜❜

✧✧

✧✧

❜❜✧✧

❜❜

B

A

❜❜ ✧✧

✧✧ ❜❜ ✧✧ ❜❜

❜❜ ✧✧

✧✧ ❜❜

✧✧❜❜

✧✧ ❜❜ ✧✧ ❜❜

✧✧ ❜❜ ✧✧ ❜❜❜❜

✧✧❜❜

✧✧

✧✧

❜❜✧✧

❜❜

B

A

31 C ′′
s 32 C ′′

s 33 C ′′
s 34 C ′′

s 35 C ′′
s 36 C ′′

s

❜❜ ✧✧

✧✧ ❜❜ ✧✧ ❜❜

❜❜ ✧✧

✧✧ ❜❜

✧✧❜❜

✧✧ ❜❜ ✧✧ ❜❜

✧✧ ❜❜ ✧✧ ❜❜❜❜

✧✧❜❜

✧✧

✧✧

❜❜✧✧

❜❜

B

A

❜❜ ✧✧

✧✧ ❜❜ ✧✧ ❜❜

❜❜ ✧✧

✧✧ ❜❜

✧✧❜❜

✧✧ ❜❜ ✧✧ ❜❜

✧✧ ❜❜ ✧✧ ❜❜❜❜

✧✧❜❜

✧✧

✧✧

❜❜✧✧

❜❜

B

A

❜❜ ✧✧

✧✧ ❜❜ ✧✧ ❜❜

❜❜ ✧✧

✧✧ ❜❜

✧✧❜❜

✧✧ ❜❜ ✧✧ ❜❜

✧✧ ❜❜ ✧✧ ❜❜❜❜

✧✧❜❜

✧✧

✧✧

❜❜✧✧

❜❜

B

A

❜❜ ✧✧

✧✧ ❜❜ ✧✧ ❜❜

❜❜ ✧✧

✧✧ ❜❜

✧✧❜❜

✧✧ ❜❜ ✧✧ ❜❜

✧✧ ❜❜ ✧✧ ❜❜❜❜

✧✧❜❜

✧✧

✧✧

❜❜✧✧

❜❜
B

A

❜❜ ✧✧

✧✧ ❜❜ ✧✧ ❜❜

❜❜ ✧✧

✧✧ ❜❜

✧✧❜❜

✧✧ ❜❜ ✧✧ ❜❜

✧✧ ❜❜ ✧✧ ❜❜❜❜

✧✧❜❜

✧✧

✧✧

❜❜✧✧

❜❜

B

A

37 C ′′
s 38 C ′′

s 39 C ′′
s 40 C ′′

s 41 C ′′
s

Figure 11. Symmetry-itemized enumeration of coronene derivatives with the com-
position H10AB (partition: [10, 1, 1, 0, 0, 0, 0, 0]), which shows the pres-
ence of eleven C ′′

s -derivatives.
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Table 5. Symmetry-Itemized Numbers of Derivatives Derived from the Coronene
Skeleton 4 (Part2)

