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Abstract  

 
This article deals with the study of some qualitative properties of a cubic 
autocatalator chemical reaction model. Particularly, we obtain a dynamically 
consistent cubic autocatalator discrete-time model by applying a nonstandard 
difference scheme. Analysis of the existence of equilibria and their stability is 
carried out. It is proved that a continuous system undergoes the Hopf bifurcation at 
its interior equilibrium, whereas the discrete-time version undergoes Neimark–
Sacker bifurcation at its interior fixed point. Moreover, numerical simulation is 
provided to strengthen our theoretical discussion.   
 

1 Introduction 
 
Due to strong nonlinearity, there exists complexity in various chemical processes involving 

chemical reactions such as mass transfer and heat, fluid flow and separations. Process engineers 

obtained a product by specifying homogeneous properties to keep the conditions of process 

stable and under control. Due to the natural nonlinearity of the reaction, sudden complexity is 

encountered in the industrial process without any external disturbances. In the last decay, a 
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significant number of articles have been published for processes showing oscillatory behavior, 

multiple fixed points and chaos [37-39].    

       The study of oscillatory behavior of chemical reaction is of great interest of both 

experimentalists and theoreticians for over a hundred years. The most considerable example of 

oscillatory systems in chemical engineering and chemical thermodynamics include the 

Belousov-Zhabotinsky, Bray-Liebhafsky and Briggs-Rausher reactions, for which oscillatory 

behavior in concentration can be observed through changes in color [2]. In the literature, a 

commonly used reactor for the study of such chemical dynamics, is the continuous flow 

well-stirred tank reactor (CSTR). It is also known as backmix reactor or vat [3,4]. In 

experiments, CSTR governs the system of ordinary differential equations, which can be 

handled via standard techniques. 

        Moreover, numerous investigations illustrate that CSTRs may reveal a rich behavior in 

dynamic phenomena [36], through fluctuation being the feature that has been subjected to 

passionate research activity by both chemical engineers and mathematicians. The investigation 

of self-oscillatory CSTRs has evolved into two separate dictions: one is the removal of the 

oscillations and the other is to take advantage of the process dynamics for unsteady-state 

operation [37-39]. The optimal proposed model would extend beyond the conventional 

fixed-point optimization by involving the factor of time-evolution, which recommends chances 

for latent route enrichment by the cyclic process. 

        Chaos could be produced through a combination of two oscillatory CSTRs [40-42]. 

Complex dynamical behavior of CSTRs is explored by investigating bifurcation analysis of 

steady-state. Bifurcation analysis not only investigates the unforced system but also estimates 

the dynamic complexities when periodic forcing is introduced. Classic methodical tools include 

codimension-1 bifurcations of limit cycles and stroboscopic Poincare maps [43], due to chaos 

during period-doubling and Neimark–Sacker bifurcations being frequently evident in the 

CSTRs. 

Mathematical modeling of the most well-known chemical reaction 

Bclousov-Zhabotinskil (BZ) reaction was the first time proposed by Field and Noyes [5] under 

isothermal conditions. Leach et al. [31], studied the two-cell coupled cubic autocatalator 

chemical reaction model and showed the existence of Hopf bifurcation. In [32], the author 

explored the existence of the limit cycle for a cubic chemical autocatalator model and evident 

that the limit cycles exist for a restricted region of parameter space. In [33], the author 

investigated a cubic autocatalator chemical reaction model and showed that traveling waves do 

not occur whenever the initial concentration of reactant is not periodic. In [34], the author 
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studied a homogeneous-heterogeneous reaction of nano-fluid and showed the existence of 

hysteresis bifurcations and multiple solutions. Alderremy et al. [35], proposed a new fractional 

blood ethanol model and discussed a brief comparison with the fractional-cubic autocatalator 

reaction model. Kay and Scott [6] showed that these reactions also exhibit oscillation in 

exothermic reactions (see also [7, 8]). Gray and Scott [9] proposed a cubic autocatalator 

chemical reaction model that exhibits oscillatory behavior, and the proposed hypothetical 

reaction is governed by the following system: 

 𝑃
!!→ 𝐴, 2𝐵

!"→ 3𝐵,				𝐵
!#→ 𝐶,				𝐴

!$→𝐵 (1) 

where 𝑘", 𝑘#, 𝑘$, 𝑘% are constant quantities and 𝑃, 𝐴, 𝐵 and 𝐶 are some chemical species 

along with 𝑝, 𝑎, 𝑏 and 𝑐 are their molar concentrations respectively. The following system is 

obtained by assuming isothermal reaction;  

 
&'
&(
= 𝑘"𝑝 − 𝑘#𝑎𝑏$ − 𝑘' ,

&)
&(
= 𝑘#𝑎𝑏$ − 𝑘$𝑏 + 𝑘%𝑎.

