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Abstract 

Minimum Spanning Tree (MST) is a well-known clustering algorithm that provides a 

graphical tree representation of the objects in a data set by exploiting local information to 

link each pair of similar objects. The a-posteriori analysis of this tree in terms of nodes and 

edges provides the basis to derive simple classifiers, namely semi-supervised classification 

approaches based on the minimum spanning tree approach. In this work, we propose 

different metrics to evaluate the MST ability to group objects of the same a-priori known 

classes. The classification capability of the proposed approach, using 13 different distance 

measures, was compared with that of classical supervised classification approaches such as 

N-Nearest Neighbour (N3), Binned Nearest Neighbour (BNN), Partial Least Squares-

Discriminant Analysis (PLS-DA), K-Nearest Neighbour (KNN), exponentially weighted 

K-Nearest Neighbour (wKNN) and Support Vector Machine with radial functions (SVM-

RBF) on 31 data sets. The proposed approach resulted to be competitive and comparable 

with the considered classical supervised classification methods. Finally, we analysed the 

role of the 13 different measures in terms of performance and percentage of not-assigned 

objects. 

 

1 Introduction 

In classification problems, a typical data set consists of input variables (predictors) and one or 

more categorical variables (classes). The identification of functional relationships between 

predictors and categorical response is the aim of the so-called supervised pattern recognition 
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methods (or simply, classification methods). These methods are applied in different scientific 

fields such as analytical chemistry, food chemistry, toxicology, QSAR/QSPR, image analysis, 

process and environmental monitoring, social, medical and economical sciences.  

Given a set of training data that belong to G classes, classification methods address the problem 

of assigning a new object to one of the G classes on the basis of a classification rule, which has 

been inferred from the training data whose memberships to the G classes are known [1]. 

Existing classification algorithms are based on a variety of approaches that confer them 

different characteristics and properties [1–3]. We can distinguish (i) probabilistic methods, such 

as Kernel Density Estimators, (ii) methods intrinsically based on Principal Components 

Analysis, such as SIMCA, (iii) methods based on discriminant analysis, such as, for example, 

linear, quadratic, regularized discriminant analysis, (iv) methods based on local analysis of the 

variable space, such as, for example, KNN and N3, and so on, (v) fuzzy methods, where to each 

object is assigned a probability to belong to each class and (vi) classification tree methods, such 

as CART, where the classification proceeds hierarchically by successively binary splitting of 

the objects and producing easily interpretable graphs. All these methods are supervised 

classification methods, where the knowledge of the class partition of the objects influences the 

model development. 

Minimum Spanning Tree (MST) is a clustering algorithm that provides a graphical tree 

representation of the objects in a data set by exploiting local information to link each pair of 

objects, namely analysing the object distance matrix. 

The idea to use the Minimum Spanning Tree (MST) to perform classification was pursued by 

different authors, for instance, by applying to the MST graph some rules to classify labelled 

vertices. 

In the paper of Zhou et. al. [4] the MST is combined with the KNN method. The assignment is 

initially performed by analysing the classes of the first neighbours; in case of tied results, the 

next paths are also taken into account for all the objects and so on, until the object is classified 

by majority voting. The MST is built by the Euclidean metric and allows to predict one 

unknown sample at a time. Juszczak et al. [5] applied the MST approach to asymmetric one-

class problems, thus, a weighted spanning tree is built only using the training  objects of the 

class of interest. Also in this case, the method exploits the Euclidean metric as in several 

contributions provided by Vitale, Cesa-Bianchi and co-workers [6]. Chakrabarty and Roy [7] 

proposed an optimized KNN classifier based on the MST algorithm to automatically classify 

email documents with an initially unknown number of clusters filtering the emails in a two-

class problem by using the Jaccard-Tanimoto metric.  
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La Grassa et al. [8] also worked on one-class problems combining MST and KNN in different 

ways and performing an extended comparison with other classifiers on 6 data sets. Also in this 

case, the MST is built by the Euclidean metric. Yang-Min Zhang et al. [9] proposed a different 

algorithm to obtain a tree from a graph minimizing the sum of weights of the cuts, where the 

cut is the link between two vertices having different labels.  

In all the cited works, only a few numbers of data sets were used for comparisons with other 

approaches and the role of the different metrics was never evaluated. 

In this paper, a classification approach is proposed, namely a semi-supervised classification, 

based on the a-posteriori analysis of a Minimum Spanning Tree (MST) obtained by using 

different rules for links and nodes of the graph and different metrics. 

An example of unsupervised classification methods was already proposed in literature, such as 

the counter propagation artificial neural networks (CP-ANN), based on the self-organizing 

maps (SOM), also called Kohonen maps [10]. In this method, the objects are clustered into a 

map of N p-dimensional neurons, where p is the number of input variables of each object and 

N the size of the map. During the clustering procedure, the class information of each object is 

projected into an output map (Grossberg layers), without any feedback on the map.  

