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Abstract

In this manuscript, we discuss a four-dimensional cubic autocatalator chemical
reaction model in continuous form. We investigate the existence of one and only
positive fixed point and then we have obtained some parametric conditions for local
stability of continuous system by using Routh-Hurwitz stability criteria. Moreover,
we discretize the four-dimensional continuous cubic autocatalator chemical reaction
model by using Euler’s forward method and then by using a nonstandard difference
scheme we obtained a consistent discrete-time counterpart of four-dimensional cubic
autocatalator chemical reaction model. Parametric conditions for local asymptotic
stability of one and only positive fixed point of obtained system are also discussed.
It is shown that the obtained system experiences the Neimark-Sacker bifurcation at
one and only positive fixed point by using a general standard for Neimark-Sacker
bifurcation. The discrete-time counterpart of genuine four-dimensional system dis-
plays chaotic dynamics at different standards of bifurcation parameter. Further-
more, the control of Neimark-Sacker bifurcation and chaos is also deliberated by
using a generalized hybrid control scheme, which is based on parameter perturba-
tion and feedback control. Finally, some numerical examples are given to strengthen
our theoretical results.
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1 Introduction

In this article we study a prototype two-cell model using the feedback scheme in every

cell being centered on the cubic autocatalator reaction, which is listed as





A+ 2B → 3B rate k0p,

P → A rate k1ab
2,

B → C rate k2b,

(1)

with the following relation for uncatalysed phase

{
A → B rate k3a, (2)

(where, the concentrations of the reactants A,B and P are respectively represented by

a, b and p [1]). In addition, ki(i = 0, 1, 2, 3) are rate constants. We start with the

condition that there is a semi-permeable coating between the cells which permits diffusion

of only one from the reactant classes B or A at any instant. Moreover, the overall

reaction is feeded by using the condition that reactant A is produced by only first-order

decline from its originator P. It is assumed that the production of A from its originator

P at the rate k1ab
2 is comparatively slow process with the following supposition that the

primary concentration of P , explicitly p0, is numerous orders of size larger than that of

the intermediates B and A [1]. In these conditions it is standard to consider the ‘pooled-

chemical’ estimations and make the additional supposition that the concentration of P

remains same all the way through, at its primary value p0. Additionally, it is considered

that the rate-defining stage, namely, basic autocatalytic step (A + 2B → 3B) is faster

when compared to uncatalysed reaction step. Yet, this additional reaction can have a

significant influence on the total behavior of the system. Few decades earlier the authors

in [3-8] have widely studied the separated reaction model (1) in a well-stirred scheme

under the effects of pooled-chemical estimation. The authors in [8] and [2] have revealed

that this reaction system may experience some complex designs of behavior. The authors

in [11] have discussed the consequences of slow decline of the antecedent P on the overall

solution. The authors in [1] have extended the work of [12] on this dual-cell problem

centered on the cubic-autocatalator response system (1). Moreover, in their extended

work they have discussed some consequences that the additional uncatalysed response

stage (2) had on the inclusive behavior of the reaction. Merkin et al. [6] have showed

that with a comparatively small influence, this additional step can ensure a key effect on
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the result of the uncoupled system by keeping the result restricted, by not letting the

concentration of B to approach to zero (although it can turn out to be negligible). The

addition of this additional stage to the uncoupled system have extreme impact on the

oscillatory behavior, keeping the oscillatory response restricted all over and giving rise to

an additional point of Hopf bifurcation.

A complete study of complexity in the dynamical behavior, wherever the noncatalysed

stage was not involved, is presented in the article [12]. Moreover, the authors in [1] have

not presented the complete study of complexity in the dynamical behavior that can ascend

due to secondary bifurcations. The equations leading this dual-cell combined system are,

under the pooled-chemical estimate for the reactant P (see [1]),

da1
dt1

=k0p0 − k1b
2
1a1 − k3a1 +Da(a2 − a1),

db1
dt1

=k1b
2
1a1 + k3a1 − k2b1 +Db(b2 − b1),

da2
dt1

=k0p0 − k1b
2
2a2 − k3a2 +Da(a1 − a2),

db2
dt1

=k1b
2
2a2 + k3a2 − k2b2 +Db(b1 − b2).

(3)

Where, the diffusion coefficients for autocatalyst B and reactant A are Db and Da respec-

tively through the membrane separating the two cells. Furthermore, to made the non-

dimensional system of equations from (3), we consider the following transformations [12]:





xi = ai

√
k1
k2
,

yi = bi

√
k1
k2
,

(i = 1, 2), t = k2t1.

(4)

The terms arising from the decline of the antecedent P give growth to a positive dimen-

sionless parameter

µ =
k0p0
k2

√
k1
k2

.