 (2) 

 

 The dimensionless form of the system (2) can be expressed as (cf. [10]): 

 
&*
&(
= 𝜇 − 𝑥𝑦$ − 𝑟𝑥,

&+
&(
= 𝑥𝑦$ − 𝑦 + 𝑟𝑥,

 (3) 

where 𝑟, 𝜇 > 0. The detailed analysis of system (3) is carried out by Merkin et al. [11]. In [12], 

the authors discussed the special case of the model (3) with 𝑟 = 0 and showed the existence of 

periodic behavior for parameter 𝜇. Gray and Thuraisingham [13] modified the system (3) with 

addition of some extra parameters and discussed the bifurcation analysis. Moreover, Forbes and 

Holmes [10] discussed the limit cycle behavior of the system (3). 

       Notice that, due to rich dynamics and remarkable computing results in the discrete 

dynamical system is more suitable than continuous one [14,15]. Furthermore, in the case of 

non-linear chemical oscillatory reaction models, this argument works efficiently [16-18]. 

Therefore, we explored the stability analysis of the discrete-time version of the system (3) and 

bifurcation analysis. The investigation of such discrete-time chemical oscillatory model can be 

found in [1,19-23, 30,31]. 

According to Strogatz [24], chaos can exists in a 3-dimensional phase space continuous system 

at least. Therefore it is clear that in the system (3) chaos can not be observed. While in the case 

of the counter discrete-time map, chaos can be observed in one dimension. 

       Motivated by the aforementioned rich properties of discrete-time dynamical systems, it 
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is necessary and interesting to study the qualitative behavior of the discrete-time version of the 

system (3). Therefore, by applying a non-standard finite difference scheme to the system (3), 

we have the following discrete-time cubic autocatalator chemical reaction model:  

 
𝑥,-# =

./-*%
#-/01-+%#2

,

𝑦,-# =
+%-/01-+%#2*%

#-/
,
            (4) 

 where 𝑟, 𝜇, ℎ are positive constants. The novel contributions of this manuscript are given 

below: 

• Limit cycle analysis of system (3) is carried out by computing the first Lyapunov exponent 

(FLE). 

• A novel discrete-time cubic autocatalator chemical reaction model (4) is obtained which is 

dynamically consistent. 

• Parametric conditions are obtained for the qualitative behavior of the system (4) including 

stability analysis and Neimark-Sacker bifurcation about coexistence. 

 

The remaining part of this manuscript organized as Andronov-Hopf bifurcation for system (3) is 

discussed in Section 2. The existence of equilibrium point and local stability of the model (4) is 

investigated in Section 3. Bifurcation analysis of the unique positive equilibrium point of the 

system (4) is discussed in Section 4. Finally, comprehensive numerical simulations are 

provided to support the main theoretical investigation in Section 5. 

 

2 Andronov-Hopf bifurcation in system (3) 
By performing simple algebraic manipulation, it is easy to see that systems (3) and (4) have 

unique positive equilibrium point 𝐸 = < .
1-.#

, 𝜇=. 

First, we see the dynamical behavior of the continuous system (3) at its unique positive 

equilibrium point. For this, the variational matrix of system (3) evaluated at 𝐸 = < .
1-.#

, 𝜇= is 

given by: 

𝑉(𝐸) = A
−𝑟 − 𝜇$ − $.#

1-.#

𝑟 + 𝜇$ 1 − $1
1-.#

C. 

It is easy to see that det 𝑉(𝐸) = 𝑟 + 𝜇$ > 0  and 𝑇𝑟	𝑉(𝐸) = 1 − 𝜇$ − 𝑟(1 + $
1-.#

) . 

Therefore, according to Routh–Hurwitz stability critearion, < .
1-.#

, 𝜇= is a sink if and only if 
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1 − 𝜇$ − 𝑟 <1 + $
1-.#

= < 0 and it is a source if and only if 1 − 𝜇$ − 𝑟 <1 + $
1-.#

= > 0, and 

system (3) undergoes Hopf bifurcation if the parameters belong to the following curve: 

𝐶34 = I(𝜇, 𝑟) ∈ ℝ$: 𝑟 =
1
2 <−1 − 2𝜇

$ + M1 + 8𝜇$= , 𝑟 > 0, 𝜇 > 0	O. 

Assume that 𝑟, 𝜇 ∈ 	𝐶34, then system (3) undergoes Hopf bifurcation. Furthermore, for 𝑟 ∈

[0,0.3]  and 𝜇 ∈ [0, 1]  the topological classification of the system (3) at its positive 

steady-state is depicted in Fig. 1. In Fig. 1, white region represents source and black region 

denotes sink.  