To reach our goal by using MST for classification purposes, two approaches are proposed, 

which, after the building of the MST graph, analyse the graph topology to obtain measures of 

the MST classification performance from a link- and node-based points of view. 

 

2 Theory 

The Minimum Spanning Tree algorithm provides a bi-dimensional plot of the n objects 

described by their pairwise distance matrix D (n   n).  

The graph is constituted by a set of straight-line segments joining the n objects such that: 

1. every point is connected to every other point by a set of lines (a path); 

2. each point is visited by at least one line, its vertex degree is at least equal to 1; 

3. no closed circuits appear in the structure, and thus, it is a tree. 

 

Among the several algorithms proposed to build a MST, the most popular is an iterative 

algorithm where, at any step, the segments belong to two sets A and B: set A contains the set 

of segments (i.e., object pairs, the pairwise links) assigned to the MST (initially it is empty), 

and set B, those not yet assigned to MST. Then, the algorithm assigns to A the shortest distance 
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in B that does not form a closed loop with any of the segments already present in A. The 

iterations stop when the set A contains n – 1 elements (links). 

Then, the MST can be thought of as a distance selection approach, where only a subset of n – 

1 distances are used over the n  (n – 1)/2 distances, that is, a percentage equal to 2/n is used to 

build the tree. 

As each segment joins a pair of objects that are the most similar between them, MST is used, 

de facto, as clustering method. For the same data set, several MSTs can be obtained for metrics 

calculated by different distance measures. 

 

2.1 Link-based strategy 

Once the MST was calculated, the knowledge of the classes to which the objects belong to 

allows to (1) assess the discriminant power of the MST and (2) use MST as a classification 

method. To reach this purpose, a measure of the MST discriminant power is needed. 

The first step is based on a very simple rule: each link of two objects belonging to different 

classes is considered an error, except G – 1 links which is the minimum number of links to 

maintain a tree structure having G classes. Mathematically, it is defined as the following. 

Let A be the n  n symmetric binary matrix (i.e., the adjacency matrix) containing the links of 

each object with the other ones. The overall tree classification rate (T) can be defined as:  

 
1

1 1

1
1

T 1
0

n n

ij ij
i ji j i

ij

i j

a G
if c c

if c cL



  

   


    


 
                                                  (1) 

where c are the classes of the objects and L the total number of links, which is equal to n – 1 in 

the MST; ��� is the entry of A and it is equal to 1 if objects i and j are connected, 0 otherwise. 

The Dirac delta function ���  is equal to 1 if the classes of the j-th and i-th objects differ, and 0 

otherwise. In other words, T provides the accuracy of the MST partition where the second term 

of Eq. (1) is the fraction of the links between objects belonging to different classes, which 

represent the errors in the MST partitions. As already explained above, the term G –1 is the 

minimum number of transition links between objects belonging to different classes for data 

partitioned into G classes. An overall tree classification rate equal to 1 indicate perfect partitions 

of the classes by MST. 

To get a classification rate measure for each class (or class sensitivities) we considered the same 

very simple rule: each link of the obtained tree, where the two objects belong to different 

classes, is considered as error.  Considering n objects partitioned into G classes, a link-based 
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confusion matrix C (G  G) can be constructed where all the diagonal elements are filled by 

the number of links between objects belonging to the same class. All the links between objects 

belonging to two different classes are stored in the corresponding off-diagonal cell with a score 

of 0.5, in a symmetric way.  Finally, a quantity of 0.5 is subtracted to all the off-diagonal 

elements greater than zero of the link-based confusion matrix.  This symmetric correction plays 

the same role of the G – 1 correction term in the formula (1). 

More formally, the diagonal values ��� (i.e., correct assignations for the g-th class) are defined 

as: 

               
1

1

0

n
j

gg ij jg jg

i g j j

if c g
C a

if c g 


    


                                                                  (2) 

where �� is the class of the j-th object. The Dirac delta function ��� is equal to 0 if the class of 

the j-th object differs from g, and 1 otherwise. The off-diagonal values of C are defined as: 

                 0 5gg g g ij

i g j g

C C a . g g 
 

                                                                         (3) 

From the link-based confusion matrix C, traditional classification metrics can be computed. 

The MST ability to identify the g-th class can thus be quantified by the sensitivity (	
�) value 

as: 
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and the total sum of the entries equal to the number of links can be expressed as: 

1

1
G

g

g

RS n


                              (7) 

Finally, a link-based Non-Error Rate (L) is computed as the average of the class sensitivities: 

1

G

g

g

Sn

L
G




                        (8) 

For example, for a data set constituted by 30 objects in class C1 and 20 objects in class C2 and 

a perfect MST (i.e., a tree able to separate the two classes), the following confusion matrix is 

obtained: 
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�29 0.5
0.5 19�, which is successively corrected subtracting 0.5 from the off-diagonal values to: 

�29 0
0 19�. In this case, the 48 total links constituted by the objects belonging to the same class 

are recognized and both L and T measures are equal to 1. 

