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Abstract

A new effective technique based on Chebyshev Finite Difference Method is
introduced. First order smoothness of the approximation polynomial at the end points
of each sub-interval isimposed in addition to the continuity condition. Both round-off
and truncation error analyses are given besides the convergence anaysis. Coupled
Lane Emden boundary value problem in Catalytic Diffusion Reactions isinvestigated
by using presented method. The obtained results are compared with the existing
methods in the literature and it is observed that the proposed method gives more
reliable results than the others.

1. Introduction

Lane-Emden equations [1,2] illustrate many physica phenomena such as astrophysics
problems, temperature variation, reaction diffusion process and heat conduction in human head
[3-5]. The genera system form of nonlinear Lane-Emden equations with the mixed type of
boundary conditions are given as
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u"(x) +ixu'(x) = £,U(), V(X))
v"(x)+£xv'(x) = f,(u(x),v(x)), (1.1

w(©O)=0, u® =4 Vv(0)=0, v()=4,

where r, g, p, aretherea constantsand f,(u(x),v(x)) and f,(u(x),v(x)) aretherea valued

functions. Equation (1.1) models the catalytic diffusion reactions [6]. There are severa
numerical methods as well as analytical methods to deal with these types of equationsin recent
years [6-16].

Asanon-uniform scheme, Chebyshev Finite Difference Method (CFDM) has been widely used
for the solution of initial or boundary value problems for the last two decades especially [8, 17-
20]. Due to the known advantages of Chebyshev polynomials such as orthogonality and
economization, both recursive relations between itself and its derivatives can be obtained easily
and they have the lowest maximum error in the given range compared to the other polynomial
approximations of the same order. The approximation polynomial is expected to satisfy the
problem at the collocation points (Chebyshev Gauss-Lobatto nodes) in CFDM and thus, the
nonlinear differential equationswith conditions reduce to the nonlinear system of the equations.

In this study, we proposed a new technique, Smooth Composite CFDM based on splitting the
overdl interva into subinterval in CFDM. The main difference and the advantage of the
presented method from both CFDM and Composite CFDM is C-smoothness at the end points
of the subintervals. We also performed both convergence and error analyses of the present
method. We applied the presented method for the coupled Lane-Emden equations in Catalytic
Diffusion Reactionsand it is observed that the proposed method gives morereliable results than

the existing methods in the literature.
2. Smooth composite Chebyshev finite difference method

An approximation polynomial to the solution of an initial or boundary value problem is given

as,

Y0 =3"8,T,09 @y
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where, the superscript () in the sum symbol meansthat half of the first and the last terms have
to be taken and N shows the order of the approximation polynomial. Here, Chebyshev

polynomials are defined as
T,(X) =cos(narccos(x)), vn=0, xe[-11]. (2.2

By using the orthogonality, the unknown a, coefficients can be found as

8= 2 YT X): 23)

=

The Composite CFDM is an extension of the CFDM and based on dividing the given interval
into the subintervals [21]. In Composite CFDM, the given interva [a, b] is divided into the

M —subinterval  with the step size h:(bl;lia). Then, the Gauss-Lobatto points

X, :cos(%), k=0,1,...,N aretransformed tothesubintervals[l(blvl_a), (|+l)|\(/|b—a)} by

_(b-a)
Y

(% +2i+1) (2.4)

for each i . The approximation polynomial for the i" interval is given as

V(9=3"a,T,09, 25
where
802 2T (0). )

Thevalue of the m" order derivative of y; (x) in (2.5) at the points X, is given by

N
Y™ (%) =2 AT yi(x) @7
j=0
where,
2 N
A7 = 1 2T T 06 2.8)
n=0

Thefirst two of these coefficients are given as[22]
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49 N n-1
d® =23y 0T ()T (%), ki j=0L..N, (2.9)
' N = 5 ¢
(n+1) odd
20 N n-2 2_ 12
g7 =20y § A0 0T, Ki=0L.N (2.10)
' N = = q
(n+l) even
where
0,=0,=1/2,0,=1) _
j=12,..,N-1, i>1. (2.11)
c0:2,q:1