 

 
 

 

In order to study the periodic nature of solutions of system (3), we discuss the appearance of 

supercritical and subcritical Hopf bifurcations in the system (3). For this, we consider a general 

autonomous planar system as follows: 

                            I𝑥
5(𝑡) = 𝑓(𝛼, 𝑥, 𝑦),
𝑦5(𝑡) = 𝑔(𝛼, 𝑥, 𝑦),                                         (5) 

where 𝛼 ∈ ℝ is bifurcation parameter. Assume that (𝑥∗, 𝑦∗) be any equilibrium point of (5), 

and 𝐽(𝑥∗, 𝑦∗) is the variational matrix of (5) evaluated at (𝑥∗, 𝑦∗). Furthermore, assume that 

eigenvalues of 𝐽(𝑥∗, 𝑦∗) are of the following form: 

𝜆#,$(𝛼) = 𝜓(𝛼) ± 𝜄	𝜔(𝛼). 

Moreover, suppose that there exists a particular value of 𝛼, say 𝛼", such that the following 

conditions are satisfied: 

(i) 𝜓(𝛼") = 0 , and 𝜔(𝛼") = 𝜔" ≠ 0 , which is known as a non-hyperbolicity 

condition, that is, the existence of conjugate pair of imaginary eigenvalues for 

𝐽(𝑥∗, 𝑦∗). 

Figure 1. Topological classification for system (3). 
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(ii) &	9(;)
&	;

]
;=;!

= 𝑇 ≠ 0 , which is known as transversality condition, that is, the 

eigenvalues of 𝐽(𝑥∗, 𝑦∗) cross the imaginary axis with non-zero speed. 

(iii) There exists a discriminatory quantity 𝐿(𝛼") ≠ 0, which is known as the first 

Lyapunov exponent (FLE) and is defined as follows:  

𝐿(𝛼") ≔
1
16 a𝑓*** + 𝑓*++ + 𝑔**+ + 𝑔+++b	

+
1

16𝜔"
a𝑓*+a𝑓** + 𝑓++b − 𝑔*+a𝑔** + 𝑔++b − 𝑓**𝑔** + 𝑓++𝑔++b,	 

where 𝑓*+ =
>#	?(;,*,+)
>	*	>+

 evaluated at (𝑥, 𝑦) = (𝑥∗, 𝑦∗)  and 𝛼 = 𝛼" , etc. 

Furthermore, condition (iii) is known as the generosity condition. 

If conditions (i)-(iii) are satisfied, then there exists a unique curve of periodic solutions 

bifurcates from the equilibrium point into the region 𝛼 > 𝛼" if 𝑇	𝐿(𝛼") < 0	 or 𝛼 < 𝛼" if 

𝑇	𝐿(𝛼") > 0 . The steady-state is stable for 	𝛼 > 𝛼"  (resp. 𝛼 < 𝛼" ) and unstable for 𝛼 <

𝛼" (resp. 𝛼 > 𝛼" ) if 𝑇 < 0 (resp. 𝑇 > 0) whereas the periodic solutions are stable (resp. 

unstable) if the fixed point is unstable (resp. stable) on the side of 𝛼 = 𝛼" where the periodic 

solutions exist. Then, the amplitude of the periodic orbits grows like M|𝛼 − 𝛼"| and their 

periods tend to $@
|B!|

 as 𝛼  approaches to 𝛼" . The bifurcation is called supercritical if the 

bifurcating periodic solutions are stable, and subcritical if they are unstable. 

Keeping in view the above discussion for Andronov-Hopf bifurcation, we consider the system 

(3). For this, we suppose that 4(𝑟 + 𝜇$)% − (𝑟(1 + 𝑟) + (2𝑟 − 1)𝜇$ + 𝜇C)$ > 0, then it is 

easy to see that the eigenvalues of variational matrix 𝑉(𝐸) are of the form: 

𝜆#,$(𝑟) = 𝜓(𝑟) ± 𝜄	𝜔(𝑟), 

 

where  

𝜓(𝑟) = −
𝑟 + 𝑟$ − 𝜇$ + 2𝑟𝜇$ + 𝜇C

2(𝑟 + 𝜇$) , 

And   

𝜔(𝑟) =
M4(𝑟 + 𝜇$)% − (𝑟(1 + 𝑟) + (2𝑟 − 1)𝜇$ + 𝜇C)$

2(𝑟 + 𝜇$) . 

Next, 𝜓(𝑟) = 0 gives 𝑟 = #
$
(−1 − 2𝜇$ ±M1 + 8𝜇$). Neglecting the negative value of 𝑟 we 

left with 𝑟 ≡ 𝑟" =
#
$
(−1 − 2𝜇$ + M1 + 8𝜇$)  such that 0 < 𝜇 < 1.  At 𝑟 = 𝑟" , one has 

𝜔(𝑟") ≡ 𝜔" = M𝑟" + 𝜇$ ≠ 0. For transversality condition, we see that 
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𝑑	𝜓(𝑟)
𝑑	𝑟 g

1=1!

=
1

#
D#-E.#

− 1
< 0. 

