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Abstract

In the present paper we extend the exact solution previously obtained for the
heterogeneous catalytic reaction 2A+B2 → 2AB on small 2×2 domains, to arbitrary
lattice sizes (N ×N) and calculate the average number of reactive steps necessary
to poison the lattice first,< t >. We determine < t > as a function of N through
Monte Carlo simulations previously contrasted with the exact solution in 2 × 2
lattices. We show that < t > follows a power law with N , without appreciable
transient behaviors, and a scale factor (ν) dependent on the two parameters of the
model, the sticking coefficient probability s and the desorption probability pd. The
dependence of ν on both s and pd is determined.

1 Introduction

Catalytic reactions have been extensively studied by the surface science community mainly

on extended single crystal surfaces. Recent interest has turned to the analysis of reactions

in nanoscale systems, e.g., on supported metal clusters or on metal field emitter tips

(FET’s) with facet linear dimensions of 10 nm. In these systems, fluctuation effects occur

specifically due to their small size, and understanding the kinetics of the reactions becomes

of both theoretical and practical importance [1-6].

∗Email address: i irurzun@hotmail.com.ar

https://doi.org/10.46793/match.87-2.321H


322

In recent years we have made a considerable effort to develop analytical methods

to find exact solutions in small domains to different problems dealing with adsorption

processes in two-dimensional lattices [7-10,13,14]. In [9] we reported scaling behaviors

in random sequential adsorption (RSA) processes of β-bell particles (β > 1), related to

configurational correlations. This power-law behavior was observed, after a transient, at

large lattice sizes.. The heterogeneous reaction 2A + B2 → 2AB was exactly solved on

a small lattice in [11,12,15]. We considered a generic bimolecular Langmuir-Hinshelwood

reaction over a single-crystal catalyst and this model, which we designated AB2 model,

was exactly solved to calculate magnitudes such as the average reaction rate, the average

coverages, and the average deactivation time < t > (average number of reactive steps nec-

essary to poison the lattice first). The AB2 model includes adsorption and desorption of

the reactants, surface reaction between adsorbed species, and desorption of the products.

Diffusion processes of adsorbed species or interactions between adatoms have not been

included for simplicity [16-18]. This allows us to reduce the number of adjustable param-

eters of the model, although it does not alter the main achievement of the work, which

is predicting the general aspects of the solution in large domains from the exact solution

in small domains. Diffusion may be included, for example, by replacing the absolute cer-

tainty of whether one species (the mobile one) will be present or not in a neighboring site

with an average value inversely proportional to the species mobility.

The AB2 model has two parameters s and pd, which vary between 0 and 1, and all

the quantities of interest are expressed in terms of s and pd. For < t > we showed that

the dependence s and pd is polynomial and can be exactly calculated on a small 2 × 2

domain [12, 15]. In the present paper, we analyze the dependence of < t > on N > 2, and

show that < t > follows a scaling law behavior with a scale factor depending on s and

pd. We show that there are no transient behaviors to the scaling law, and therefore the

AB2 model can be solved exactly for any lattice size, knowing the exact solution in 2× 2

domains and the scale factor. The paper is organized as follows: in Section 2 a review of

the model reaction and its exact solution on a small lattice is given [11,12,15]; in Section

3 results of Monte Carlo simulations are presented, and then conclusions are summarized.

2 The Model

The heterogeneous reaction model proceeds through a Langmuir-Hinshelwood mechanism
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A(g) + ∗ −→ A∗ ka, s (1)

A∗ −→ A(g) + ∗ kd (2)

B2(g) + 2∗ −→ 2B∗ ka, s (3)

B∗ +B∗ −→ B2(g) + 2 ∗ kd (4)

A∗ +B∗ −→ AB(g) + 2 ∗ kr (5)

where ka, kd and kr are the rate constants for adsorption, desorption and reaction, re-

spectively, ∗ denotes a vacant site on the catalyst surface, and s stands for the sticking

coefficient probability. The subindex (g) represents a molecule in the gaseous phase, and

a superindex ∗ stands for adsorbed species. A molecules require single adsorption sites

in order to be adsorbed (see Eq.2 ), whereas B2 molecules require two neighboring lattice

sites to be adsorbed (see Eq.4 ). The reaction step, Eq. 6, requires the existence of two

neighboring sites occupied by different adsorbates. The desorption of B2 molecules is a

second-order process and requires the existence of two neighboring lattice sites occupied

by B∗ adsorbates.

