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Abstract 

Buchwald-Hartwig amination reaction is widely applied in synthetic organic chemistry, 

which faces tedious and complex experimental process. In 2018, an interesting yield 

prediction technique is proposed via machine learning (random forest) in Science. However, 

the method is based on point prediction with many feature descriptors. For tackling these 

problems, complements and improvements have been made from the perspectives of 

machine learning and statistics, including feature dimensionality reduction, distributed 

prediction and visualization, so as to provide accurate and reliable decision information. 

1  Introduction 

Chemical reaction research is often faced tedious experimental process and extensive data 
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research. Machine learning (ML) can not only solve these problems well, but also find the 

relationship between data in a large amount of chemical information and help researchers to 

make reasonable judgments and decisions. ML has been increasingly favored by many 

chemists and has made progresses in computer synthetic design system [1,2], such as 

chemical reaction performance prediction [3-8], drug research and development [9,10], 

auxiliary high-performance materials design [11], auxiliary inverse synthesis analysis [12-14], 

and screening target compound [15]. 

Coupling reaction is very important in organic synthesis, and its products are widely used 

in medicine, pesticide, natural products, and even advanced functional materials. The 

palladium-catalyzed cross coupling reaction is a kind of coupling reaction, which refers to the 

reaction with palladium compound as catalyst (mostly homogeneous catalyst). As early as 

1972, Richard F. Heck found that palladium could be used as a catalyst to realize the 

connection between carbon atoms under mild conditions [16]. Ei-ichi Negishi and Akira 

Suzuki further developed the methods of cross-coupling C-C atoms catalyzed by palladium in 

1977 [17,18] and 1979 [19,20], respectively, so that the substrates and product types of such 

chemical reactions were further expanded. These methods make it simple and efficient to 

make stable carbon atoms easily join together to form more complex molecules. With the 

advent of these cross-coupling methods, chemists were able to manipulate atoms and 

molecules at an unprecedented level. 

Palladium catalysis can not only realize the coupling reaction of C-C binding, but also 

realize the coupling reaction of carbon-heteroatom binding. The formation of C-N is an 

important field in modern organic synthesis. Amines and their derivatives, 

nitrogen-containing heterocycles, etc, can be prepared by forming C-N bonds. Many of them 

are compounds with biological and medicinal activities and some important intermediates.  

Buchwald-Hartwig amination reaction is an efficient and universal method for the synthesis 

of substituted aromatic amines and is also one of the research hot points in the field of organic 

synthesis of C-N bond catalyzed by palladium [21-24].  

In recent years, the development of ML algorithms provides a "shortcut" for 

Buchwald-Hartwig amination reaction to find the appropriate substrate and reaction 

conditions. This method has become an integral part of scientific inquiry in many disciplines 

and has also brought new opportunities for the development of organic chemistry. By 

screening or coding the information in the chemical system to form a certain expression of 
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chemical information, that is descriptor, the research in the chemical field can be transformed 

into a process of data processing, so as to reduce the dependence on personnel in a certain 

program. ML methods can mine the correlation of massive experimental data generated in 

chemical experiments, help chemists make reasonable analysis and prediction, and greatly 

accelerate the chemical research and development process. 

 

 

Figure 1. The reaction components of Buchwald-Hartwig amination reaction. Here Me is methyl, X is any 

halide, L is ligands, OTf is triflate, t-Bu is tert butyl, and i-Pr is isopropyl. 
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Doyle et al reported the prediction of Buchwald-Hartwig amination yield by random forest 

model [3]. They selected the Pd-catalyzed Buchwald-Hartwig reaction as test reaction for 

model development because of its broad value in pharmaceutical synthesis. Nevertheless, the 

application of this reaction to complex drug-like molecules remains challenging [25]. One 

limitation is the poor performance of substrates possessing five-membered heterocycles, such 

as isoxazoles. These heterocycles have drug-like characteristics but are underrepresented in 

successful drug candidates [26]. Thus, the author sought to use ML to predict the performance 

of the Buchwald-Hartwig reaction in the presence of isoxazoles. The database are 4608 

reaction data consisting of 23 isoxazole additives, 15 aryl and heteroaromatic halides, ligand 

of 4 palladium catalysts, and 3 base substrates. Figure 1 gives the reaction structure diagram 

similar to Doyle et al [3]. The author used 120 descriptors (atomic descriptors (64), molecular 

descriptors (28) and vibration descriptors (28)) as input and reaction yield as output to predict 

the yield using random forest model, and the predicted results were R2=0.92, RMSE=7.80. 