In order to shift the equilibrium of system (3) at (0,0), we consider the following translations:  

𝑢(𝑡) = 𝑥(𝑡) − 𝑥∗, 𝑣(𝑡) = 𝑦(𝑡) − 𝑦∗, 

where 𝑥∗ = .
1-.#

 and 𝑦∗ = 𝜇. With implementing this translation to the system (3) yields the 

following planar system: 

           
&F
&(
= 𝜇 − (𝑢 + 𝑥∗)(𝑣 + 𝑦∗)$ − 𝑟(𝑢 + 𝑥∗),

&G
&(
= (𝑢 + 𝑥∗)(𝑣 + 𝑦∗)$ − (𝑣 + 𝑦∗) + 𝑟(𝑢 + 𝑥∗).

                          (6) 

An application of Taylor series expansion about (𝑢, 𝑣) = (0,0) gives the following system: 

       j
&'
&(
&)
&(

k = 𝐴aFGb + l
HFG#H$FG.H )#*

+!,*#

FG#-$FG.- )#*
+!,*#

m,                                              (7) 

where 

𝐴 = A−𝑟" − 𝜇
$ −

2𝜇$

𝑟" + 𝜇$
𝑟" + 𝜇$ 𝑟" + 𝜇$

C. 

Next, we want to convert the matrix 𝐴 into its canonical form. For this the following similarity 

transformation is considered: 

          <F(()G(()= = n
1 0

− (1!-.#)#

$.#
− (1!-.#)$ #⁄

$.#
o <I(()J(()=.                                   (8) 

From (7) and (8), it follows that  

          j
&.
&(
&/
&(

k = p 0 𝜔"
−𝜔" 0 q a

I
Jb + <

?(I,J)
K(I,J)=,                                         (9) 

 

where 

𝑓(𝑤, 𝑧) = −𝑣 t𝑢(𝑣 + 2𝜇) −
𝑣	𝜇

𝑟" + 𝜇$
u, 

𝑔(𝑤, 𝑧) =
𝑣((𝑟" + 𝜇$)$ − 2𝜇$)(𝑟"	𝑢(𝑣 + 2𝜇) + 𝜇(𝑣 + 𝑢	𝑣	𝜇 + 2	𝑢	𝜇$))

(𝑟" + 𝜇$)L $⁄ , 

𝑢 = 𝑤, 𝑣 = −j
(𝑟" + 𝜇$)$

2𝜇$ k𝑤 − j
(𝑟" + 𝜇$)% $⁄

2𝜇$ k 𝑧. 

Then, the first Lyapunov exponent for system (3) is computed as follows: 
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Figure 2. Plot of the first Lyapunov exponent. 

𝐿(𝑟"): =
1
16 a𝑓*** + 𝑓*++ + 𝑔**+ + 𝑔+++b

+
1

16𝜔"
a𝑓*+a𝑓** + 𝑓++b − 𝑔*+a𝑔** + 𝑔++b − 𝑓**𝑔** + 𝑓++𝑔++b. 

After some tedious calculations, the closed form of 𝐿(𝑟") is given by: 

𝐿(𝑟") =
3(M1 + 8𝜇$ − 1) − 4𝜇$(1 + M1 + 8𝜇$)

32𝜇$ . 

Moreover, we have 𝐿(𝑟") > 0 if and only if 0 < 𝜇 < 𝜇" and 𝐿(𝑟") < 0 if and only if 𝜇 >

𝜇", where 𝜇" =
D%H√O

$
≅ 0.370981892151363. Moreover, a plot of FLE in the unit interval 

is depicted in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

3 Stability analysis of system (4) 

In order to study the behavior of the model (4) at < .
1-.#

, 𝜇=, we assume that 𝐹P(𝐸) be the 

variational matrix of model (4) at point < .
1-.#

, 𝜇=, then it follows that: 

 𝐹P(𝐸) = {

#
#-/(1-.#)

− $/.#

(1-.#)0#-/(1-.#)2

/01-.#2
#-/

#-#0*
#

+,*#

#-/

|. 

Then characteristic polynomial of the matrix 𝐹P(𝐸) is given by:  

 𝔽(𝜔) = 𝜔$ − l
#-#0*

#

+,*#

#-/
+ #

#-/(1-.#)
m𝜔 +

#0*#

+,*#
- "
",01+,*#2

#-/
. (10) 

 Furthermore, from (10) it is easy to see that: 

 𝔽(1) = /#01-.#2
(#-/)0#-/(1-.#)2

, (11) 
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𝔽(−1) = C1-$/1-$/1#-/#1#-C.#-O/.#-C/1.#-O/#1.#-$/.3-L/#.3

(1-.#)(#-/1-/.#)
, (12) 

and 

 𝔽(0) = 1-.#-$/.#-$/#1.#-$/#.3

(#-/)(1-.#)(#-/1-/.#)
. (13) 

From (11) and (12), it follows that 𝔽(1) > 0 and 𝔽(−1) > 0, therefore according to Jury 

condition fixed point < .
1-.#

, 𝜇= of the system (4) is a sink if and only if 𝔽(0) < 1.The 

dynamics of the system (4) with respect to its fixed point < .
1-.#

, 𝜇= is summarized as follows. 