 

2.2 Node-based strategy 

Changing perspective from links to nodes allows to calculate a membership matrix M (n x G) 

and to assign a new object to a class by a majority voting criterion. Starting from the adjacency 

matrix A (n x n), the elements of the membership matrix are calculated as: 

1
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where cj is the class the j-th object linked to i belongs to. 

If the mi membership vector has a unique highest value, the object is assigned to the 

corresponding class, otherwise is considered not-classified. 

However, to take into account the real space defined by distances, a new membership matrix 

M (n x G), which replaces the previous one, can be obtained. In other words, the spanning tree 

defines the topology, and the distances are used to classify the objects using the given topology. 

This choice allows to take full advantage of the peculiarities and fuzzy differences of the metrics 

used.  

Starting from the adjacency matrix A, the elements of the membership matrix are calculated as: 
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where dij is the actual distance between objects i and j. 

Then, each object is assigned to the class when the two highest membership values differ more 

than a membership threshold t, here selected as 0.05, otherwise the object is considered not-

classified, or more formally: 

1 21 ig igi g if m m t                           (12) 

where g1 and g2 are the classes for which the i-th object has the first and second maximum 

membership values. 

A threshold equal to zero is also taken into account to obtain a crisp classification rule. 
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This approach with a distance-based membership matrix can be considered as a variant of the 

exponentially weighted KNN (wKNN) [11], where the variable k values are given by the tree 

topology, that is by the vertex degree of each object. This approach is different from the original 

wKNN method (where, as usual, the optimal k value is searched for by validation) being the 

number of k neighbours assigned a priori by the tree topology, and thus not dependent of the 

knowledge of the classes. The wKNN method has been demonstrated to perform as the classical 

KNN method and, in some cases, to slightly outperform it [3]. 

Therefore, from the membership function, an object-based confusion matrix C can be defined 

with diagonal and off-diagonal values are defined as:  
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Similarly, to L, also in this case sensitivities and a node-based non-error rate with threshold t 

(NERt) can be defined in the classical way as: 

gg

g

g

c
Sn

n
                         (15)  

1

G

g

g

t

Sn

NER
G




                           (16) 

where 
� is the number of object belonging to class g. In the following analysis we 

considered two values for t: 0 (NER(0)) and 0.5 (NER(0.05). 

 

3 Prediction 

The proposed approaches allow also predicting the class of new objects by (i) adding the object 

to the training set, one at a time, (ii) calculating the distance matrix, (iii) calculating the MST 

of n + 1 objects and (iv) evaluating its class by a link or node-based strategy.  

An example of prediction for a new object is given in Figure 1. In the link-based strategy the 

number of links to the objects belonging to different classes is counted and the unknown object 

is assigned to the class having the maximum number of links (e.g., a and c in Figure 1). In this 

case, an object can also result as unclassified when the number of links with two different 

classes is equal (cases b and d in Figure 1). The prediction algorithm can be considered as a 

KNN classification method with a variable number of k, where k is obtained by the topological 
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structure of the spanning tree, i.e., each vertex is characterized by the number of its links, or, in 

other words, by its vertex degree. 

 

 

Figure 1. Examples of prediction of a new object (in grey colour) in a MST with two classes (white and 

black objects). 

 

The case of type b in the MST graph is usually very common and, consequently, the number of 

not-classified objects is often quite high. To avoid this drawback, in the node-based strategy, 

we took into account the real space defined by the distances and introducing a threshold t. Also 

in this case, the additional presence of not-classified objects is provided.  For the cases a and c, 

the membership is equal to 1, while, for cases b and d, the calculated maximum membership 

value is considered, according to formula (11). 

Moreover, selecting as a distance threshold the maximum distance among the MST links of the 

training set, that is coming back from the topological space of MST to the real space of the 

distances, the MST can be transformed into a semi-supervised modelling method. In this case 

a new object will be excluded from the applicability domain if the minimum distance of its links 

is greater than the distance threshold. 

 

4 Data sets 

The 31 data sets used for evaluating the performances of MST as classification method are 

collected in Table 1. The 13 distance measures studied in this work are collected in Table 2. All 

the distances are calculated after a range scaling of the data. 

 

Table 1. Characteristics of the considered benchmark data sets. In the different columns, the 

data set name with the original reference, the total number of objects (N.obj.), variables (N.var.) 

and classes (N.class) are reported; in column rel. dev.%, the relative deviation class size 

obtained as percentage of the relative difference between the number of objects belonging to 
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the biggest class and those belonging to the smallest class; in the last column the class partitions 

are reported. 

Id Data set 
N. 

obj. 