The interesting research provides a powerful tool for chemists to guide chemical synthesis 

methods and predict chemical reaction properties. 

However, the prediction of chemical reaction performance is limited to point 

estimation-based point prediction, which only depicts the average level of prediction results. 

Moreover, point estimation is an inference method that does not consider sampling error and 

directly replaces all indexes with sampling index. It is inevitable that there will be errors in 

directly replacing all indicators with sampling indicators. Apart from point estimation, interval 

estimation is also used in parameter estimation. Interval estimation is an inference method to 

estimate the possible range of all indicators according to sampling index and sampling error in 

sampling inference. In inferring all indicators from the sampling index, a certain probability is 

used to ensure that the error does not exceed a given range [27]. The range of the estimated 

value can be judged at a certain probability level, so as to understand the degree of 

aggregation and discrete of the sample sequence. 

Based on the above, we complements and improvements from another perspective that 

article by Doyle et al, which are mainly divided into the following aspects: 
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(1) the performance of ML model depends on the effective feature representation 

corresponding to the data itself, that is, a comprehensive and concise feature descriptor. Based 

on the 120 feature descriptors in Doyle [3], we propose a method to optimize feature 

descriptors to describe information with as few descriptors as possible. 

(2) we perform an interval prediction and a probability density curve fitting analysis of the 

yield prediction of the chemical reaction from a statistical perspective. 

Compared with Doyle [3], this paper aims to give a more concise and effective description 

of intelligent prediction of chemical synthesis reaction from the perspective of machine 

learning and statistics. The flowchart is shown in Figure 2. 

 

Figure 2. Flowchart of intelligent prediction of chemical synthesis reaction. 

2  Integrated feature selection based on importance and 

relevance 

Due to the high dimension of data itself, data should be screened before model training, and 

useful data should be selected as the input of the model. However, in the data selection, there 

is no strict conclusion about how much to choose and how to choose. Therefore, it is the 
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pursuit of the goal to use comprehensive and concise characteristic data to achieve the highest 

prediction accuracy. Therefore, we propose an integrated feature selection method based on 

importance and relevance for descriptor data of chemical reactions. 

In order to obtain more comprehensive feature information, we selected Between 

category to within-category sums of squares (BW), used to "score" the features through a 

certain index, and then the features were sorted according to the scores, and finally the Top 

K  features were selected as information features [28]. BW for a feature j , the score is 

defined as: 
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where j
x

.  is the average expression level of the j -th feature of all samples; kjx  is the 

average expression level of the j -th feature of all samples of the k -th class; i
l  is the class 

label of the current sample; (*)I  is a discriminant function used to determine which 

category the current corresponding sample belongs to. When the * logical expression is true, 

its value is 1, otherwise, it is 0. 

After the preliminary feature screening, there may still be a strong correlation between the 

features. Therefore, in order to obtain as few chemical descriptors as possible and achieve the 

highest prediction accuracy, we used Least Absolute Shrinkage and Selection Operator 

(LASSO) to screen the features obtained from the preliminary screening again to remove the 

correlation [29]. 

LASSO is a regression analysis method proposed by Tibshirani in 1996 [29], which can 

not only select variables, but also achieve regularization. The basic idea is to minimize the 

sum of squares of residuals under the constraint that the 1l  norm of the regression 

coefficient is less than a constant, so that some regression coefficients which are strictly equal 

to 0 can be generated. Let the data  d

iii RxNiyx  ,,...,2,1);,( , where ii yx , are respectively 

the regression quantity of the i-th observed value and the corresponding label,

T

d ),...,,( 21    is the regression coefficient vector, and 0  is the intercept. The 

objective function of Lasso is: 
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where   is the penalty parameter, which is the weight of the size of the coefficient and 

controls the degree of shrinkage. The larger   is, the greater the degree of contraction is, 

and vice versa. 