Theorem 3.1 For the fixed point 𝐸 = < Q
R-Q#

, µ= of system (4), the following results are 

satisfied: 

(i) 𝐸 = < Q
R-Q#

, µ= is a sink if and only if 𝜇$(1 + ℎ	𝜇$) < 𝑟(1 + 𝑟 + ℎ𝑟 + 2𝜇$) + 𝜇C. 

(ii) 𝐸 = < Q
R-Q#

, µ= can not be a saddle point. 

(iii) 𝐸 = < Q
R-Q#

, µ=  is unstable and source if and only if 𝜇$(1 + ℎ	𝜇$) > 𝑟(1 + 𝑟 + ℎ𝑟 +

2𝜇$) + 𝜇C. 

(iv) 𝐸 = < Q
R-Q#

, µ= is non-hyperbolic equilibrium point if and only if  

𝑟 + 𝜇$ + 2ℎ𝜇$

(1 + ℎ)(𝑟 + 𝜇$) +
1

1 + ℎ(𝑟 + 𝜇$) < 2 

and 

𝜇$(1 + ℎ	𝜇$) = 𝑟(1 + 𝑟 + ℎ𝑟 + 2𝜇$) + 𝜇C.                         (14) 

Moreover, for ℎ = 0.1  the topological classification for fixed-point 𝐸 = < Q
R-Q#

, µ=  of the 

system (4) is depicted in Fig. 3 in 𝜇	𝑟-plane. In Fig. 3, white and black regions represent source 

and sink, respectively. 

 
 Figure 3. Topological classification of system (4). 
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4 Neimark-Sacker bifurcation in system (4) 
According to Theorem 3.1, the characteristic equation (10) has two complex conjugate roots 

with modulus one, if condition (𝑖𝑣) of Theorem 3.1 is satisfied. Hence, the unique positive 

equilibrium point of the model (4) undergoes Neimark-Sacker bifurcation if parameters vary in 

the neighborhood of the following set: 

 
 𝐵S = �(𝑟, 𝜇, ℎ):	h ≡ ℎ# = 1 + $1

.#H1
− #

1-.#
, 𝑟, 𝜇, h > 0�. 

Let (𝑟, 𝜇, ℎ#) ∈ 𝐵T then the system (4) can be written as; 

 j
𝑥
𝑦 k →

⎝

⎜
⎛

./"-*
#-/"(1-+#)
+-/"01-+#2*

#-/"

⎠

⎟
⎞
, (15) 

 where ℎ# = 1 + $1
.#H1

− #
1-.#

. Let |ℎ�| ≪ 1 be a perturbation parameter, then map (15) can be 

expressed as:  

 j
𝑥
𝑦 k →

⎝

⎜
⎛

.(/"-/U)-*
#-(/"-/U)(1-+#)
+-(/"-/U)01-+#2*

#-(/"-/U)

⎠

⎟
⎞
. (16) 

Next, under transformations (𝐻, 𝑃) = <𝑥 − .
1-.#

, 𝑦 − 𝜇=, the model (15) can be described by 

the following system: 

 

 l
𝐻
𝑃 m → j

𝑧## 𝑧#$
𝑧$# 𝑧$$kl

𝐻
𝑃 m + l

ℎ#(𝐻, 𝑃)
ℎ$(𝐻, 𝑃)m, (17) 

 where  

 ℎ#(𝐻, 𝑃) = 𝑧#%𝐻𝑃 + 𝑧#C𝐻𝑃$ + 𝑧#L𝑃$ + 𝑘#𝑃% + 𝑂((|𝐻| + |𝑃|)C, 

 ℎ$(𝐻, 𝑃) = 𝑧$%𝐻𝑃 + 𝑧$C𝐻𝑃$ + 𝑂((|𝐻| + |𝑃|)C, 

 𝑧## =
#

#-(/"-/U)(1-.#)
, 𝑧#$ = − $(/"-/U).#

(1-.#)V#-(/"-/U)(1-.#)W
, 

 𝑧$# =
(/"-/U)01-.#2
#-(/"-/U)

, 𝑧$$ =
#-#(0",0

5)*#

+,*#

#-(/"-/U)
, 

 𝑧#% =
H$(/"-/U).	