N. 

var. 
N. class rel. dev.% class partition 

1 IRIS [12] 150 4 3 0.0 50  50  50 

2 WINES [13] 178 13 3 32.4 59  71  48 

3 PERPOT [14] 100 2 2 0.0 50  50 

4 ITAOILS [15] 572 8 9 87.9 25  56  206  36  65  33  50  50 51 

5 SULFA [16] 50 7 2 61.1 14  36 

6 VINEGARS [17] 66 20 3 75.8 33  25  8 

7 CHEESE [18] 134 21 4 72.1 68  19  27  20 

8 OLITOS [19] 120 25 4 78.0 50  25  34  11 

9 COFFEE [20] 43 13 2 80.6 36  7 

10 DIGITS [21] 500 7 10 27.6 47  42  49  57  54  42  58  45  56  50 

11 VEGOIL [22] 83 7 4 73.0 37  25  11  10 

12 CRUDEOIL [23] 56 5 3 81.6 7  11  38 

13 APPLE [24] 508 15 2 64.5 133  375 

14 TOBACCO [25] 26 6 2 0.0 13  13 

15 METHACYCLINE [26] 22 4 2 16.7 12  10 

16 DIABETES [27] 768 8 2 46.4 268  500 

17 THIOPHENE [28] 24 3 3 0.0 8  8  8 

18 SAND [29] 81 2 2 27.7 34  47 

19 HEARTDISEASE [30] 462 7 2 47.0 160  302 

20 BIODEG [31] 837 12 2 48.6 553  284 

21 SCHOOL [32] 85 2 3 16.1 31  28  26 

22 ORUJOS [33] 120 9 2 69.6 28  92 

23 HIRSUTISM [34] 133 7 2 75.7 107  26 

24 SUNFLOWERS [35] 70 21 (5) 2 40.9 44  26 

25 BLOOD [36] 748 4 2 68.8 178 570 

26 VERTEBRAL [37] 310 6 2 52.3 210 100 

27 BANK [32] 46 4 2 16.0 21 25 

28 MEMBRANE  36 2 3 0.0 12 12 12 

29 HEMOPHILIA  [38] 75 2 2 33.3 30 45 

30 FISH [39] 27 10 2 7.1 13 14 

31 SEDIMENT [40] 1413 9 2 84.0 1218 195 

 

Table 2. The definitions of the 13 distances used in this work The symbols x and y represent two objects 
and p is the total number of variables. 
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5 Software 

The software code for the calculation of MST was developed by the Authors in MATLAB [41], 

as well as the software code for the evaluation of the link and node measures. For the MST 
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graphs, the free available software Pajek [42] was used. Moreover, a toolbox, designed in 

MATLAB, is also available which allows to compare the 13 distances and different data scaling 

methods on custom data providing a tree graph and predictions for a new object 

(https://michem.unimib.it/download/matlab-toolboxes/mst-viewer-for-matlab/). 

 

6 Results and discussion 

The performances in terms of the two link-measures (T and L), and of the two node measures 

(NER(0) and NER(0.05)) for the 31 data sets and the considered 13 distance measures are 

collected in Appendix A, Appendix B, Appendix C and Appendix D, respectively. In Appendix 

E, the percentages of not-classified objects in case of NER (0.05) are also collected. 

In the paragraph Comparison of the models the models obtained are discussed and compared 

with other classification methods, together with some comments about the role of the different 

metrics, while in the paragraph Comparison of the metrics an extended multivariate comparison 

of the metrics is performed. 

 

6.1 Comparison of the models 

The comparison of the classification performances is performed with the Non-Error Rate (NER) 

of six other methods studied in [3] for the same data sets.  

The considered benchmark methods are N-Nearest Neighbour (N3) [3], which resulted as the 

best method in the comparison with other 10 classification methods; Partial Least Squares 

Discriminant Analysis (PLS-DA) [1], which is the unique method among the methods studied 

in [3] also giving not-classified objects, K-Nearest Neighbour (KNN) [3], Binned Nearest 

Neighbour (BNN) [3], Support Vector Machine with radial function (SVM-RBF) [1]. Finally, 

the exponentially weighted K-Nearest Neighbour (wKNN) [3] was also considered, being the 

most similar classification method to the proposed approach; indeed, as already noted above, 

wKNN differs from the NER(t) approach by using a fixed optimal k value of neighbours, found 

by a validation procedure [11]. 

Looking at the metrics giving the best result for each data set reported in Appendix D for 

NER(0.05), the performances of the proposed measure appear immediately as quite 

satisfactory. Figure 2 shows the performance in terms of NER(0.05) as filled black circles, 

while inner white circles represent the proportion of not classified objects.  