3  Quantile regression forest and kernel density estimation  

Nicolai Meinshausen proposed an interval estimation method named Quantile Regression 

Forest (QRF) [30], which preserves all observations of the node, not just the average, and can 

assess the distribution of conditions based on this information. According to the prediction 

interval, outliers can also be obtained. Probability density prediction can provide the complete 

probability density curve of the sample and provide more effective information to the 

researchers. Therefore, we select this model to predict the yield of chemical reaction. 

3.1  Quantile regression forest 

The core idea of quantile regression is to generalize from the mean to the quantile. The goal 

of least square regression is to minimize the mean square error (MSE), while the goal of 

quantile regression is equivalent to a weighted least square method [31]. The following type:
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where   is the quantile selected; iy  is the actual value of the sample i ; 
iŷ  is the 

predicted value; 
iŷ  is the predicted value of the i  samples in the   quantile. 

Nicolai Meinshausen proposed quantile regression forest algorithm in 2006 using the 

principle of quantile regression, the consistency of the algorithm is proved mathematically. 

One application of QRF is to construct prediction intervals ( )I x [30]. Let Y  be a 

real-valued response variable and X a covariate or predictor variable, possibly high- 

dimensional. The conditional distribution function F( )y X x  is given by the probability 

that, for X x , Y is smaller than y R , F( ) ( )y X x P Y y X x    . For a continuous 
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distribution function, the  -quantile ( )Q x  is then defined such that the probability of Y  

being smaller than ( )Q x  is, for a given X x , exactly equal to  . For each new data point 

X , a prediction interval of : 

 
(4) 

gives a range that will cover the new observation of the response variable Y  with high 

probability [30]. The steps of the algorithm are as follows: 

a) Grow k trees )( tT  , kt ,,1⋯ , as in random forests. However, for every leaf of every 

tree, take note of all observations in this leaf, not just their average. 

b) For a given xX  , drop x down all trees. Compute the weight ),( ti xw  of observation 

 ni ,...,1  for every tree as in: 
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all Ry , using the weights from Step b). 

3.2  Kernel density estimation 

Kernel Density Estimation (KDE), also known as Parzen window [32]. It is a very effective 

nonparametric estimator for the unknown density function. Suppose  Nixi ,,2,1   is the 

sample of random variable x , and  xf  is the probability density function of random 

variable x , then the kernel density estimation at the given point x  is expressed as: 
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among them, the h  is bandwidth, the n  is sample size and the  K  is kernel function. 
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Common kernel functions are: Uniform kernel, Epanechnikov kernel, Gaussian kernel 

and so on. Epanechnikov kernel is optimal in the sense of mean square error, and the 

efficiency loss is also small. Therefore, the kernel function selected in this paper is 

Epanechnikov kernel function, and its expression is: 

     11
4

3 2  uIuuK  (8) 

where  I  is the indicative function. 

Compared with the kernel function, the influence of bandwidth on the probability density 

function is greater. When the bandwidth h is small, the curve of kernel density estimation is 

not smooth and shows the multi-peak feature which the original probability density function 

does not have; When the bandwidth h is large, the KDE curve is smooth, but it is easy to hide 

the details. The average integral square error is used to measure the advantages and 

disadvantages of h , and the optimal bandwidth can be obtained when the minimum is. The 

formula is as follows: 

       dxxfxfEhMISE
2

ˆ   (9) 

For convenience, the integrated Intelligent Predicting Reaction Performance in 

Multi-Dimensional Chemical Space Using Quantile Regression Forest, the corresponding 

algorithm is given as follows and shown in Algorithm 1. 

Algorithm 1: The Intelligent Predicting Reaction Performance in Multi-Dimensional Chemical Space Using Quantile 

Regression Forest algorithm. 