V#-(/"-/U)(.#-1)W
# , 𝑧#C =

0(/"-/U)0%.#H12H#2(/"-/U)

0(/"-/U)(.#-1)-#2
$ , 
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 𝑧#L =
(/"-/U).	0(/"-/U)0%.#H12H#2

(.#-1)V#-(/"-/U)(.#-1)W
# , 𝑘# = −4 (/"-/

U#.#0(/"-/U)0.#H12H#2

(.#-1)0(/"-/U)(.#-1)-#2
$ , 

 𝑧$% = 2 /.
#-(/"-/U)

, 𝑧$C =
(/"-/U)

#-(/"-/U)
. 

 The characteristic equation of the Jacobian matrix of the map (17) computed at (0,0) can be 

described as follows:  

 𝜔$ −𝑀#(ℎ�)𝜔 +𝑀$(ℎ�) = 0, (18) 

 where  

 𝑀#(ℎ�) =
1-(#-$(/"-/U)).#

(#-(/"-/U))#(1-.#)
+ #

#-(/"-/U)(1-.#)
 

and  

 𝑀$(ℎ�) =
#(0",05)*#

+,*#
- "
",(0",05)1+,*#2

#-(/"-/U)
 

Since (𝑟, 𝜇, ℎ#) ∈ 𝐵S and equation (18) has pair of complex conjugate roots with unit modulus 

then we have;  

 𝜔#, 𝜔$ =
X"(/U)
$

± Y
$
�4𝑀$(ℎ�) − 𝑀#

$(ℎ�). 

Therefore we have  

 |𝜔#| = |𝜔$| = �𝑀$(ℎ�), t
&DX#(/U)

&/U
u
/U="

=
$H #+

+,*#H
"

1",1+,*#20"2
#H

1+,*#2(",#0")

1",1+,*#20"2
#

$(#-/")#
Z
#*#0"
+,*#

, "
",1+,*#20"
",0"

≠ 0. 

Since (𝑟, 𝜇, ℎ#) ∈ 𝐵S , this implies that −2 < 𝑀#(0) < 2 . Thus 𝑀#(0) ≠ ±2,0,1  gives 

𝜔#[, 𝜔$[ ≠ 1 for all 𝑚 = 1,2,3,4 at ℎ� = 0. Hence, zeros of (18) do not lie in the intersection 

of the unit circle with the coordinate axes at ℎ� = 0 and if the following condition is true:  

 $/".#

1-.#
+ #

#-/"(1-.#)
≠ 0, #

#-/"(1-.#)
≠ −(1 + ℎ#)

$/".#

1-.#
. (19) 

Assume that 𝛾 = X"(")
$

, 𝛿 = #
$
M4𝑀$(0) − 𝑀#

$(0), then the normal form of (17) at ℎ� = 0 can 

be expressed as: 

 l
𝐻
𝑃 m = l

𝑧#$ 0
𝛾 − 𝑧## −𝛿mj

𝑢
𝑣 k. (20) 

hence, by using map (20) we get: 

 

 j
𝑢
𝑣 k → l

𝛾 −𝛿
𝛿 𝛾 mj

𝑢
𝑣 k + l

𝑔#�(𝑢, 𝑣)
𝑔$�(𝑢, 𝑣)m, (21) 
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 where  

 𝑔#�(𝑢, 𝑣) =
J"3
J"#
𝐻𝑃$ + J"$

J"#
𝐻𝑃 + J"7

J"#
𝑃$ + !"

J"#
𝑃$ + 𝑂((|𝑢| + |𝑣|)C), 

 𝑔$�(𝑢, 𝑣) = <(\HJ"")J"3
J"#]

− J#3
]
=𝐻𝑃$ + <(\HJ"")J"$

J"#]
− J#$

]
=𝐻𝑃 + (\HJ"")!"^$

J"#]
 

 + (\HJ"")J"7^#

J"#]
+ 𝑂((|𝑢| + |𝑣|)C), 

𝐻 = 𝑧#$𝑢  and 𝑃 = (𝛾 − 𝑧##)𝑢 − 𝛿𝑣 . Therefore, we define the following nonzero real 

number: 

 

 Ϝ = <�−𝑅𝑒 <(#H$B")B#
#

#HB"
𝜏$"𝜏##= −

#
$
|𝜏##|$ − |𝜏"$|$ + 𝑅𝑒(𝜔$𝜏$#)�=

/U="
,																 

 where  

 𝜏$" =
#
E
�𝑔#�FF − 𝑔#�GG + 2𝑔$�FG + 𝑖a𝑔$�FF − 𝑔$�GG − 2𝑔#�FGb�,																																									 

 

 𝜏## =
#
C
�𝑔#�FF + 𝑔#�GG + 𝑖a𝑔$�FF + 𝑔$�GGb�,																																																																									 

 

 𝜏"$ =
#
E
�𝑔#�FF − 𝑔#�GG − 2𝑔$�FG + 𝑖a𝑔$�FF − 𝑔$�GG + 2𝑔#�FGb�,																																								 

 

 𝜏$# =
#
#O
�𝑔#�FFF + 𝑔#�FGG + 𝑔$�FFG + 𝑔$�GGG + 𝑖a𝑔$�FFF + 𝑔$�FGG − 𝑔#�FFG − 𝑔#�GGGb�. 