For eight data sets, different metrics achieved equal performance as in the case of the Vinagres 

and Vergoil data sets where 10 metrics provided a NER(0.05) of 100%. For the remaining 23 
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data sets, one metric showed an absolute best value in terms of NER(0.05), which was not 

always balanced by a low percentage of unassigned items. For example, with the Bhattacharyya 

metric we achieved the best NER(0.05) for the Thiophene data set (87.8%) with a high 

percentage of unclassified objects (25%), while using the Euclidean or Jaccard-Tanimoto 

metrics with only 8.3% of unclassified objects we achieved a slightly lower NER(0.05) of 

85.7%. 

 

Figure 2. Graphical representation as filled and empty circles of NER(0.05) (Appendix D) and not 

classified objects (Appendix E), respectively. Maximum values of NER(0.05) are 

highlighted. 
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A comparison of the weighted results was also performed with the NER(0) crisp results 

(reported in Appendix B) obtained with a membership threshold equal to zero, thus avoiding 

not-classified objects. In the 86% of the cases, the presence of not-classified objects allowed 

increasing (or equal) performances; only in 56 cases over 403 (13 x 31), the weighted 

performances with a membership threshold of 0.05 resulted worse than those without a 

membership threshold equal to 0, with only 13 values with differences lower than -1. 

In Figure 3 the score plot of a PCA performed on the best results achieved by the presented 

methods (NER(0.05), NER(0), L and T) and by traditional approaches (PLS-DA, SVM-RBF, 

N3, BNN, KNN and wKNN) is showed. Performances for traditional approaches are expressed 

as NER calculated with a leave one out strategy and the optimized parameters are given in ref 

[3]. Two theoretical metrics were also added to the rows, called B (best) and W (worst), defined 

by the best and worst results obtained for each data set. These added theoretical metrics allow 

stretching the first component for a better evaluation of the behaviour of the approaches. A full 

comparison of the proposed measures with other classification methods is reported in Appendix 

F. 

T and L are calculated in a link-based strategy, while the other performances are computed on 

objects and thus fully comparable. Considering the first component, which can be related to the 

overall quality of the approaches, the node-based strategy with a threshold of 0.05 (NER(0.05)) 

achieved satisfying performances comparable with SVM-RBF results and better than N3, BNN 

and KNN. The second component explains the consistency of the results given by the 

approaches on different data set. The approach showing more dataset-dependent result variation 

is PLS-DA. 

 

Figure 3. The score plot of the first two PCs for the best results achieved by the presented methods 

(filled circles, NER(0.05), NER(0), L and T) and by traditional approaches (empty circles, 

PLS-DA, SVM-RBF, N3, BNN, KNN and wKNN). B and W (filled squares) are the best and 

worst metrics. 
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Summarizing the results, it can be said that the unsupervised approaches to classification 

problems are rightfully considered competitive and comparable with the other classical 

classification tools. Moreover, a not marginal advantage is the possibility to obtain a graphical 

efficient representation of the results by means of the minimum spanning tree graph. 

Two examples of MST graphs for the data set Tobacco are reported in Figure 4, for 

Bhattacharyya and Soergel metrics. In this case the former metric provided better results than 

the latter metric, with a higher NER(0.05) of 87.5% and a lower percentage of not assigned 

objects (7.7%). 

 

 

Figure 4. MST of the data set Tobacco (2 classes), with the Bhattacharyya metric (A), and Soergel 

metric (B). The symbol x denotes the links considered as errors. 

 

6.2 Comparison of the metrics 

Being the proposed approaches unsupervised, we produced several spanning trees with 

different metrics and evaluated a-posteriori the best topological space for classification. 

The 13 metrics were arbitrarily represented by different symbols as the following: 

1) EUC, MAN, LAG, BHA, JT in the first group (up triangles) 

2) CAN, LW, CLA, COS in the second group (down triangles) 

3) SOE, WE, INT in the third group (empty circles) 

4) DEH in the fourth group (filled circle). 
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The first group is constituted by Minkowski-like metrics (Euclidean, Manhattan and Lagrange), 

together with Euclidean-like metrics such as Jaccard-Tanimoto and Bhattacharyya. The second 

group is constituted by metrics based on ratio of sums or sum of ratios, such as Canberra, Lance-

Williams, Clark and Cosine metrics. The third group is constituted by metrics where min/max 

functions are present in their definition, while the Dehmer metric is isolated, being the unique 

based on the exponential function and fully invariant to scaling. 

A PCA was performed on a matrix where the rows are the 13 metrics, the columns are the 31 

data sets and each entry is the calculated NER(0.05) measure (Figure 5A). Looking at the first 

component (explaining 86.2% of the total variance), the best metrics are the Lance-Williams 

and Soergel metrics. 

It can be noted that here, for the first time, the Dehmer metric is compared with other classical 

metrics [43]. Indeed, proposed as a measure of difference between two molecules described by 

a topological descriptor of a molecular graph [44], DEH has been here extended into a 

multivariate distance measure. 