Input: Feature-descriptor data： ],,,[],,,[ 21 VAM

T

m XXXXXXX  ⋯  where m represents the number of samples, 

and N represents the number of feature descriptors; 

MX ：Indicates the molecular descriptor data; 

AX ：Indicates the atom descriptor data; 

VX ：Indicates the vibration descriptor data. 
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Integrated feature selection based on importance and relevance 

1) By calculating the BW score for the 
VAM XXX ,, , the appropriate score threshold is selected for the filter 

descriptors, and obtain .,,
newnewnew
VAM XXX  

2) Further perform the LASSO algorithm based on the filtered data from 1) and the Y, to further remove the 

inter-data correlation 
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Quantile Regression Forest and Kernel Density Estimation 

1) Enter the YX new ,  into the QRF model: 

a) Grow k trees )( tT  , kt ,,1⋯ , as in random forests. However, for every leaf of every tree, take note 

of all observations in this leaf, not just their average. 
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b) For a given xX new ˆ , drop x down all trees. Compute the weight ),( ti xw  of observation  ni ,...,1
for every tree as in: 
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2) For any sample, the KDE function at its different quantile points is calculated: 
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where the h  is bandwidth, the  K  is kernel function:      .11
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Output: Different interval estimation results and the probability density curves for any sample.  

 
 

4  Evaluating indicators 

Point prediction indicators are generally used Mean Absolute Percent Error and Root Mean 

Square Error. The probabilistic prediction indicators are generally reliability indicators 

(prediction interval coverage) and clarity indicators (average width of forecast interval). 

Quantile Score (QS) [33] and Winkler Score (WS) were used to evaluate the probabilistic 

prediction effect of the model [34] in this paper. The QS synthetically considers the reliability 

index and the definition index, effectively solves the contradiction problem of high 

confidence level and narrow interval width, the smaller the QS, the better the probability 

prediction effect is. WS is the interval prediction index, the smaller the value, the higher the 

interval prediction accuracy. Through these two indicators, the predicted value of the original 

data obtained by the random forest was compared with the predicted value obtained by QRF 

based on the 21 descriptors obtained by re-screening, which verified the accuracy of the 

probabilistic prediction model proposed in this paper. The evaluation indicators appearing in 

this paper are explained as follows. 

(1) The R2 also called coefficient of determination, is also called the optimal degree of fit, 

and reflects the degree that the independent variable x  explains the changes in the 

dependent variable y . The closer to 1, the better the model fits. 
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represents the prediction of the model for the change of the y . 

(2) The RMSE (Root Mean Square Error) corresponding to the expectation of the square 

(quadratic) error. RMSE can accurately calculate the error size of the predicted results and the 

real results, and can guide our model improvement work such as tuning, feature selection, etc.  
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(3) The Quantile Score (QS) or pinball loss [33] considers reliability index and clarity 

index to evaluate the effect of probabilistic prediction, which can solve the contradiction 

between high confidence level and narrow interval width. The smaller the quantile fraction is, 

the better the effect of probabilistic prediction is. Such as:  
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where, Q is the set of quantiles; card(Q) is the number of quantiles; iy is the actual value of 

the i sample; 
iŷ  is the predicted value of the i sample of the quantile. 

(4) Winkler Score (WS) [34] is an interval prediction index, the smaller the value, the 

higher the interval prediction accuracy. For example: 
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where   11 , ii lu  are the upper bound and lower bound of the i  sample prediction interval at 

the confidence level 1  respectively; iy  is the actual value of the i  sample;   is the 

significance level. 
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5  Results and analysis 

5.1  Performance analysis of feature screen 

To obtain comprehensive and concise feature descriptor data, we propose an integrated feature 

selection method based on importance and relevance for descriptor data of chemical reactions.  