The addition of uncatalysed stage give rise to a dimensionless parameter r = k3
k2
, which

will, in common, take comparatively lesser values. The combination through B and A

give rise to the real numbers β = Db

k2
and α = Da

k2
respectively. Moreover, under these
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assumptions the system (3) takes the following form;

dx1

dt
=µ− x1y

2
1 − rx1 + α(x2 − x1),

dy1
dt

=x1y
2
1 − y1 + rx1 + β(y2 − y1),

dx2

dt
=µ− x2y

2
2 − rx2 + α(x1 − x2),

dy2
dt

=x2y
2
2 − y2 + rx2 + β(y1 − y2),

(5)

with xi, yi ≥ 0 for every value of i (see [12]). Some aspects of the common case α ̸= β ̸= 0

for system (5) are considered by Askhenaz et al. [13]. Moreover, the authors in [1] have

discussed some qualitative results of system (5) by letting pairing either through B or

through A only. Formerly, it was explained by Lech et al. [1] that, when pairing is

considered by using reactant A only, we must have to take β = 0, similarly for pairing

through autocatalyst B we have to take α = 0 in system (5). Here, we consider the

coupling in system (5) through autocatalyst B by taking α = 0. In this case the system

(5) takes the following form:

du

dt
=µ− uv2 − ru,

dv

dt
=uv2 + ru− v + β(z − v),

dw

dt
=µ− wz2 − rw,

dz

dt
=wz2 + rw − z + β(v − z),

(6)

where x1 = u, x2 = w, y1 = v and y2 = z. Recently, Din [14] have discussed the rich dy-

namics of discrete-time version of a glycolysis model. Moreover, Din et al. [15] have consid-

ered a discrete-time chlorine dioxide-iodine-malonic acid model for study and discussed

the complexity in that mathematical system. In case of non-intersecting generations,

discrete-time mathematical systems gives efficient computational results as compared to

their counterparts in continuous form [16]. Mostly, global character, boundedness, local

asymptotic stability, persistence, and the presence of positive periodic results can be ar-

gued more effortlessly in case of discrete-time systems as paralleled to their counterparts

in continuous form [17]. There are various mathematical techniques for converting the

differential equations to corresponding discrete counterparts. To achieve this goal the

usual way is to apply standard difference schemes such as Runge-Kutta methods and

Euler approximations. But, numerical inconsistency is experienced with the application



419

of usual finite difference methods. Hence, to avoid this numerical inconsistency, one can

apply nonstandard finite difference method given by Mickens [18]. In general, whenever

a nonstandard finite difference scheme is proposed then it is aimed on the preservation

of the following properties of the respective continuous-time system: positivity of results,

boundedness, stability of equilibrium points, existence and nature of bifurcations. Addi-

tionally, the main benefit of the nonstandard finite difference schemes is to maintain the

significant characters of their respective continuous systems. Moreover, the formation of

these type of difference schemes is not straightforward and there are no usual way for their

construction, which is probably considered as major downside of nonstandard difference

schemes [29]. Hence, it is interesting to study the dynamics of discrete-time version of

(6). Formally, by using Euler’s forward method we get the following discrete-time version

of system (6);

un+1 =un + η
(
a− unv

2
n − bun

)
,

vn+1 =vn + η
(
unv

2
n + bun − vn + c(zn − vn)

)
,

wn+1 =wn + η
(
a− wnz

2
n − bwn

)
,

zn+1 =zn + η
(
wnz

2
n + bwn − zn + c(vn − zn)

)
,

(7)

where 0 < η < 1. To understand similar type of discretization, one can study [15-18].

Moreover, by applying nonstandard finite difference scheme ( see Mickens [18]) we get the

following form of system (7).

un+1 =
(un + ηµ)

(1 + η (v2n + r))
,

vn+1 =
vn + η (unv

2
n + run + βzn)

(1 + η(1 + β))
,

wn+1 =
(wn + ηµ)

(1 + η (z2n + r))
,

zn+1 =
(zn + η (wnz

2
n + rwn + βvn))

(1 + η(1 + β))
.

(8)

Rest of this paper is aimed at the study of the existence of one and only fixed point of

system (8). The local stability of system (8) about one and only positive fixed point of

system (8). The existence of Neimark-Sacker bifurcation about one and only positive fixed

point of system (8). In concern to control the chaos under the effects of bifurcation, we

apply a modified hybrid control approach to system (8). In last section, some numerical

examples are also provided.
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2 Existence of fixed points and linearized stability of

system (8)

From system (8) one can get the one and only fixed point (u∗, v∗, w∗, z∗). Additionally,

(u∗, v∗, w∗, z∗) represents the unique positive fixed point of system (8). Furthermore, this

equilibrium point is given as:

(u∗, v∗, w∗, z∗) =

(
µ

r + µ2
, µ,

µ

r + µ2
, µ

)
.

In order to study the stability analysis of system (8)about one and only positive fixed

point, we have the next theorem, which provides us freely applicable necessary and suffi-

cient conditions for all the roots of real fourth order polynomial to have magnitude less

than one (see, Theorem 1.5 of [19]).

Theorem 2.1. Assume the fourth degree characteristic equation

ρ4 + d1ρ
3 + d2ρ

2 + d3ρ+ d4 = 0, (9)

where d1, d2, d3, d4 ∈ ℜ. Additionally, let ρ1, ρ2, ρ3, ρ4 are roots of (9) and D1 be any open

disk of radius one. Then, the necessary and sufficient conditions that ρ1, ρ2, ρ3, ρ4 ∈ D1

are given as:

|d3 + d1| < 1 + d4 + d2, |d3 − d1| < 2(1− d4), d2 − 3d4 < 3,

and

d4 + d2 + d24 + d23 + d24d2 + d4d
2
1 < 1 + 2d4d2 + d3d1 + d4d3d1 + d34.