The second component (explaining 4.1% of the total variance) is related to the different 

behaviour of the metrics for the diverse data sets. In particular, WE, CLA and CAN are more 

sensible to the data sets. 

 

 

Figure 5. The score plot of the first two PCs for the metrics based on the NER(0.05) measures (A) and 

not classified objects (B). B and W are the theoretical best and worst metrics. 

 

The analysis of the behaviour of the metrics with respect to the percentage of not-classified 

objects (Figure 5B) was also performed with the purpose to highlight the metrics giving, in the 

average, the minimum number of not-classified objects. Two cases B (best) and W (worst) are 

added to the 13 metrics representing the two extreme behaviours: B is always zero implying 
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that no not-classified object is given, while W is 24-dimensional vector with the maximum 

percentage of not-classified objects for each data set. The first component of PCA explains the 

87.5% of the total variance and the three metrics nearest to the best are DEH, WE and CAN, 

indicating that these metrics, on average, give a small percentage of not-classified objects. CLA 

and MAN are not so far from the first ones. Metrics that, on average, give high percentages of 

not-classified objects are COS, LW, LAG, SOE, JT, INT, followed by BHA and EUC metrics. 

The COS metric appears isolated on the bottom of the figure being its standard deviation twice 

the other greatest standard deviations (last row of Appendix E). 

The same approach was applied to a matrix where the row are the 13 metrics, the column are 

the 31 data sets and each entry is the calculated L measure (Appendix G). Considerations about 

this plot are analogous to those given for Fig. 5A. 

 

7 Conclusions 

In general, both link-based and node-based measures show good performances for classification 

purposes and can be considered as a possible reliable complement to other classical 

classification tools.  

Moreover, the use of 13 different metrics enlarges the possibilities to obtain reliable models, 

also increasing the knowledge about the optimal topological space to perform classification. In 

particular, the Dehmer metric has been here extended into a multivariate distance measure and 

compared with other classical metrics. Manhattan, Lance-Williams, Soergel and Dehmer 

metrics seem to perform quite well in several cases. Among the best metrics, Dehmer and 

Manhattan give, on average, small reasonable percentages of not-classified objects. 

A not marginal advantage of this approach, shared with the SOM method used for classification, 

is that the results can be graphically analysed by the obtained spanning tree. Moreover, being a 

semi-supervised classification method, an informative representation of a class is not necessary, 

since in this case a class can be also represented by a singleton. Indeed, in the link-based 

approach, if the object appears as a terminal node, being the number of classes minus one 

subtracted to the total link errors, it is correctly viewed as a singleton. This kind of classification 

can be also possible also for the node-based approach, but at least two objects of the same class 

must be present in a terminal chain. 
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Appendix A 

The overall classification rate (T) values for each metric and each data set. In bold, the best 

results of the T measure.  