C1︸︷︷︸
1

C2︸︷︷︸
2

C ′
2︸︷︷︸

3

C ′′
2︸︷︷︸
4

Cs︸︷︷︸
5

C ′
s︸︷︷︸

6

C ′′
s︸︷︷︸
7

Ci︸︷︷︸
8

C3︸︷︷︸
9

D2︸︷︷︸
10

C2v︸︷︷︸
11

C ′
2v︸︷︷︸

12

C ′′
2v︸︷︷︸

13

C2h︸︷︷︸
14

C ′
2h︸︷︷︸

15

C ′′
2h︸︷︷︸

16

C6︸︷︷︸
17

D3︸︷︷︸
18

D ′
3︸︷︷︸

19

C3v︸︷︷︸
20

C ′
3v︸︷︷︸

21

C3h︸︷︷︸
22

C3i︸︷︷︸
23

D2h︸︷︷︸
24

D6︸︷︷︸
25

C6v︸︷︷︸
26

C6h︸︷︷︸
27

D3h︸︷︷︸
28

D ′
3h︸︷︷︸

29

D3d︸︷︷︸
30

D ′
3d︸︷︷︸

31

D6h︸︷︷︸
32

[7, 5, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 0, 0, 0, 5, 0, 0, 0]∗ 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 4, 1, 0, 0, 0, 0, 0] 0 0 0 0 0 0 330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 4, 0, 0, 1, 0, 0, 0]∗ 165 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 0, 0, 0, 4, 1, 0, 0]∗ 165 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 0, 0, 0, 4, 0, 1, 0]∗ 165 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 3, 2, 0, 0, 0, 0, 0] 0 0 0 0 0 0 660 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 3, 0, 0, 2, 0, 0, 0]∗ 330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 0, 0, 0, 3, 2, 0, 0]∗ 330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 0, 0, 0, 3, 0, 2, 0]∗ 330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 3, 1, 1, 0, 0, 0, 0] 0 0 0 0 0 0 1320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 3, 1, 0, 1, 0, 0, 0]∗ 660 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 3, 0, 0, 1, 1, 0, 0] 660 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 2, 2, 1, 0, 0, 0, 0] 0 0 0 0 0 0 1980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 2, 2, 0, 1, 0, 0, 0]∗ 990 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 2, 1, 1, 1, 0, 0, 0]∗ 1980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 2, 1, 0, 2, 0, 0, 0]∗ 990 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 2, 1, 0, 1, 1, 0, 0] 1980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 2, 1, 0, 1, 0, 1, 0]∗ 1980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 2, 0, 0, 2, 1, 0, 0]∗ 990 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 2, 0, 0, 2, 0, 1, 0]∗ 990 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 2, 0, 0, 1, 1, 1, 0]∗ 1980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 1, 1, 1, 1, 1, 0, 0] 3960 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 1, 1, 1, 1, 0, 1, 0]∗ 3960 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 1, 1, 0, 1, 1, 1, 0]∗ 3960 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 1, 0, 0, 1, 1, 1, 1] 3960 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 6, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 66 0 0 0 0 9 9 3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

[6, 0, 0, 0, 6, 0, 0, 0]∗ 33 3/2 9/2 9/2 0 0 0 0 0 0 0 0 0 0 0 0 1/2 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 5, 1, 0, 0, 0, 0, 0] 0 0 0 0 0 0 462 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 5, 0, 0, 1, 0, 0, 0]∗ 231 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 0, 0, 0, 5, 1, 0, 0]∗ 231 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 4, 2, 0, 0, 0, 0, 0] 0 0 0 0 0 0 1120 0 0 0 0 30 30 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 4, 0, 0, 2, 0, 0, 0]∗ 560 5 15 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 0, 0, 4, 2, 0, 0, 0]∗ 560 5 15 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 3, 3, 0, 0, 0, 0, 0] 0 0 0 0 0 0 1539 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0

[6, 3, 0, 0, 3, 0, 0, 0]∗1539/2 0 0 0 0 0 0 0 3/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 0, 0, 0, 3, 3, 0, 0] 724 0 0 0 39 39 0 13 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0

[6, 2, 2, 2, 0, 0, 0, 0] 0 0 0 0 0 0 6860 0 0 0 0 60 60 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 2, 2, 0, 2, 0, 0, 0]∗ 3430 10 30 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 2, 0, 0, 2, 2, 0, 0] 3360 10 30 30 60 60 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 0, 0, 0, 2, 2, 2, 0]∗ 3430 10 30 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 2, 1, 1, 2, 0, 0, 0]∗ 6930 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 2, 1, 0, 2, 1, 0, 0]∗ 6930 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 2, 0, 0, 2, 1, 1, 0]∗ 6930 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 0, 0, 0, 2, 2, 1, 1] 6790 0 0 0 120 120 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 1, 1, 1, 3, 0, 0, 0]∗ 4620 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 1, 1, 1, 2, 1, 0, 0]∗ 13860 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 1, 1, 1, 1, 1, 1, 0]∗ 27720 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 1, 1, 0, 1, 1, 1, 1] 27720 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 12. Symmetry-itemized enumeration of coronene derivatives with the com-
position H10pp (partition: [10, 0, 0, 0, 1, 1, 0, 0]), which shows the pres-
ence of two pairs of enantiomeric C1-derivatives, three achiral Cs-
derivatives, three achiral C ′

s -derivatives. and one achiral Ci-derivative.

intersection between the 8th [10, 0, 0, 0, 1, 1, 0, 0]-row and the C1-column. The inversion

operation imeans the successive action of the rotation C2 around the vertical two-fold axis

and the horizontal reflection; thereby, the i operation stabilizes (fixes) the Ci-derivative

(44). Three vertical reflection groups for stabilizing the three achiral Cs-derivatives (45,

46, and 47) are conjugate under D6h.