In the adsorption steps, Eqs. 2 and 4, we introduced a sticking coefficient s, which is

the probability of a molecule to be adsorbed after the first impact on an adsorption site.

If the sticking coefficient is less than 1 (s < 1), there will be the possibility of finding

microstates with empty sites. The desorption steps, Eqs. 3 and 5, and the reaction step,

Eq. 6, are controlled by rate equations kd and kr.

The desorption probability pd is one of the adjustable parameters in our model and

defines the relative rates of desorption to surface reaction.

pd =
kd

kr + kd
(6)

Equal kd values were assumed for both species. Although this is not the most general

situation, it provides a simple illustration of the analytical method developed. Considering

different rates of desorption involves introducing an additional adjustable parameter, i.e.,

the transition probabilities between microstates will depend on three variables.

The second adjustable parameter in our model is the sticking coefficient s (variations

of ka are usually included in s variations). This parameter stands for the adsorption

probability of a gaseous molecule on the substrate surface, after the first impact. Again,
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equal initial partial pressures of the reactants were assumed to simplify the model by

decreasing the number of adjustable parameters to be used.

The exact solution of this model was obtained in [11], [12] on a 2× 2 lattice that was

assumed to be uniform. Periodic boundary conditions were imposed and equal values

of partial pressure were chosen for reactants A and B2 so that pA + pB2 = 1. With

these conditions there are 21 different microstates with degeneracies that have been both

determined in [11], and [12]. To calculate < t >, we must evaluate the probability of

arriving at microstate i in k steps without previously visiting a nonreactive microstate.

There is a probability Pij for the transition from states i to j, and the probability of

arriving first at microstate i in k steps is eik where

if k = 0,

ei0 = pi, i = 1, 2, ..., 21 (7)

if k > 0,

eik =
∑

j

ejk−1Pji (8)

The summation is restricted to reactive microstates because we are interested in know-

ing < t >, and its dependence on pd and s.

Let Uk be the probability of arriving first at a nonreactive microstate in k steps,

visiting only reactive states in the previous k − 1 steps,

U(k) =
∑

j∗
ej∗k (9)

where the summation is restricted to nonreactive microstates. The < t > is

< t >=
∞∑

k=0

kU(k) (10)

The standard deviation of < t >, σ is given by

σ =
∞∑

k=0

(k− < t >)2U(k) (11)
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Note that < t >, as defined by Eq. 10, is the average number of reactive states

necessary to poison the lattice first. As the reaction considers desorption processes, it does

no stop after this type of event and, therefore, the concentration of products fluctuates

over time.

The < t > is independent of the initial distribution of microstates, it is a characteristic

time of the reaction and its determination may be important when a constant flow of

products is required.

Figure 1 shows the dependence of < t > on s and pd, as was determined in [12].

Figure 1. Dependence of < t > on s and pd. Exact solution of the AB2 model on
a 2× 2 lattice with periodic boundary conditions [12].

3 Results and Conclusions

Monte Carlo simulations were performed to study the reaction characteristics on larger

lattices, and < t > was calculated in N ×N lattices, with 2 < N < 32.

As N increases, both < t > and σ (Eq. 11) become larger because the number

of reactive states increases. This results in a considerable increase in calculation time,

but also the fluctuations become larger, and therefore < t > must be calculated over a

considerable number of independent realizations. For N = 2, the average was performed

on 500,000 independent simulations, and the error in < t > was less than 0.05%. For

N = 16 this number was reduced to 50,000, still with good results, that is, the error in

the calculation of < t > was less than 0.2%. The computing time becomes prohibitive for

N > 32.
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In [12] we showed that the dependence of < t > on s and pd for arbitrary values of N

is qualitatively similar to that obtained analytically for the 2 × 2 lattice (Fig. 1); < t >

exhibits a maximum (< t >max) at s = sm and pd = pdm. In general, < t >max increases

with N, while sm and pdm both decrease with the increase of N . In this work we further

explore this dependence on N .