DATA EUC CAN LW MAN LAG CLA SOE BHA WE JT COS DEH INT 

IRIS 95.3 95.3 95.3 94.6 96.6 94.0 95.3 94.6 95.3 95.3 76.5 94.6 94.0 

WINES 94.9 96.6 94.4 96.6 92.7 98.3 94.4 96.6 95.5 93.8 96.6 96.6 94.9 

PERPOT 99.0 93.9 94.9 99.0 97.0 94.9 94.9 98.0 93.9 96.0 84.8 99.0 96.0 

ITAOLIS 95.8 94.0 96.1 96.0 94.4 93.0 96.1 95.1 94.0 96.0 95.8 96.0 96.0 

SULFA 75.5 75.5 77.6 75.5 73.5 77.6 77.6 75.5 73.5 73.5 67.3 75.5 77.6 

VINAGRES 96.9 98.5 100.0 98.5 93.8 98.5 100.0 98.5 98.5 100.0 98.5 98.5 100.0 

CHEESE 82.0 83.5 82.7 82.0 82.0 76.7 82.7 80.5 81.2 82.7 82.7 82.7 76.7 

OLITOS 79.8 74.8 79.8 80.7 73.9 69.7 79.8 79.8 75.6 82.4 79.8 76.5 79.8 

COFFEE 100.0 97.6 100.0 100.0 100.0 97.6 100.0 97.6 97.6 100.0 100.0 100.0 100.0 

DIGITS 63.9 62.1 65.5 65.1 63.3 63.1 65.5 62.5 61.1 64.7 62.3 63.7 63.3 

VEGOIL 100.0 97.6 100.0 100.0 98.8 92.7 100.0 100.0 98.8 100.0 100.0 100.0 98.8 

CRUDEOIL 92.7 81.8 85.5 87.3 89.1 83.6 85.5 90.9 80.0 89.1 92.7 89.1 87.3 

APPLE 91.5 93.7 92.3 92.3 90.5 92.5 92.3 93.1 93.5 90.7 90.7 91.5 90.3 

TOBACCO 84.0 84.0 80.0 84.0 88.0 84.0 80.0 88.0 84.0 80.0 84.0 88.0 80.0 

METACYCLINE 76.2 85.7 81.0 81.0 76.2 81.0 81.0 76.2 85.7 81.0 76.2 81.0 71.4 

DIABETES 70.1 64.1 69.8 70.1 69.2 62.8 69.8 67.5 65.6 68.8 65.2 70.3 67.9 

THIOPHENE 87.0 73.9 87.0 87.0 73.9 73.9 87.0 78.3 73.9 87.0 78.3 87.0 82.6 

SAND 90.0 88.8 88.8 91.3 91.3 91.3 88.8 91.3 88.8 88.8 61.3 90.0 92.5 

HEARTHDISEASE 63.8 60.7 63.6 64.6 63.3 62.3 63.6 60.3 61.0 62.9 62.0 62.9 63.6 

BIODEG 81.6 81.5 82.8 82.3 79.2 81.3 82.8 82.1 80.4 81.7 80.5 81.0 81.2 

SCHOOL 96.4 94.0 95.2 95.2 95.2 94.0 95.2 97.6 94.0 95.2 50.0 97.6 96.4 

ORUJOS 97.5 95.0 94.1 95.0 95.0 93.3 94.1 95.8 95.0 97.5 97.5 95.8 95.0 

HIRSUTISM 83.3 82.6 86.4 85.6 81.1 84.8 86.4 84.8 81.8 84.1 85.6 86.4 87.1 

SUNFLOWERS 89.9 85.5 89.9 89.9 89.9 85.5 89.9 91.3 85.5 92.8 84.1 89.9 92.8 

BLOOD 67.3 66.3 67.6 67.6 66.3 65.5 67.5 67.2 66.5 66.0 65.5 68.0 66.9 

VERTEBRAL 79.6 82.2 77.3 77.3 76.1 79.9 77.3 79.3 80.9 78.0 78.3 79.9 76.4 

BANK 82.2 86.7 84.4 82.2 82.2 80.0 84.4 84.4 86.7 80.0 68.9 82.2 80.0 

MEMBRANE 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 42.9 94.3 94.3 

HEMOPHILIA 78.4 79.7 83.8 83.8 78.4 78.4 83.8 79.7 78.4 82.4 81.1 78.4 83.8 

FISH 88.5 92.3 88.5 92.3 80.8 92.3 88.5 84.6 88.5 88.5 88.5 84.6 92.3 

SEDIMENT 89.9 89.9 90.4 90.4 89.9 89.6 90.4 89.5 90.2 89.8 89.9 89.7 89.4 

 

 

 

 

 

 



293

Appendix B 

The link-based non-error rate (L measure) values for each metric and each data set. In bold, the 

absolute best results. 

 