Here, we develop anew technique based on Composite CFDM method as follows:
In Composite CFDM method the interval [a,b] is divided into the subintervals

[i(b—a) (i+2)(b-a)
M M

} . Then, the value of the approximation polynomial at the |eft end point

of the interval must be equa to the value of the polynomia at the right end point of the
preceding interval to satisfy continuity, i.e,

Vi (%) = ¥ (%) - (212

In Smooth Composite CFDM, the equality of the values of first order derivatives at the same
pointsis added to (2.12) in order to satisfy first order smoothness, i.e,

Yia(x) =Y (%) (213

Writing the given initia or boundary value problem in terms of the approximation polynomia

and its derivatives, the problem is transformed to the set of linear or nonlinear algebraic
equations. Each subinterval contains a set of system of eguations consisting of (N+1)
equationswith (N+ 1) unknowns of the approximation polynomial. Consequently, asystem with
M x (N +1) equationsand M x (N +1) unknowns are obtained for thewholeinterval. After the

solution of this system by using one of the root finding algorithms, the corresponding inverse
transformation of (2.4) is applied to the obtained solutions for each subinterval. These results

areused firstin (2.6) and then in (2.5), thus the approximation polynomial, i.e, P, (x) € C'[a,b]

is obtained by combining the approximation polynomias B (x) € C* [' (b=2) , (1+D(b= a)}

M M

for eachinterva, i =0,...,M —1.
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3. Convergence and error analyses of smooth composite CFDM

The convergence of the Smooth Composite CFDM is proven and round off and truncation error

analyses are given.
Theorem 3.1. (convergence)

Suppose Y, (x) € L%(-1,2) with bounded by the second derivative, i.e,

Y'(9|<C,, then its

Chebyshev expansion convergesto the y,(x) uniformly, that isthe limiting case of (2.5), when

M
N goesto theinfinity. Thus, in(x) aso convergesto they(x) onthe wholeinterval.

i1
Proof: Since set of Chebyshev polynomials are a complete orthogonal set in the Hilbert space
L2[-1,1], multiplying both sides of (2.5) by T, (X) and the weight function and then integrating
it over each subinterval (Vi =1,2,3,...) yields

1 1o

jl WOIT, (9, () cx = J 2. WOAT (03T, () ox. (31)

By the orthogonality property and the uniform convergence gives
2 1
B =—— [ W)Y, ()T, () . (32)
7Ch Y
Substituting t = cos@ for m>1, we get
5
an =—'fyi(0059) cosméeda. (3.3)
”Cm 0

After applying integration by parts twice, we get

ks 2 T
+
o mzc

m 0

sin(m-16 sin(m+1)9]

2
= / 0
m;rcmy'(coS )( m-1 m+1

snmé

31m=icyi(0039) y/(cos@)sinm@sing d@
s

‘m

T

(3.4)

T

| y,"(oos@)(

0

sn(m-)¢ sin(m+1)6
m-1 m+1

+

Jsinede.
mrc,

Thefirst part of (3.4) gives zero, and by using the triangle inequality for the last part, an upper
bound for the coefficientsis obtained as
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sn(m-1)¢ sin(m+1)4o
-1 m+1

v S6)(51n(m )6 sm(m+1)a9jsing
-1 m+1

(sm(m Do Sn(m+1)0jsin9
m+1

\6\ —chy.”(cose)( )sin@de
‘m 0

do

'm

(35)

do

m7rc

'm

e
e

. ¢ I(\sm(m Doy ‘+\sin(m+1)95inHDd0S ac
m;rcmo\ m-1 | m+

(m*-1)c,
for m>1. From (3.3), it is obvious that the coefficients a,, are also bounded for m=0,1.
Considering \Tn (x)\ <1 and using the triangle inequality again, the approximation function can

be written as,

v () =‘i"ame(X) <y

am‘ﬁ‘ao‘+‘a1‘+g"ﬁ<w. (3.6)