In order to obtain more comprehensive feature information, we selected BW is used for 

feature screening. The features are scored according to the BW indicators, ranked according 

to the scores, and the top features are selected. In order to get the comprehensive and concise 

feature description, we screen each type of feature (molecular, atomic and vibrational 

descriptors) separately. Different types of descriptors are calculated and sorted by BW 

importance score, and those feature descriptors larger than the threshold are selected based on 

the appropriate threshold. And then, the selected descriptors are imported into the Random 

Forest [35] model for prediction. The results are shown in Figure 3A, which show that the 

number of feature descriptors will change with the threshold, and the prediction accuracy will 

also change. The experimental results show that 38 feature descriptors are selected when the 

threshold is 1, and the prediction result is the best (R2 is the biggest, and RMSE is the 

smallest.) 

From a statistical point of view, we hope to eliminate the possible correlation between 

features on the premise of ensuring the prediction accuracy. It is found that there are still some 

correlations among the 38 feature descriptors by calculating the Pearson correlation 

coefficient. Hence, LASSO, a classic correlation removal method in statistics is selected to 

further screen descriptors and get a more concise representation. By screening, 21 descriptors 

are reselected. Correlation visualization results for 120, 38 and 21 descriptors are shown in 

the heat map in Figure 3B. As can be seen from Figure 3B, the correlation between the 

descriptors is obviously removed after feature selection. Random forest is adopted to verify 

the performance of the 21 descriptors. Experiment result (R2=0.92±0.005, RMSE=7.46±0.3) 

shows that the 21 descriptors can really represent the original descriptor information and still 

reach good prediction. Therefore, all experiments are all based on the 21 descriptors in view 

of simplicity and effectiveness. 
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Figure 3. Feature descriptor filtering. (A) Results of random forest prediction at different thresholds of BW 

importance. (B) Correlation visualization results for 120, 38 and 21 descriptors (from left to 

right). 

5.2  Yield prediction analysis based on QRF and KDE 

As shown in Figure 4A, the 90%, 95% and 99% prediction intervals of the model prediction 

after feature screening. (In the QRF model, ten-fold cross validation is used for prediction, 

number of trees in the model is K=1000 and other parameters select the default value.) The 

prediction intervals cover all the observations with a high probability of 96.21%, 98.48% and 

100%. There are two main observations: as expected, most of the forecast results are within 

the prediction range; the lengths of prediction intervals vary greatly. Some observations can 

thus be predicted much more accurately than others, indicating the accuracy of the model 

prediction. In addition, the interval widths of 90%, 95% and 99% prediction interval increase 

gradually. The main reason is that the prediction interval will gradually widen with the 

increase of confidence level, and the accuracy of interval estimation will gradually decrease. 

And vice versa, the narrower the width of the prediction interval is, the more reliable the 

A 

B 
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prediction is [30]. Figure 4B shows the complete probability density curve of any two 

experimental yields obtained by QRF. It can be seen that the actual values are near the peak 

value of the curve, which indicates that the predicted values of the yield with higher 

probability are very similar to the actual values. The accuracy of this model is reflected. 

The probabilistic prediction indicators are generally reliability indicators (prediction 

interval coverage) and clarity indicators (average width of forecast interval). QS and WS were 

used to evaluate the probabilistic prediction effect of the model in this paper. Through these 

two indicators, the predicted value of the original data obtained by the random forest was 

compared with the predicted value obtained by QRF based on the 21 descriptors obtained by 

re-screening, which verified the accuracy of the probabilistic prediction model proposed in 

this paper. Figure 4C shows the probability errors of the two models at different confidence 

levels. The QS values after feature screening are significantly smaller than the QS values of 

the original 120 features, indicating that the descriptor probability prediction effect after 

screening is better; at three higher confidence levels (90%, 95%, 99%), the WS values after 

feature screening are all smaller than those before screening, and 90% of the prediction range 

results are the best, so in the out-of-sample prediction experiment, we all choose 90% 

prediction interval. 

 

 

  

B 
C 

A 



313

 

 

 

 

Figure 4. Predicted results. (A) 90%, 95%, 99% prediction intervals of 21 descriptors after screening. The percentage of 

observations above the upper bound (below the lower bound) of the different prediction intervals is shown in the 

upper left corner (lower left corner) of each graph. (B) Probability density estimation results (left :50 

experiments, right :292 experiments). (C) Results of evaluation indicators. (Left: QS before and after feature 

screening, right: WS of different quantile before and after feature screening, quantile: 0.90, 0.95, 0.99). (D) 

Schematic illustration of the external prediction structure. (E) Out-of-sample prediction of seven additives (The 

randomly selected additives here are 14th, 15th, 16th, 18th, 19th, 21st, and 22nd). All kinds of additive 

out-of-sample prediction take 90% prediction interval as an example. 