Theorem 2.2. Consider the following biquadratic polynomial equation with real coeffi-

cients

ρ4 + d1ρ
3 + d2ρ

2 + d3ρ+ d4 = 0. (10)

Then, necessary and sufficient conditions that all the roots of (10) lie inside the disk of

unit radius are given as follows:





|d3 + d1| < 1 + d4 + d2,

|d3 − d1| < 2(1− d4),

d2 − 3d4 < 3,

d4 + d2 + d24 + d23 + d24d2 + d4d
2
1 < 1 + 2d4d2 + d3d1 + d4d3d1 + d34.

(11)
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where




d1 = −
(

2
1+Sη

+
2(S+2ηµ2)

ST

)
,

d2 =
(S+2ηµ2)

2

S2 +
ST (4+T+4Sη)+4Tη(1+Sη)(2+Sη)µ2

S(1+Sη)2
−β2η2

T 2 ,

d3 =
2S2((1+Sη)(1−β2η2)−T)−4Sη(1+Sη)(2+T+Sη)µ2−8η2(1+Sη)2µ4

S2T 2(1+Sη)2
,

d4 =
S2(1−β2η2)+4Sη(1+Sη)µ2+4η2(1+Sη)2µ4

S2T 2(1+Sη)2
,

S = r + µ2 and T = 1 + η + βη.

(12)

Proof. Let J(u∗,v∗,w∗,z∗) be the jacobian matrix of system (8) about
(

µ
r+µ2 , µ,

µ
r+µ2 , µ

)
then

J(u∗,v∗,w∗,z∗) has the following mathematical form

J(u∗,v∗,w∗,z∗) =




1
1+ηS

− 2ηµ2

S(1+ηS)
0 0

ηS
T

1+ 2ηµ2

S

T
0 βη

T

0 0 1
1+ηS

− 2ηµ2

S(1+ηS)

0 βη
T

ηS
T

1+ 2ηµ2

S

T




. (13)

Moreover, the characteristic equation of J(u∗,v∗,w∗,z∗) is given as

ρ4 + d1ρ
3 + d2ρ

2 + d3ρ+ d4 = 0,

where d1, d2, d3, d4 are given in (12). Finally, by applying Theorem 2.2, the one and only

positive fixed point
(

µ
r+µ2 , µ,

µ
r+µ2 , µ

)
remains stable locally asymptotically if the following

conditions are fulfilled:

|d3 + d1| < 1 + d4 + d2, |d3 − d1| < 2(1− d4), d2 − 3d4 < 3,

and

d4 + d2 + d24 + d23 + d24d2 + d4d
2
1 < 1 + 2d4d2 + d3d1 + d4d3d1 + d34.

3 Stability analysis of system (6)

Assume that J∗(u∗, v∗, w∗, z∗) be jacobian matrix of system (6) about
(

µ
r+µ2 , µ,

µ
r+µ2 , µ

)

then J∗(u∗, v∗, w∗, z∗) has the following mathematical form:

J∗(u∗, v∗, w∗, z∗) =




−r − µ2 − 2µ2

r+µ2 0 0

r + µ2 1− β − 2r
r+µ2 0 β

0 0 −r − µ2 − 2µ2

r+µ2

0 β r + µ2 1− β − 2r
r+µ2


 .
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Additionally, let F (ξ) = 0 be characteristic equation obtained from J∗(u∗, v∗, w∗, z∗) then

F (ξ) = 0 can be specified as follows

c4ξ
4 + c3ξ

3 + c2ξ
2 + c1ξ + c0 = 0, (14)

where




co = (1 + 2β) (r + µ2)
2
,

c1 = 2 (r(1 + r + (2 + r)β) + (2r(1 + β)− 1)µ2 + (1 + β)µ4) ,

c2 = 1− 2β + r(4 + r + 4β) + 2(r + 2β)µ2 + µ4 + 4r2

(r+µ2)2
+ 4r(−1+β)

r+µ2 ,

c3 = 2
(
−1 + r + β + µ2 + 2r

r+µ2

)
,

c4 = 1.

(15)

Now, by using Routh-Hurwitz stability criteria for four dimensional system we have the

following Routh array [20]:

Ra =




c4 c2 c0 0
c3 c1 0 0

c2c3−c1c4
c3

c0 0 0
−c0c23+c1(c2c3−c1c4)

c2c3−c1c4
0 0 0

c0 0 0 0




,

where ci’s for i = 0, 1, 2, 3, 4 are given in (15). For stability of system (6) about(
µ

r+µ2 , µ,
µ

r+µ2 , µ
)
, it is necessary that all the elements in column one of Ra have same

sign [20]. Hence, we have the following result for the local stability of system (6) about(
µ

r+µ2 , µ,
µ

r+µ2 , µ
)
.

Theorem 3.1. [20] Assume the fourth degree characteristic equation

c4ξ
4 + c3ξ

3 + c2ξ
2 + c1ξ + c0 = 0, (16)

where c0, c1, c2, c3 and c4 are given in (15). Additionally, let ξ1, ξ2, ξ3, ξ4 are roots of (16)

and D2 be any open disk of radius one. Then, the necessary and sufficient conditions that

ξ1, ξ2, ξ3, ξ4 ∈ D2 are given as:





c0 > 0,

c3 > 0,

c1 (c2c3 − c1c4)− c0c
2
3 > 0,

c4 > 0.