Equation (3.6) shows the absolute convergence of each approximation functions for each

(3.7

interval. Then, for the combined solution for whole interval

Jollsdeide3;

4G

2" (n?-1)c,

N ey

I<isM I<i<M

ly(¥)| < maxy.(x)<max[ao+a1

where C = mex \Cl \ . This shows us, the approximation seriesis absolutely convergent, hence
it convergesto the y(x) uniformly.
Elbarbary and El-Sayed give the following theorem for the round-off error [23].
Theorem 3.2. The effect of the round off error on the elements d{” and d{?) are bounded as,
. 1 N? 1
d —d¥ <46,(5- O(—2 5)) (— + 7)

. (3.8)
d&?ﬁ'—déi’< ’(6 0< ))(——f)

Canuto givesthe truncation error for Chebyshev polynomial approximation [24]. Here, we give

the generalization of Canuto’s theorem to the composite CFDM as follows:
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Theorem 3.3. Suppose, the approximation of the function y;(x) for each subinterval is given

N
by By = quTm .For vy (x) eH}/(-1,1), m>0, thetruncation error estimate,
m=0

1% =R Wlz iy <G NI o (39
is satisfied.
Proof: From the properties of Chebyshev polynomials givenin Section 2, it iseasily to see,

2

2 (021) (3.10)

1) .
Hyi Hi@(fn) = EHyi

which defines an isomorphism between L2 (-1,1) and L% (0,27) . Moreover, it maps H[T'(-1,2)
into the space of H'(0,27) , where p indicates periodic functions. Thus, since y, e C™-11]
, by periodicity, y," € C™*(—o0, ) . The absolute values of derivatives of cosines smaller than

unit, we have

<C ¥l (3.11)

H™(0,27)

|y
for m>1. By defining the symmetric truncation of Fourier series up to the same degree, i.e. N

o N 0 0
. B ( > vké""): > v e since y(x)=Y a,T,(x) ad y (0)=> a,coskd), then
k=—0 k=—N m=0 m=0

iko n efiké)

. = e N
Y, (6):ZajmT,thus(PNyi) =Ry vy, el2(-11). Consequently,
m=0

1y v s _ wm 112
ly; - PNy'HIEN(fl,l) :ﬁHy' Rl 0 <N m‘C.‘HY. m on (312
Lastly,
M
-PRy;» < 0 <max|(y, =Ry Y-,
B VRN (= R R -
<maxN™"|C H y @ <CN™max ‘yi*‘m’ Co
1<isM L°(0,27) 1<i<M L°(0,27)
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4. Numerical examples

In this section, two nonlinear problems arising in chemical reactions are solved by Smooth
Composite CFDM. These equations are coupled L ane Emden boundary value problems and do
not have exact solutions. Instead, we investigate the maximum absolute residual errors of the
equations,

MR (x) = max

u, "(x)+ixun 00— (U, (9,5 (X))

. 4.1)
MRE () = v, (9 + () = (U (., ()
Example 1: (Catalytic Diffusion Reaction Equation)
() + 2000 = 3,U(3) + (V)
V09 + 21 = 8,7 + 2,U(9V(X) (42)

u(0)=0, u@®=4, v(0)=0 V=45,

Here, a,=1 au=§, a21=%, £=1 f,=2.1In order to solve this problem by using

Smooth Composite CFDM, the interval [0,1] is divided into the M subintervals and each
subinterval is transferred to [—ll]. Then, applying Smooth Composite CFDM to the given
differential equation and the boundary conditions, we have M ><(2N +2) nonlinear algebraic

equations containing M ><(2N +2) unknown coefficients. Thus, the obtained system can be

solved by any appropriate numerical method. Using the inverse transformations for each
interval, the overall solution is obtained by combining the transformed solutions. The
comparisons of the presented method with [6, 10, 25] on the maximum residual errorsare given
inTable 1 and Table 2.
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Table 1. Comparisonson MR®(x) for example 1.