For further verify the accuracy of model prediction and implement out-of-sample 

prediction. Figure 4E shows the results of out-of-sample prediction. The randomly selected 

additives here are 14th, 15th, 16th, 18th, 19th, 21st, and 22nd, and the structure diagram is 

shown in Figure 4D. Above the interval, the predicted value is higher than the true value, the 

predicted value below the interval is lower than the true value, and only a few observations 

fall outside the 90% prediction interval, indicating that there is no significant systematic bias 

D 

E 
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between the out of sample prediction and the model prediction, the model can predict the 

effect of new isoxazole or aryl halide structures on the results of Buchwald-Hartwig. It also 

shows that the effect of these substituents on the reaction results can be well captured by the 

selected 21 descriptors, and the effectiveness of the filtered descriptors is proved from the 

side.  

QRF can be used to test outliers in addition to establishing prediction intervals to provide 

effective decision information. In the Figure 4A (taking the first picture 90% prediction 

interval as an example) there are 3 outliers above the upper boundary of the interval and 14 

outliers below the lower boundary of the interval. The reaction conditions of these 17 outliers 

are shown in Table 1. (The numbers in the table correspond to the order of reaction types in 

Figure 1.) 

Capturing outliers can be used to analyze data in depth. Researchers can further analyze 

the reaction conditions corresponding to outliers, and further experiments can be conducted to 

analyze whether the reflected situation is a systematic deviation or an experimental error, so 

as to provide more help for practical work. 

Table 1. Outlier reaction conditions. 

Outliers Additive Aryl Base Ligand 

Above the 

upper boundary 

19 7 1 3 

20 7 1 3 

21 12 1 4 

Below the  

lower boundary 

 

20 4 2 3 

20 4 3 3 

22 4 1 3 

22 4 2 3 

22 4 3 3 

19 13 3 4 

20 4 2 4 

20 13 2 1 

20 13 3 4 

21 4 1 4 

22 4 1 1 

22 7 1 4 

22 4 1 4 

22 4 2 4 

When the outlier is removed, we predict the Buchwald-Hartwig amination reaction yield 

using Random Forest algorithm. The results as shown in Table 2, when the outlier is removed, 

the prediction accuracy is improved to a certain extent, both before and after the feature 

screening. 
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Table 2. Response yield prediction results before and after outlier removal. 

Data Whether to remove the outlier point R2 RMSE 

Source data  
No 0.920 7.80 

Yes 0.922 7.59 

21 descriptors data 
No 0.929 7.20 

Yes 0.933 7.06 

By analyzing the characteristics of the 17 outlier points, we also found that: ligand_ 

*C7_electrostatic_charge has large values; In the reactions corresponding to the outlier point, 

the Aryl corresponds to the less lively halides, and the Additives are mostly concentrated in 20, 

21 and 22. 

 

6  Conclusions 

QRF infer the full conditional distribution of a response variable. This information can be 

used to construct prediction intervals and detect outliers in the data. A quantile regression 

forest probability density prediction model proposed in this paper can obtain the prediction 

intervals of Buchwald-Hartwig amination yield under different quantile, and the probability 

density curve to be predicted can be obtained by probability density estimation method. It can 

provide effective decision information for selecting more suitable reaction conditions. 

Researchers can apply predictions of different quantile to the actual situation. For an unknown 

and harsh reaction condition, whether further experimental analysis with real compounds is 

needed depends on whether the prediction results are within the prediction range under the 

prediction of higher quantile, if in, further chemical analysis can be carried out. Thus, it is 

possible to efficiently determine whether an unknown reaction condition can be used for 

further analysis. The detection of outliers and the effective out of sample prediction provide 

more possibilities for researchers in practical applications. 
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