(17)

Theorem 3.2. Assume the fourth degree characteristic equation

c4ξ
4 + c3ξ

3 + c2ξ
2 + c1ξ + c0 = 0, (18)
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where




co = (1 + 2β) (r + µ2)
2
,

c1 = 2 (r(1 + r + (2 + r)β) + (2r(1 + β)− 1)µ2 + (1 + β)µ4) ,

c2 = 1− 2β + r(4 + r + 4β) + 2(r + 2β)µ2 + µ4 + 4r2

(r+µ2)2
+ 4r(−1+β)

r+µ2 ,

c3 = 2
(
−1 + r + β + µ2 + 2r

r+µ2

)
,

c4 = 1.

(19)

Additionally, let ξ1, ξ2, ξ3, ξ4 are roots of (18) and D2 be any open disk of radius one.

Then, ξ1, ξ2, ξ3, ξ4 ∈ D2 if and only if β > 0, r > 0 and µ ≥ 1.

Proof. Assume that J∗(u∗, v∗, w∗, z∗) be the jacobian matrix of system (6) about (u∗, v∗,

w∗, z∗). In addition, suppose F (ξ) = 0 be the characteristic equation obtained from

J∗(u∗, v∗, w∗, z∗). Then, F (ξ) = 0 can be specified as follows

c4ξ
4 + c3ξ

3 + c2ξ
2 + c1ξ + c0 = 0, (20)

where c0, c1, c2, c3 and c4 are given in (19). Moreover, from J∗(u∗, v∗, w∗, z∗) we have





co = (1 + 2β) (r + µ2)
2
,

c1 (c2c3 − c1c4)− c0c
2
3 = −4(1 + 2β) (r(1 + r + β) + (2r + β − 1)µ2 + µ4)

2

+α1(α2 + c3α3),

c3 = 2
(
−1 + r + β + µ2 + 2r

r+µ2

)
,

c4 = 1,

(21)

with




α1 = 2 (r(1 + r + (2 + r)β) + (−1 + 2r(1 + β))µ2 + (1 + β)µ4) ,
α2 = −2 (r(1 + r + (2 + r)β) + (−1 + 2r(1 + β))µ2 + (1 + β)µ4) ,

α3 = 1− 2β + r(4 + r + 4β) + 2(r + 2β)µ2 + µ4 + 4r2

(r+µ2)2
+ 4r(−1+β)

r+µ2 .
(22)

Finally, if we have β > 0, r > 0 and µ ≥ 1 then we have

c0, c1 (c2c3 − c1c4)− c0c
2
3, c3 > 0.

Consequently, all the conditions of array (15) are satisfied. Which completes the proof of

theorem.

4 Neimark-Scaker bifurcation

Bifurcation analysis in discrete-time systems is a key attention of current studies due to

the complexity in these systems. Existence of bifurcation is occasionally disapproving in
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any mathematical model, because there might be unpredictability and annihilation due to

chaos [21]. In this part of article, we examine the parametric situations for the presence of

Neimark-Scaker bifurcation for one and only positive fixed point (u∗, v∗, w∗, z∗) of system

(8). In any time dependent mathematical system, when a specific parameter crosses its

critical value, numerous varieties of bifurcations arise from its equilibrium point. Several

dynamical properties of a structure can be deliberated due to occurrence of Neimark-

Scaker bifurcation. Bifurcation frequently arises when the permanence of a fixed point

deviates i.e., qualitative assets of a dynamical system amend. We deliberate Neimark-

Scaker bifurcation for solitary positive equilibrium point (u∗, v∗, w∗, z∗) of structure (8) by

means of an obvious standard for Neimark-Scaker bifurcation and taking η as a parameter

of bifurcation. Due to appearance of Neimark-Scaker bifurcation, locked invariant circles

are formed. Homogeneously, individual can catch some inaccessible orbits of periodic

performance along with paths that shield the invariant circle compactly. The bifurcation

may be subcritical or supercritical causing in a unstable or stable locked invariant curve,

correspondingly. In command to study the Neimark-Sacker bifurcation in system (8), we

have the next obvious standard of Hopf bifurcation [22]. By means of this standard one

can catch the presence of Neimark-Scaker bifurcation deprived of finding the eigenvalues.

Lemma 4.1. [22] Let Zk+1 = gr(Zk) be a discrete dynamical system of dimension n,

where r ∈ ℜ is bifurcation parameter. Let Z∗ be equilibrium point of mapping gr, and

characteristic equation of variational matrix J(Z∗) = [sij]n×n of n-dimensional function

gr(Zk) can be written as:

Fr(ξ) = ξn + d1ξ
n−1 + d2ξ

n−2 + ......+ dn−1ξ + dn, (23)

where, di = di(r, v), i = 1, 2, 3, ....., n and v is control parameter or any other parameter

which is to be determined. Furthermore, suppose that □±
0 (r, v) = 1, □±

1 (r, v), .....,□±
n (r, v)

be the progression of determinants defined by □±
i (r, v) = det(A1 ± A2), i = 1, 2, 3, ....., n,

where

A1 =




1 d1 d2 .... di−1

0 1 d1 .... di−2

0 0 1 .... di−3

.... .... .... .... ....
0 0 0 .... 1






425

and

A2 =




dn−i+1 dn−i+2 .... dn−1 dn
dn−i+2 dn−i+2 .... dn 0
.... .... .... .... ....
dn−1 dn 0 0 0
dn 0 0 .... 0




.