This fact can be confirmed by the GAP function ConjugateSubgroups, which is op-

erated onto Cs (Cs) for stabilizing 45 as follows.

gap> gen_coronene := [(1,3,5,7,9,11)(2,4,6,8,10,12),

> (1,6)(2,5)(3,4)(7,12)(8,11)(9,10), (13,14)];;

gap> D6h_coronene := Group(gen_coronene);; #coronene skeleton

gap> gen_Cs := [(1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,14)];;

gap> Cs := Group(gen_Cs);;

gap> ConjugateSubgroups(D6h_coronene,Cs);

[ Group([ (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,14) ]),

Group([ (1,4)(2,3)(5,12)(6,11)(7,10)(8,9)(13,14) ]),

Group([ (1,8)(2,7)(3,6)(4,5)(9,12)(10,11)(13,14) ]) ]

gap>

The resulting two-fold reflection groups stabilize 46 and 47, respectively.

Similarly, three vertical reflection groups for stabilizing the three achiralC ′
s -derivatives

(48, 49, and 50) are conjugate under D6h.
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8 Conclusions

To systematize symmetry-itemized enumeration under a point group by using the GAP

(Groups, Algorithms, Programming) system, the applicability of combined-permutation

representations (CPRs) with an additional 2-cycle due to a mirror-permutation are ex-

amined by adopting several skeletons of the D6h-point group as probes. Thereby, the

GAP functions MarkTableforUSCI and constructUSCITable, which have been newly

devised to systematize the concordant construction of a standard mark table and a stan-

dard USCI-CF (unit-subduced-cycle-index-with-chirality-fittingness) table in a previous

report [25], are applied to four representative D6h-skeletons, i.e., a benzene skeleton, a

Haward-projected skeleton, a superphane skeleton, and a coronene skeleton. Thereby, we

are able to construct the standard mark table and the standard USCI-CF table even if

we start from any of CPRs for characterizing these skeletons, i.e. the CPR of degree 8

(= 6 + 2) for the benzene skeleton, the CPR of degree 14 (= 12 + 2) for the Haward-

projected skeleton, the CPR of degree 14 (= 12 + 2) for the superphane skeleton, and the

CPR of degree 14 (= 12 + 2) for the coronene skeleton. After a set of PCI-CFs (partial

cycle indices with chirality fittingness) is calculated for each skeleton, symmetry-itemized

combinatorial enumeration is conducted by means of the PCI method of Fujita’s USCI

approach.
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[2] G. Pólya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemis-

che Verbindungen, Acta Math. 68 (1937) 145–254.
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Appendix A. Source code 1 (SubDh6h6-X.gap) for con-

cordant preparation of a standard mark table and a

standard USCI table of D6h by starting from a ben-

zene skeleton, as well as formation of PCI-CFs for the

benzene skeleton

The following source code SubDh6h6-X.gap aims at concordant generations of a standard

mark table MarkTableD6h and a standard USCI-CF table USCITableD6h for the point

group D6h, where the combined-permutation representation (CPR) D6h benz for a ben-

zene skeleton is used as a typical example. A set of USCI-CFs for characterizing a benzene

(l PCICF benz) is calculated.

The file SubD6h6X.gap is loaded by Read as shown in the first line (commented by

#). The results are output into a log file named SubD6h6Xlog.txt by means of the GAP

function LogTo. The file USCICF.gapfunc (cf. Appendix A in [24]) is loaded to use the

devised GAP functions MarkTableforUSCI and constructUSCITable.

Source Code 1 (SubDh6h6-X.gap)

#Read("c:/fujita00/fujita2020/subductionD6h/gap/SubD6h6X.gap");

LogTo("c:/fujita00/fujita2020/subductionD6h/gap/SubD6h6Xlog.txt");

Read("c:/fujita00/fujita2020/subductionD6h/gap/USCICF.gapfunc");

#generators for D6h_benz

gen_benz := [(1,2,3,4,5,6), (1,4)(2,3)(5,6), (7,8)];;

D6h_benz := Group(gen_benz); #benzene skeleton

Display(Size(D6h_benz));

#generators for D6_benz

gen_benzx := [(1,2,3,4,5,6), (1,4)(2,3)(5,6)];;

D6_benz := Group(gen_benzx); #benzene skeleton

Display(Size(D6_benz));

tom_D6h_benz := TableOfMarks(D6h_benz);;

Display(tom_D6h_benz);