N [25] (6] (9 M=1 M=2 M=4
2 7.55E -02 413E-01| 361E-01 | 534E-01 2.88E-01 147E-01
3.84E-02 2.36E-01| 240E-01 | 1.94E-01 542E-02 1.45E -02
4 1.74E - 02 6.43E-02| 4.21E-02 | 3.46E-02 6.00E - 03 9.09E-04
5 8.27E-03 479E-02| 1.13E-02 7.25E-03 6.49E - 04 5.17E-05
6 3.78E-03 2.09e-02| 1.73E-03 | 1.07E-03 5.77TE-05 2.48E - 06
7 1.71E-03 1.09E-02| 3.25E-04 | 1.75E-04 497E —-06 1.12E-07
8 7.19E-04 6.21E-03| 458E—-05 | 2.36E-05 3.89E-07 4.69E - 09
9 2.53E-04 3.35E-03| 7.11E-06 | 3.36E-06 2.96E - 08 1.89E-10
10 6.27E-05 1.79E-03 | 947E-07 | 4.28E-07 2.14E-09 1.67E-11
11 7.78E-06 9.61E-03 | 1.34E-07 | 5.56E-08 1.48E -10 1.52E-11
Table 2. Comparisonson MR (x) for example 1.
N [25] (6] (9] M =1 M=2 M=4
2 1.77E-01 567E-01 | 836E-01 | 9.02E-01 6.71E-01 3.44E-01
3 9.20E-02 3.09E-01 | 557E-01 | 456E-01 1.28E-01 3.47E-02
4 4.27E-02 852E-02 | 1.10E-01 | 8.36E-02 1.46E - 02 2.22E-03
5 2.06E -02 6.09E-02 | 275E-02 | 1.77E-02 1.60E - 03 2.15E-04
6 9.54E -03 251E-02 | 431E-03 | 2.67E-03 145E -04 6.28E — 06
7 4.29E -03 1.36E-02 | 817E-04 | 4.42E-04 127E-05 2.88E-07
8 1.73E-03 7.32E-03 | 1.17E-04 | 6.07E-05 1.00E - 06 1.22E-08
9 571E-04 3.28E-03 | 1.83E-05 | 8.71E-06 7.77TE-08 4.64E -10
10 1.28E-04 2.09E-03 | 247E-06 | 1.12E-06 5.68E — 09 517E-11
11 1.44E - 05 1.11E-03 | 3.60E-07 | 1.47E-07 4.05E-10 7.32E-12

Comparison of Smooth Composite CFDM with [6, 10, 25] we get better results. Moreover, the

presented method, namely Smooth Composite CFDM gives more reliable results than CFDM

asit can be easily seen from the Table 1 and Table 2. Absolute residua errorsin logarithm of

u, (logyerry] ) and v, (log,|errv]) are given in Table 3 for the different values of N and

M.
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Table 3. The absolute residual errorsof U, (log,,|erru| ) and v, (log,, |errv]) for the different
valuesof N and M .

N log,, lerry| log,,|errv]
logqg |erru log1o | erm
x x
4 —— M=1 (CFDM M1 (CFD
e M=2 -t M=2
- =4 - M=4
= M=8 = =8
log1g |erru log1g | errv
6 t f s m=1cFDy ] 2 e M=1 (CFDM)
e M=2 . e M=2
—o— M=4 & - M=4
= M=8 B == M=8
10
Example 2:

This example describes the kinetics of the reaction between CO, and phenyl glycidyl ether

(PGE) in solution.

u "(X) — 061U(X)V(X)
1+ Bu(X) + Sv(X)

V(X) = M, (4.3)
1+ Bu(X) + Bv(X)

u0) =1 u®=k Vv(0)=0, v(l)=1

Thefunctions u(x) and v(x) are the concentrations of CO, and PGE. X is the dimensionless

distance as measured from the center and k is the dimensionless concentration of CO, at the

surface of the catalyst. Here o, =1, a, =2, 5, =1, 5, =3 and k:%.
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Table 4. Comparisonson MR®(x) for example 2.