Furthermore, the following conditions are satisfied: ⋆1 Eigenvalue assignment:

□−
n−1(r0, v) = 0, □+

n−1(r0, v) > 0, Fr0(1) > 0, (−1)nFr0(−1) > 0, □±
i (r0, v) > 0, i =

n−3, n−5, ....., 1 or i = n−3, n−5, ....., 2 according to n is even or odd, respectively. ⋆2

Transversality condition:
[
d(□−

n−1(r,v))

dr

]
r=r0

̸= 0. ⋆3 Non-resonance condition: cos(2π
m
) ̸=

σ, or resonance cos(2π
m
) = σ, where m = 3, 4, 5, ...., and σ = −1 +

0.5Fr0 (1)□
−
n−3(r0,v)

□+
n−2(r0,v)

. Then,

there exist Neimark-Scaker bifurcation at r0.

Then, by taking η as bifurcation parameter and by using Lemma 4.1, we get the

following result related to the existence of Neimark-Scaker bifurcation.

Theorem 4.1. The one and only fixed point (u∗, v∗, w∗, z∗) of system (8) experiences the

Neimark-Scaker bifurcation, if the next conditions are fulfilled:




1± d4 > 0,
1− d4 − d2 − d3

2 + d4
3 − d4

2 (1 + d2)− d1
2d4 + 2d2d4 + d1d3 (1 + d4) = 0,

1 + d4 + d2 − d3
2 − d4

3 − d4
2 − d1

2d4 − d2d
2
4 − d1d3 (1− d4) > 0,

1 + d1 + d2 + d3 + d4 > 0,
1− d1 + d2 − d3 + d4 > 0,

(24)

where d1, d2, d3, d4 are provided in (12).

Proof. By using Lemma 4.1 for a discrete-time mathematical system of 4-dimension, we

have 



A1 =




1 d1 d2
0 1 d1
0 0 1


 ,

A2 =




d2 d3 d4
d3 d4 0
d4 0 0


 .

By using Lemma 4.1 for a discrete-time mathematical system of 4-dimension and taking

the characteristic equation (23) of system (8) about its one and only positive fixed point(
µ

r+µ2 , µ,
µ

r+µ2 , µ
)
, then we get the following inequalities and equalities:





□±
1 (η) = 1± d4 > 0,

□−
3 (η) = 1− d4 − d2 − d3

2 + d4
3 − d4

2 (1 + d2)− d1
2d4 + 2d2d4 + d1d3 (1 + d4) = 0,

□+
3 (η) = 1 + d4 + d2 − d3

2 − d4
3 − d4

2 − d1
2d4 − d2d

2
4 − d1d3 (1− d4) > 0,

Fη(1) = 1 + d1 + d2 + d3 + d4 > 0,
(−1)4Fη(−1) = 1− d1 + d2 − d3 + d4 > 0,

(25)
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which confirms the existence of Neimark-Scaker bifurcation in system (8) about(
µ

r+µ2 , µ,
µ

r+µ2 , µ
)
, whenever η is taken as bifurcation parameter.

5 Chaos control

In dynamical systems, it is preferred that the system be enhanced with respect to some

performance standard and chaos be avoided. In modern days, monitoring disorder and

chaos in discrete-time systems is a subject of boundless attention of various investigators

and applied approaches can be used in numerous fields, for example physics laboratories,

communications, turbulence and cardiology [23]. In discrete-time dynamical systems, con-

trol of chaos can be acquired by expending numerous approaches, namely, pole-placement

method [24], hybrid control technique [25], and state response control technique (OGY

method) [26]. For additional study of these chaos control approaches for discrete-time

schemes, we refer a bibliophile to [27-30] and references are therein. In this part of

manuscript, we simply concentrate on a generalized hybrid control approach [32], which

is centered on feedback control approach and parameter perturbation. In direction to

control the Neimark-sacker bifurcation in system (8), we use generalized hybrid control

approach [32]. Clearly, the modified hybrid control strategy [32] is very easy to apply

and efficient as compared to other control schemes. Moreover, it is applicable to almost

every type of discrete-time dynamical system and it has better results than other schemes

such as, larger length of controlled intervals, wider in application, and easy for computa-

tion [32]. Consider the following an n-dimensional discrete dynamical system:

sn+1 = g(sn, ω) (26)

where sn ∈ Rn, n ∈ Z and the bifurcation parameter for system (26) is ω ∈ R. Suppose

ω ∈ ℜ is parameter for which system (26) experiences the bifurcation. The purpose of

applying the generalized technique for controlling the bifurcation is to regain the maximum

range of stable region in (26) by reduction of length of unstable region. Hence, we apply

the following generalized hybrid control technique by applying state feedback along with

parameter

sn+k = θ3g(k)(sn, ω) + (1− θ3)sn (27)

where k ∈ N , and 0 < θ < 1 is control parameter. g(k) is kth iteration of g(.). For