With bifurcation theory presented in ([25]—[29]), and taking into account the aforementioned 

computations, the following result is given for direction and existence of Neimark-Sacker 

bifurcation. 

Theorem 3.1  There exists Neimark-Sacker bifurcation at < .
1-.#

, 𝜇= whenever ℎ varies in a 

small neighborhood of ℎ# = 1 + $1
.#H1

− #
1-.#

. In addition, if Ϝ < 0, (Ϝ > 0), respectively, then 

an attracting or repelling invariant closed curve bifurcates from the equilibrium point for ℎ >

ℎ#(ℎ < ℎ#), respectively.  

 

5 Numerical simulation and discussion 
The present part of the manuscript is related to verification of the above theoretical work and 

validation of dynamical consistency of systems (3) and (4).  

Example 5.1 First, we the assume special case of the system (1) and (4) by taking parameters 

(𝜇, 𝑟) = (0.9003, #
E
), and initial values (𝑥", 𝑦") = (0.96, 0.90), where the step size ℎ ∈ (0,1) 
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for system (4) is taking as a bifurcation parameter, then the system (4) undergoes 

Neimark-Sacker bifurcation. Fig. 4 and Fig. 5 shows that both chemical concentrations undergo 

Neimark-Sacker bifurcation and corresponding maximum Lyapunov exponents are shown in 

Fig. 6. Particularly, when ℎ = 0.295775  then unique positive fixed point 𝐸 =

(0.962332, 0.9003), undergoes Neimrk-Sacker bifurcation. Finally, some phase portraits are 

given in Fig. 7 to Fig. 10 for 0 < ℎ < 1.  

Next, the characteristic polynomial of the system (4) computed at fixed point 𝐸 =

(0.962332, 0.9003) is given by  

 𝔽(𝜔) = 𝜔$ − 1.950527599147959𝜔 + 0.9999999999999999. 

Then roots of 𝔽(𝜔) = 0  are 𝜔#,$ = 0.9752637995739795 ± 0.22104416129028326𝑖 

with |𝜔#,$| = 1  so that (𝜇, 𝑟, ℎ) = (0.9003, #
E
, 0.29577469361743874) ∈ 𝐵S . Next, we 

observe that 𝑀#(0) = 1.95053 thus the condition (19) is satisfied. Moreover, some careful 

calculation gives 

𝜏$" =
1
8 �𝑔#�FF − 𝑔#�GG + 2𝑔$�FG + 𝑖a𝑔$�FF − 𝑔$�GG − 2𝑔#�FGb� = −0.0231224 + 0.00970326𝑖, 

𝜏## =
1
4 �𝑔#�FF + 𝑔#�GG + 𝑖a𝑔$�FF + 𝑔$�GGb� = −0.0254418 + 0.00696268𝑖, 

𝜏"$ =
1
8 �𝑔#�FF − 𝑔#�GG − 2𝑔$�FG + 𝑖a𝑔$�FF − 𝑔$�GG + 2𝑔#�FGb� = −0.00907315 + 0.0399482𝑖, 

𝜏$# =
1
16 �𝑔#�FFF + 𝑔#�FGG + 𝑔$�FFG + 𝑔$�GGG + 𝑖a𝑔$�FFF + 𝑔$�FGG − 𝑔#�FFG − 𝑔#�GGGb�

= −0.00488224 + 0.00339422𝑖, 

and Ϝ = <�−𝑅𝑒 <(#H$B")B#
#

#HB"
𝜏$"𝜏##= −

#
$
|𝜏##|$ − |𝜏"$|$ + 𝑅𝑒(𝜔$𝜏$#)�=

_̃="
=

−0.00383086 < 0. This proves the correctness of Theorem 3.1.  

 
Figure 4. Bifurcation diagram for 𝑥! 
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Figure 5. Bifurcation diagram for 𝑦! 

 
Figure 6. Maximum Lyapunov exponents 

Bifurcation diagrams and MLE for the system (4) with ℎ ∈ (0,1) (𝑟, 𝜇) = (#
E
, 0.9003) 

and initial conditions 𝑥" = 0.962332, 𝑦" = 0.9003 
 

 
Figure 7. Phase portrait for system (4) 
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Figure 8. Phase portrait for system (4) 

 

 
Figure 9. Phase portrait for system (4) 

 

 
Figure 10. Phase portrait for system (4) 

Phase portrait for the system (4) for ℎ ∈ (0,1) with (𝑟, 𝜇) = <#
E
, 0.9003= and initial 

conditions 𝑥" = 0.962332, 𝑦" = 0.9003 
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Secondly, we take (𝜇, 𝑟) = <0.9003, #
E
=  in continuous system (3), then unique positive 

equilibrium (0.962332, 0.9003) is a sink. Indeed, the Jacobian matrix about these parametric 

values for system (3) is given as follows: 

�−0.9355400899999999 −1.7327746799177788
0.9355400899999999 0.7327746799177788 �. 