#Subgroups of D6h given

gen := [];;

gen[1] := [ ];; #----1

gen[3] := [ (2,6)(3,5) ];; #----2

gen[7] := [ (7,8) ];; #----3

gen[2] := [ (1,4)(2,5)(3,6) ];; #----4

gen[5] := [ (2,6)(3,5)(7,8) ];; #----5

gen[4] := [ (1,2)(3,6)(4,5) ];; #----6

gen[8] := [ (1,4)(2,5)(3,6)(7,8) ];; #----7

gen[6] := [ (1,2)(3,6)(4,5)(7,8) ];; #----8

gen[9] := [ (1,3,5)(2,4,6) ];; #----9

gen[14] := [ (7,8), (1,4)(2,5)(3,6) ];; #----10

gen[10] := [ (2,6)(3,5), (1,4)(2,5)(3,6) ];; #----11

gen[12] := [ (7,8), (2,6)(3,5) ];; #----12

gen[11] := [ (2,6)(3,5)(7,8), (1,4)(2,5)(3,6) ];; #----13

gen[13] := [ (7,8), (1,2)(3,6)(4,5) ];; #----14

gen[15] := [ (1,4)(2,5)(3,6)(7,8), (2,6)(3,5) ];; #----15

gen[16] := [ (1,3)(4,6)(7,8), (1,6)(2,5)(3,4) ];; #----16
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gen[22] := [ (1,3,5)(2,4,6), (7,8) ];; #----17

gen[18] := [ (1,3,5)(2,4,6), (2,6)(3,5) ];; #----18

gen[20] := [ (1,3,5)(2,4,6), (2,6)(3,5)(7,8) ];; #----19

gen[17] := [ (1,3,5)(2,4,6), (1,2,3,4,5,6) ];; #----20

gen[23] := [ (1,3,5)(2,4,6), (1,2,3,4,5,6)(7,8) ];; #----21

gen[19] := [ (1,3,5)(2,4,6), (1,2)(3,6)(4,5) ];; #----22

gen[21] := [ (1,3,5)(2,4,6), (1,2)(3,6)(4,5)(7,8) ];; #----23

gen[24] := [ (7,8), (2,6)(3,5), (1,4)(2,5)(3,6) ];; #----24

gen[27] := [ (1,3,5)(2,4,6), (7,8), (1,2,3,4,5,6) ];; #----25

gen[25] := [ (1,3,5)(2,4,6), (2,6)(3,5), (1,2,3,4,5,6) ];; #----26

gen[28] := [ (1,3,5)(2,4,6), (7,8), (2,6)(3,5) ];; #----27

gen[26] := [ (1,3,5)(2,4,6), (2,6)(3,5)(7,8), (1,2,3,4,5,6) ];; #----28

gen[29] := [ (1,3,5)(2,4,6), (7,8), (1,2)(3,6)(4,5) ];; #----29

gen[30] := [ (1,3,5)(2,4,6), (2,6)(3,5), (1,2,3,4,5,6)(7,8) ];; #----30

gen[31] := [ (1,3,5)(2,4,6), (2,6)(3,5)(7,8), (1,2,3,4,5,6)(7,8) ];;

#----31

gen[32] := [ (1,2,3,4,5,6), (1,4)(2,3)(5,6), (7,8) ];; #----32

#mark table sorted for USCI table

MarkTableD6h := MarkTableforUSCI(D6h_benz,D6_benz,32,gen,6,8);;

Display(MarkTableD6h);

USCITableD6h := constructUSCITable(D6h_benz,D6_benz,32,gen,6,8);

Display("##USCI-CF␣table␣(USCITableD6h)␣:");

Display(USCITableD6h);

#Matrix form of mark table

Matrix_tomD6h_benz := MatTom(MarkTableD6h);

Display(Matrix_tomD6h_benz);

Display("#Fixed␣point␣vector␣for␣benzene");

FPVbenz := calculateFPvector(D6h_benz,D6_benz,32,gen,6,8);;

Display(FPVbenz);

Display("#Orbits␣for␣benzene");

Orbit_benz := FPVbenz*Inverse(MatTom(MarkTableD6h));;

Display(Orbit_benz);

Display("#SCI-CF␣for␣benzene");

l_SCICF_benz :=

constructSCICF(D6h_benz,D6_benz,Matrix_tomD6h_benz,USCITableD6h,FPVbenz);;

Display(l_SCICF_benz);

Display("#list␣of␣PCI-CFs␣for␣benzene");

l_PCICF_benz := l_SCICF_benz * Inverse(Matrix_tomD6h_benz);

Display(l_PCICF_benz);

Display("#PCI-CFs␣for␣subgroups");

for i in [1..32] do

Print("PCI-CF[", i, "]␣:=␣", l_PCICF_benz[i], "\n");

od;

LogTo();