θ = 1 one has the original system (26). Applying technique (27) on model (8) we get the
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following controlled model:

un+1 =θ3
(un + ηµ)

(1 + η (v2n + r))
+ (1− θ3)un,

vn+1 =θ3
vn + η (unv

2
n + run + βzn)

(1 + η(1 + β))
+ (1− θ3)vn,

wn+1 =θ3
(wn + ηµ)

(1 + η (z2n + r))
+ (1− θ3)wn,

zn+1 =θ3
(zn + η (wnz

2
n + rwn + βvn))

(1 + η(1 + β))
+ (1− θ3)zn

(28)

Furthermore, the variational matrix J∗ for (28) about (u∗, v∗, w∗, z∗) =
(

µ
r+µ2 , µ,

µ
r+µ2 , µ

)

is given as:

J∗ =




1 + θ3
(
−1 + 1

1+η(r+µ2)

)
− 2ηθ3µ2

(r+µ2)(1+η(r+µ2))
0 0

ηθ3(r+µ2)
1+η+βη 1− θ3 +

θ3
(
1+ 2ηµ2

r+µ2

)

1+η+βη 0 j11

0 0 j12 − 2ηθ3µ2

(r+µ2)(1+η(r+µ2))

0 βηθ3

1+η+βη

ηθ3(r+µ2)
1+η+βη 1− θ3 +

θ3
(
1+ 2ηµ2

r+µ2

)

1+η+βη




.

(29)

Where j11 =
βηθ3

1+η+βη
and j12 = 1+θ3

(
1

1+η(r+µ2)
− 1

)
. Finally, we have the following result

related to the local stability analysis of controlled system (28) about (u∗, v∗, w∗, z∗) =(
µ

r+µ2 , µ,
µ

r+µ2 , µ
)
.

Theorem 5.1. Consider the following biquadratic polynomial equation with real coeffi-

cients

ρ41 + d∗1ρ
3
1 + d∗2ρ

2
1 + d∗3ρ1 + d∗4 = 0, (30)

where (30) is obtained from J∗. Then, necessary and sufficient conditions that all the roots

of (30) lie inside the disk of unit radius are given as follows:

|d∗3 + d∗1| < 1 + d∗4 + d∗2, |d∗3 − d∗1| < 2(1− d∗4), d∗2 − 3d∗4 < 3,

and

d∗4 + d∗2 + d∗4
2 + d∗3

2 + d∗4
2d∗2 + d∗4d

∗
1
2 < 1 + 2d∗4d

∗
2 + d∗3d

∗
1 + d∗4d

∗
3d

∗
1 + d∗4

3.

6 Numerical Simulation

In this part of article the numerical study of dynamics of (8) is provided.



428

Example 6.1. Assume that r = 0.0698, β = 0.3469, µ = 0.97993 , u0 = 0.954166, v0 =

0.97993, w0 = 0.954166, z0 = 0.97993 and η ∈]0, 1]. Then, the mathematical system (8)

takes the following form:

un+1 =
(un + η0.97993)

(1 + η (v2n + 0.0698))
,

vn+1 =
vn + η (unv

2
n + 0.0698un + 0.3469zn)

(1 + η(1 + 0.3469))
,

wn+1 =
(wn + η0.97993)

(1 + η (z2n + 0.0698))
,

zn+1 =
(zn + η (wnz

2
n + 0.0698wn + 0.3469vn))

(1 + η(1 + 0.3469))
.

(31)

Additionally, in this case the one and only positive fixed point is
(0.954166, 0.97993, 0.954166, 0.97993). For aforementioned values of parameters one can
obtain the jacobian matrix J(0.954, 0.979, 0.954, 0.979) as follows:

J(0.954166, 0.97993, 0.954166, 0.97993) =




0.7576 −0.43873 0 0
0.22557 1.1133 0 0.07596

0 0 0.75761 −0.438739
0 0.07596 0.22557 1.11334


 .

The characteristic polynomial P (ρ) calculated from J(0.95416, 0.9799, 0.95416, 0.9799) is

given by

P (ρ) = 0.884894− 3.5178ρ+ 5.37959ρ2 − 3.74191ρ3 + ρ4. (32)

Moreover, roots of P (ρ) = 0 are given as

ρ1 = 0.897493− 0.28178ι, ρ2 = 0.897493 + 0.28178ι, ρ3 = 0.97346− 0.228858ι,

ρ4 = 0.97346 + 0.228858ι,

with |ρ3,4| = 1, |ρ1,2| ≠ 1, d1 = −3.7419, d2 = 5.37958, d3 = −3.5178, and d4 = 0.884893.
x




□+
1 (η) = 1 + d4 = 1.88489 > 0,

□−
1 (η) = 1− d4 = 0.115107 > 0,

□−
3 (η) = 1− d4 − d2 − d3

2 + d4
3 − d4

2 (1 + d2)− d1
2d4 + 2d2d4 + d1d3 (1 + d4) = 0,

□+
3 (η) = 1 + d4 + d2 − d3

2 − d4
3 − d4

2 − d1
2d4 − d2d

2
4 − d1d3 (1− d4) = 0.0761663 > 0,

Fη(1) = 1 + d1 + d2 + d3 + d4 = 0.00477238 > 0,
(−1)4Fη(−1) = 1− d1 + d2 − d3 + d4 = 4.52418 > 0.
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(a) (b)