Consequently, the eignvalues are −0.1013827050411106 + 0.961905212127758𝑖  and 

−0.1013827050411106 − 0.961905212127758𝑖  both with negative real parts. The 

asymptotic stability of positive equilibrium is depicted in Fig. 11. 

 
(a) Phase portrait for system (3) 

 
(b) Plot of 𝑥(𝑡) for system (3) 

 
(c) Plot of y(𝑡) for system (3) 

Figure 11. Phase portrait and plots for system (3)  with (𝑟, 𝜇) = *"
#
, 0.9003/ and initial conditions  

x(0) = 0.962332, y(0) = 0.9003. 
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On the other hand, fixing the value of 𝜇 = 0.9003, then system (3) undergoes Hopf bifurcation 

at 𝑟 = #
$
<−1 − 2𝜇$ + M1 + 8𝜇$= = 0.0573342390229552.  

At 𝜇 = 0.9003 and 𝑟 = 0.0573342390229552, the plots for system (3) are depicted in Fig. 

12. From Fig. 12(a), it is easy to see the appearance of closed invariant curve enclosing the 

positive equilibrium (1.0373621731772493, 0.9003). 

 
(a) Phase portrait for system (3) 

 
(b) Plot of 𝑥(𝑡) for system (3) 

 
(c) Plot of y(𝑡) for system (3)   

Figure 12. Phase portrait and plots for system (3)  with (𝑟, 𝜇) = (0.057334239, 0.9003) and initial 
conditions  x(0) = 1.03736, y(0) = 0.9003. 
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In order to develop the dynamical consistency between systems (3) and (4), we choose exactly 

similar parametric values for both continuous and discrete models except the step size ℎ =

0.295775, for the discrete model. In this case, the absolute difference between 𝑟 and 𝑟# is 

|𝑟 − 𝑟#| = 0.06766582769926094. The variation between |𝑟 − 𝑟#| and ℎ is given in Table 

1. From Table 1 it is obvious that for smaller step size ℎ the critical values of bifurcation 

parameter 𝑟 for the emergence of a Hopf bifurcation and a Neimark–Sacker bifurcation are 

nearly identical, that is, |𝑟 − 𝑟#| → 	0	as ℎ	 → 	0.  

 

Table 1. Variation of 𝑟" and |𝑟"	– 	𝑟| with different values of ℎ. 

ℎ 𝑟 |𝑟 − 𝑟#| 
0.000001 0.05733447799855375 2.389755985460207 × 10Ha 
0.01	 0.059720566559284406 0.002386327536329204 
0.2	 0.10378691697971919 0.046452677956763985 
0.5	 0.1677999862528797 0.1104657472299245 
0.8	 0.22449769400031547 0.16716345497736027 
0.9	 0.24179367857225356 0.18445943954929836 

 
 
6 Conclusion 
 
A cubic autocatalator chemical reaction model is considered for its discretization and 

qualitative analysis. The discretization is performed by considering a consistency preserving 

scheme. For this, a nonstandard finite difference scheme is implemented to obtain a discrete 

counterpart of the given model. Our investigation reveals that continuous system undergoes 

Hopf bifurcation about its coexistence whenever 𝑟 is taken as a bifurcation parameter, and it 

passes through a critical value 𝑟 ≡ 𝑟" =
#
$
(−1 − 2𝜇$ + M1 + 8𝜇$)  such that 0 < 𝜇 < 1. 

Moreover, the first Lyapunov exponent is computed in the closed form given as follows: 

 

𝐿 =
3(M1 + 8𝜇$ − 1) − 4𝜇$(1 + M1 + 8𝜇$)

32𝜇$ . 

On the other hand, the discrete counterpart, which is obtained via a nonstandard finite scheme, 

undergoes Neimark-Sacker bifurcation around its coexistence as step size ℎ is taken as a 

bifurcation parameter, and it passes through the critical value ℎ ≡ ℎ# = 1 + $1
.#H1

− #
1-.#

. The 

conditions for the existence and direction of Neimark-Sacker bifurcation are given in Theorem 
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3.1. Numerical simulation reveals that our discretization is bifurcation preserving, and even 

with smaller step size the first Lyapunov exponents are identical in both cases. 

In order to discuss comprehensive rich dynamical behavior of another discrete counterpart of 

cubic autocatalator chemical reaction model, one may apply Euler approximation to system (3). 

In case of Euler approximation, one may discuss some additional types of bifurcations and 

chaos control. For such types of discussions, we refer to [44—50] and reference therein. 

Discretization of system (3) through Euler approximation, bifurcation analysis and chaos 

control for the obtained model will be our future task. 
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