Figure 2 shows the < t > dependence on N for different values of s and pd. A finite

size scaling behavior is observed, which can be expressed in terms of N = 2 exact solution

as:

< t >N=< t >2

[
N

2

]v
(12)

Eq. 12 is valid because there are no appreciable transient behaviors toward the scal-

ing law. The scale factor v depends on s and pd and thus, given this dependence, the

AB2 model is exactly solved for arbitrary lattice sizes and any value of the adjustable

parameters.

Figure 2. Finite size scaling for <t>N
<t>2

at two different values of the adjustable
parameters (s, pd). Circles: s = 0, pd = 0, squares: s = 0.3, pd = 0.

Table 1 shows v as a function of s and pd as was obtained by adjusting Eq. 12 to the

Monte Carlo simulations by the least squares method as in Fig. 2.

The error indicated in parentheses affects the last significant digit of v, and is the

standard deviation calculated from an analysis of variance (ANOVA). The scale factor

v has a nonmonotonic behavior, strongly influenced by s and less by pd. Intermediate

values of s increase the number of possible ways in which adsorbates can be arranged
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Table 1. The values of v as a function of s and pd obtained by adjusting Eq. 12 to
Monte Carlo simulations. The errors appear in brackets.

pd \ s 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 2.9(1) 3.30(2) 3.8(2) 4.4(4) 4.7(5) 4.9(4) 4.8(2) 4.7(1) 4.7(1) 4.7(1) 4.5(1)
0.1 2.9(1) 3.27(2) 3.9(2) 4.5(5) 5.0(5) 5.1(4) 4.9(1) 4.73(2) 4.5(2) 4.4(3) 4.3(1)
0.2 2.9(1) 3.27(2) 3.9(2) 4.7(5) 5.3(5) 5.4(6) 5.2(3) 4.91(1) 4.5(2) 4.2(3) 4.0(1)
0.3 2.9(1) 3.27(2) 3.9(2) 4.8(6) 6(1) 6(1) 5.7(5) 5.2(1) 4.6(1) 4.5(3) 3.8(1)
0.4 2.9(1) 3.28(1) 4.0(3) 5.0(6) 6(1) 6(1) 6(1) 5.6(4) 4.8(1) 4.1(3) 3.6(1)
0.5 2.9(1) 3.29(1) 4.0(3) 5.1(7) 6(1) 7(1) 7(1) 6.0(5) 5.0(1) 4.1(2) 3.5(1)
0.6 2.9(1) 3.30(1) 4.0(3) 5.2(7) 6(1) 7(1) 7(1) 6.5(5) 5.3(3) 4.2(1) 3.4(1)
0.7 2.9(1) 3.34(2) 4.0(3) 5.4(8) 7(1) 8(1) 8(1) 7(1) 5.6(5) 4.2(1) 3.2(1)
0.8 3.0(1) 3.37(1) 4.1(3) 5.5(9) 7(1) 8(1) 8(1) 7(1) 6.0(5) 4.3(1) 3.1(1)
0.9 3.0(1) 3.44(1) 4.2(3) 5.8(9) 8(1) 9(1) 9(1) 8(1) 6.4(5) 4.5(3) 3.0(1)
1.0 3.0(1) 3.57(1) 4.5(2) 6.5(5)

on the surface, widening the distribution function of microstates. Though this scale

behavior was calculated only for < t >, it could depend only on the final distribution

of microstates, and be used for any magnitude associated with this reaction. Then one

should study the characteristics of the final microstate distribution. However, as the

size of the surface increases, the number of microstates increases dramatically, and their

analytical determination becomes extremely difficult. Alternatively, a similar behavior

could be expected for all the magnitudes related to the final distribution of microstates.

There are studies in progress at La Plata to unravel this challenge.
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