(c) (d)

Figure 1. Bifurcation diagrams for system (8) for r = 0.0698, β = 0.3469, µ =
0.97993 , u0 = 0.954166, v0 = 0.97993, w0 = 0.954166, z0 = 0.97993 and
η ∈]0, 1]

Hence, all the conditions for existence of Neimark-sacker bifurcation is satisfied (see

Theorem 4.1). In this case the graphical behavior of each concentration variable is shown

in Fig.1. In Fig.2 some phase portraits are given for variation of η in ]0, 1[. Hence, it

can be easily seen that there exists the Neimark-sacker bifurcation when η certainly passes

through η = 0.310602 (see Fig. 2).

Example 6.2. Assume that η ∈]0, 1], r = 0.0698, β = 0.3469, µ = 0.97993 , u0 =

0.954166, v0 = 0.97993, w0 = 0.954166, z0 = 0.97993 and θ ∈]0, 1]. Then, the mathe-
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matical system (28) takes the following form:

un+1 =θ3
(un + η0.97993)

(1 + η (v2n + 0.0698))
+ (1− θ3)un,

vn+1 =θ3
vn + η (unv

2
n + 0.0698un + 0.3469zn)

(1 + η(1 + 0.3469))
+ (1− θ3)vn,

wn+1 =θ3
(wn + η0.97993)

(1 + η (z2n + 0.0698))
+ (1− θ3)wn,

zn+1 =θ3
(zn + η (wnz

2
n + 0.0698wn + 0.3469vn))

(1 + η(1 + 0.3469))
+ (1− θ3)zn.

(33)

(a) (b)

(c)

Figure 2. Phase portraits for system (8) for r = 0.0698, β = 0.3469, µ = 0.97993 ,
u0 = 0.954166, v0 = 0.97993, w0 = 0.954166, z0 = 0.97993 and η ∈]0, 1]

Additionally, in this case the one and only positive fixed point is
(0.954166, 0.97993, 0.954166, 0.97993). For aforementioned values of parameters one can
obtain the jacobian matrix J(0.954, 0.979, 0.954, 0.979) as follows:

J(0.95416, 0.97993, 0.95416, 0.97993) =




0.691371 −0.558636 0 0
0.270997 1.13617 0 0.0912651

0 0 0.691371 −0.558636
0 0.0912651 0.270997 1.13617


 .
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The characteristic polynomial P (ρ) calculated from J(0.954166, 0.97993, 0.954166,

0.97993) is given by

(a) (b)

(c) (d)

Figure 3. Controlled diagrams for system (33) for η ∈]0, 1], r = 0.0698, β =
0.3469, µ = 0.97993 , u0 = 0.954166, v0 = 0.97993, w0 = 0.954166, z0 =
0.97993 and θ ∈]0, 1]

P (ρ) = 0.873804− 3.41293ρ+ 5.20537ρ2 − 3.65508ρ3 + ρ4. (34)

Moreover, in this case the equilibrium point (0.954166, 0.97993, 0.954166, 0.97993) of sys-

tem (33) is stable for

0 < θ < 0.8809233539967847.

In this case the graphical behavior of each concentration variable is shown in Fig.3. Hence,

it can be easily seen that bifurcation is controlled for maximum range of controlled param-

eter θ for η ∈]0, 1] (see Fig.3). Moreover, in Fig.4 some phase portraits are given for

variation of θ in ]0, 1[. Hence, it can be easily seen that there exists the Neimark-sacker
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bifurcation when θ certainly passes through θ = 0.8809233539967847 (see Fig. 4). In ad-

dition, there is no chance of Neimark-sacker bifurcation for 0 < θ < 0.8809233539967847

(see Fig. 4(a-c)), and for 0.8809233539967847 ≤ θ < 1 the existence of Neimark-sacker

bifurcation in system (33) can be seen easily (see Fig. 4(d-f)).

Example 6.3. Assume that r = 0.0698, β = 0.3469, µ = 0.9999 , u0 = 1.0007, v0 =

0.97993, w0 = 1.0007, z0 = 0.97993. Then, the mathematical system (6) takes the following

form:

du

dt
=0.97993− uv2 − 0.0698u,

dv

dt
=uv2 + 0.0698u− v + 0.3469(z − v),

dw

dt
=0.97993− wz2 − 0.0698w,

dz

dt
=wz2 + 0.0698w − z + 0.3469(v − z),

(35)

(a) (b) (c)

(d) (e) (f)

Figure 4. Phase portraits for system (33) for η ∈]0, 1], r = 0.0698, β = 0.3469, µ =
0.97993 , u0 = 0.954166, v0 = 0.97993, w0 = 0.954166, z0 = 0.97993 and
θ ∈]0, 1]
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(a) (b)

(c) (d)

Figure 5. Plots of system (35) for r = 0.0698, β = 0.3469, µ = 0.9999 , u0 =
1.0007, v0 = 0.97993, w0 = 1.0007, z0 = 0.97993

Additionally, in this case the one and only positive fixed point is

(1.0007, 0.9793, 1.0007, 0.9793). For aforementioned values of parameters one can obtain

the jacobian matrix J(1.0007, 0.9793, 1.0007, 0.9793) as follows:

J(1.0007, 0.9793, 1.0007, 0.9793) =




0.505244 −0.990902 0 0
0.417249 1.26176 0 0.147812

0 0 0.505244 −0.990902
0 0.147812 0.417249 1.26176


 .