N [25] (6] (9 M=1 M=2 M=4
1 4.15E - 02 0.2 0.2 0.2 0.2 0.2
2 5.28E-03 8.83E-02 | 3.86E-02 | 3.91E-02 2.00E-02 1.02E-02
5.79E-04 8.838E-03 | 1.14E-03 | 1.63E-03 6.70E-04 2.04E-04
4 2.09E-04 9.99E-04 | 487E-04 | 6.51E-04 9.70E-05 | 1.29E-05
5 2.85E -05 8.88E-05 | 407E-05 | 551E-05 3.62E-06 2.34E-07
6 5.45E - 06 8.88E-06 | 1.01IE-06 | 1.99E-06 1.40E -07 4.99E -09
7 1.65E - 06 8.88E-07 | 3.90E-07 | 6.21E-07 8.77E—-09 1.58E-10
8 2.81E - 06 1.04E-07 488E-09 | 1.34E-08 3.85E-10 1.20E-11
9 1.50E - 06 2.76E-08 | 3.64E-09 | 6.61E-09 2.29E-11 9.65E -12
10 4.95E - 07 2.80E-09 | 1.22E-10 2.75E-10 2.67TE-12 1.05E-11
Table 5. Comparisonson MR (x) for example 2.
N [25] (6] (9 M =1 M=2 M =4
1 8.31E -02 04 04 0.4 0.4 0.4
2 1.05E - 02 1.77E-01 | 7.73E-02 | 7.83E-02 4.00E - 02 2.04E-02
1.15E -03 1.77E-02 | 228E-03 | 3.26E-03 1.34E-03 4.09E-04
4 418E-04 2.00E-03 | 9.75E-04 | 1.30E-03 1.94E-04 2.58E -05
5 5.71E-05 1.77E-04 | 8.14E-05 | 1.10E-04 7.25E-06 4.69E - 07
6 1.08E - 05 1.77E-05 | 203E-06 | 3.99E-06 2.81E-07 9.97E-09
7 3.31E-06 1.77E-06 | 7.81E-07 | 1.24E-06 1.75E - 08 3.13E-10
8 5.69E - 06 2.09E-07 | 9.76E-09 | 2.69E-08 7.69E -10 1.38E-11
9 3.02E - 06 552E-08 | 7.28E-09 | 1.32E-08 467E-11 8.58E-12
10 9.91E - 07 5.60E-09 | 243E-10 | 551E-10 1.16E-12 8.58E -12

The comparisons on the maximum residual errors between [6, 10, 25] and the present method

are given in the Table 4 and Table 5. Also, the maximum residual errors obtained by the

presented technique for the different number of subintervals (M ) and the different degrees of

polynomials (N ) are given in the Table 6 and the absolute errors in logarithm (base 10) are

given in the Table 6 for the different number of subintervals (M ) and the different degrees of

polynomials (N ).
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Table 6. The absolute residual errors u, (log,,|erru| ) and v, (log,,|errv]) for the different values

of M and N.
N log,, lerry| log,, |errv]
logqq | & log rm
62 54 05 08 10— M=1(CFDM) (] 0z 04 05 0z 1o - Me1(CFDM)
4 2 e M=2 Z - M=2
o M=d - M=4
e Me8 - =8
logqg | err
o = M=1(CFDM) 0T 0w 0 we ot METEFDM)
6 = M=2 : - M=2
o M=4 : -+ M=4
- M=8 10 = M=8
12

Similar to the first example, even for comparison of the present method with [6, 10, 25], the
better results are obtained.

5. Conclusions

In this paper, we proposed anew method, Smooth Composite CFDM which is based on CFDM
and it ismore effective than CFDM. The superiority of the presented method comes from taking
into account the first order smoothness at the end points of the subintervals, which isdistinctive
property from CFDM and Composite CFDM. Convergence and error analyses for the method
are investigated. The method is used for the solution of the coupled Lane Emden boundary
value problems arising in the Catalytic Diffusion Reactions. The numerical results reveal that
this new technique, i.e. Smooth Composite CFDM achieves higher accuracy, less calculation

and high efficiency for this type of problems.
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