The characteristic polynomial P (ρ) calculated from J(1.0007, 0.9793, 1.0007, 0.9793) is

given by

P (ρ) = 1.09892− 3.692ρ+ 5.20237ρ2 − 3.53402ρ3 + ρ4. (36)

In this case the graphical behavior of each concentration variable is shown in Fig.5. More-

over, in Fig.6 some phase portraits are given for variation of r. Hence, it can be eas-

ily seen that there exists the system (35) remains stable about one and only fixed point
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(1.0007, 0.9793, 1.0007, 0.9793). In addition, a three dimensional phase portrait is given in

Fig. 6a.

(a) (b)

(c) (d)

Figure 6. Phase portraits for system (35) for r = 0.0698, β = 0.3469, µ = 0.9999 ,
u0 = 1.0007, v0 = 0.97993, w0 = 1.0007, z0 = 0.97993

Example 6.4. Assume that r = 0.01275, β = 0.3469, µ = 0.95993, u0 = 1.0007, v0 =

0.97993, w0 = 1.0007, z0 = 0.97993. Then, the mathematical system (6) takes the following

form:

du

dt
=0.97993− uv2 − 0.01275u,

dv

dt
=uv2 + 0.01275u− v + 0.3469(z − v),

dw

dt
=0.97993− wz2 − 0.01275w,

dz

dt
=wz2 + 0.01275w − z + 0.3469(v − z).

(37)

Additionally, in this case the one and only positive fixed point is

(1.0007, 0.9793, 1.0007, 0.9793). For aforementioned values of parameters one can obtain

the jacobian matrix
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(a) (b)

(c) (d)

Figure 7. Plots of system (5) for r = 0.01275, β = 0.3469, µ = 0.95993 , u0 =
1.0007, v0 = 0.97993, w0 = 1.0007, z0 = 0.97993

J(1.0007, 0.9793, 1.0007, 0.9793) as follows:

J(1.0007, 0.9793, 1.0007, 0.9793) =




0.506839 −1.0004 0 0
0.414595 1.26712 0 0.147812

0 0 0.506839 −1.0004
0 0.147812 0.414595 1.26712


 .

The characteristic polynomial P (ρ) calculated from J(1.0007, 0.9793, 1.0007, 0.9793) is

given by

P (ρ) = 1.1116− 3.72793λ+ 5.23903λ2 − 3.54791λ3 + λ4. (38)

In this case the graphical behavior of each concentration variable is shown in Fig.7. More-

over, in Fig.8 some phase portraits are given for variation of r. Hence, it can be easily

seen that there exists the Hopf bifurcation for system (5) about one and only fixed point

(1.0007, 0.9793, 1.0007, 0.9793) when the parameter r certainly passes through 0.01275. In

addition, a three dimensional phase portrait is given in Fig. 8a.



436

(a) (b)

(c) (d)

Figure 8. Phase portraits for system (5) for r = 0.01275, β = 0.3469, µ = 0.95993
, u0 = 1.0007, v0 = 0.97993, w0 = 1.0007, z0 = 0.97993

7 Conclusion

In this manuscript we have studied a two-cell joined cubic autocatalator chemical reac-

tion model [1]. Additionally, during the making of basic structure of model, feedback

in every cell is considered to be centered on the cubic autocatalator under the effects of

pooled-chemical estimations. We have considered the pairing among the cells through

autocatalyst B. We have discussed the local stability of continuous system (6) by using

Routh-Hurwitz stability criteria. Moreover, we discretize the model (6) by using Eu-

ler’s forward method and then by using a nonstandard difference scheme we obtained

a consistent discrete-time counterpart of four-dimensional cubic autocatalator chemical

reaction model (7). It is proved that when the pairing among the cells is taken through

autocatalyst B then the system (8) has only one fixed point. We have discussed the para-

metric conditions aimed at the local asymptotic stability of one and only positive fixed

point of system (8). It is proved that the system (8) experiences the Neimark-Sacker
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bifurcation for bifurcation parameter η at one and only positive fixed point by using

an obvious standard for Neimark-Sacker bifurcation. The discrete-time counterpart (8)

of original four-dimensional system (6) have shown chaotic dynamics at different stan-

dards of bifurcation parameter η. Furthermore, we have controlled the Neimark-Sacker

bifurcation and chaos by using a generalized hybrid control scheme, which is centered on

parameter perturbation and feedback control by taking θ as control parameter. Finally,

we provided some numerical examples to demonstrate theoretical consequences. From,

numerical study of (6) and (8) one can see that the system (6) remains stable for β, r > 0

and µ ≥ 1 whereas the system (8) remains unstable under these parametric conditions.

Moreover, through numerical study of system (8) there is no chance for the existence

of period-doubling bifurcation, which verifies the consistency of nonstandard difference

scheme [18] for mathematical system (6).
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