DATA EUC CAN LW MAN LAG CLA SOE BHA WE JT COS DEH INT 

IRIS 95.3 95.3 95.3 94.6 96.6 94.0 95.3 94.6 95.3 95.3 76.5 94.6 94.0 

WINES 95.0 96.9 94.7 96.7 92.7 98.4 94.7 96.7 95.8 94.0 96.7 96.7 95.2 

PERPOT 99.0 93.9 94.9 99.0 97.0 94.9 94.9 98.0 93.9 96.0 84.8 99.0 96.0 

ITAOLIS 95.2 92.5 95.7 95.4 93.5 91.2 95.7 94.2 92.8 95.4 95.1 95.2 95.2 

SULFA 71.7 70.6 72.5 71.7 70.7 73.6 72.5 71.7 68.8 67.5 59.1 72.6 73.6 

VINAGRES 95.8 98.8 100 98.8 91.3 98.8 100 98.8 98.8 100 98.8 98.8 100 

CHEESE 76.1 78.8 76.3 75.0 77.1 68.8 76.3 74.3 75.0 76.0 78.8 75.3 66.8 

OLITOS 77.4 71.9 75.6 78.0 71.4 68.2 75.6 78.4 70.2 80.5 76.8 70.9 79.6 

COFFEE 100 95.1 100 100 100 95.1 100 95.1 95.1 100 100 100 100 

DIGITS 69.2 66.5 70.3 69.5 69.3 67.6 70.3 68.2 65.9 70.1 67.8 69.0 68.7 

VEGOIL 100 97.6 100 100 99.2 93.5 100 100 99.2 100 100 100 99.2 

CRUDEOIL 88.9 68.7 75.9 78.8 83.0 72.0 75.9 86.1 64.7 82.7 88.9 82.4 78.8 

APPLE 88.7 91.7 89.8 89.6 87.3 90.3 89.8 90.9 91.5 87.7 88.0 88.5 87.3 

TOBACCO 83.9 84.0 80.0 84.0 88.0 84.0 80.0 88.0 84.0 80.0 84.0 88.0 80.0 

METACYCLINE 76.1 85.7 81.0 81.0 76.1 80.8 81.0 76.1 85.7 81.0 76.1 81.0 71.4 

DIABETES 66.5 60.1 66.2 66.0 65.7 58.9 66.2 63.7 61.6 65.7 62.0 65.6 64.6 

THIOPHENE 87.1 79.3 86.8 87.1 77.8 79.3 86.8 82.1 79.1 86.8 78.3 87.1 86.4 

SAND 89.5 88.3 88.2 90.9 90.9 90.8 88.2 90.9 88.3 88.2 60.4 89.5 92.2 

HEARTHDISEASE 59.4 57.2 59.0 59.6 59.4 58.4 59.0 56.1 57.6 59.1 58.0 57.0 59.1 

BIODEG 80.0 79.6 81.3 80.9 78.0 79.6 81.3 80.4 78.7 80.0 78.9 79.4 79.6 

SCHOOL 96.4 94.0 95.1 95.1 95.2 93.9 95.1 97.5 94.0 95.1 50.9 97.5 96.3 

ORUJOS 96.5 92.9 91.6 92.9 92.7 90.5 91.6 94.2 92.9 96.5 96.5 94.2 93.1 

HIRSUTISM 78.4 76.3 80.8 80.8 75.2 79.2 80.8 79.2 75.0 77.4 78.5 81.6 81.7 

SUNFLOWERS 88.6 84.7 88.8 88.6 88.8 84.4 88.8 90.7 84.2 92.0 83.0 88.6 92.0 

BLOOD 57.3 55.3 56.8 57.1 55.3 54.9 56.7 55.7 55.8 55.4 54.1 57.2 55.6 

VERTEBRAL 77.1 80.1 74.6 74.5 73.0 77.1 74.6 76.5 78.5 75.4 75.8 77.4 73.9 

BANK 82.2 86.6 84.4 82.2 82.2 79.9 84.4 84.4 86.6 80.0 68.6 82.2 79.9 

MEMBRANE 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3 45.2 94.3 94.3 

HEMOPHILIA 77.5 78.7 82.9 82.9 77.2 77.2 82.9 78.7 77.5 81.6 80.3 77.2 82.9 

FISH 88.5 92.3 88.4 92.3 80.8 92.3 88.4 84.6 88.5 88.4 88.4 84.6 92.3 

SEDIMENT 78.4 78.6 79.5 79.5 78.8 78.0 79.5 77.8 78.9 78.2 79.1 77.9 77.1 
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Appendix C 

The node-based non-error rate (NER(0) measure) values for each metric and each data set 

without a membership threshold. In bold, the absolute best results. 

 

DATA EUC CAN LW MAN LAG CLA SOE BHA WE JT COS DEH INT 

IRIS 95.3 95.3 96.0 95.3 97.3 94.0 96.0 94.0 95.3 94.7 78.7 94.7 94.7 

WINES 95.1 97.2 95.7 96.7 93.7 98.6 95.7 97.0 97.2 95.7 96.9 98.1 95.2 

PERPOT 100 96.0 98.0 99.0 99.0 98.0 98.0 100 96.0 99.0 82.0 98.0 99.0 

ITAOLIS 94.7 92.6 93.7 94.5 93.2 91.9 93.7 93.5 92.4 94.7 94.2 93.9 94.7 

SULFA 73.8 76.6 72.4 78.8 79.6 67.5 72.4 67.5 71.6 68.8 58.9 75.2 71.6 

VINAGRES 91.7 98.7 100 100 91.7 98.7 100 100 98.7 95.8 100 100 100 

CHEESE 72.5 77.2 74.2 73.9 74.2 67.1 74.2 73.3 73.3 70.1 79.0 72.5 65.6 

OLITOS 65.2 67.1 66.1 71.9 67.5 67.4 66.1 70.9 64.1 74.5 69.9 63.4 75.8 

COFFEE 100 92.9 100 100 100 92.9 100 92.9 92.9 100 100 100 100 

DIGITS 65.0 61.9 65.6 65.3 64.3 61.9 65.6 62.2 61.8 65.4 62.9 66.6 64.4 

VEGOIL 100 100 100 100 99.0 94.8 100 100 100 100 100 100 99.0 

CRUDEOIL 83.1 63.6 73.6 74.4 76.2 70.1 73.6 80.1 61.4 82.2 87.9 81.4 74.4 

APPLE 89.6 93.0 89.8 90.2 88.3 91.8 89.8 91.6 92.6 88.8 89.2 89.0 87.9 

TOBACCO 76.9 76.9 76.9 80.8 76.9 80.8 76.9 80.8 76.9 76.9 84.6 80.8 76.9 

METACYCLINE 82.5 91.7 91.7 82.5 82.5 87.5 91.7 82.5 87.5 90.8 82.5 86.7 82.5 

DIABETES 68.2 61.2 66.8 66.7 68.2 59.7 66.8 64.0 61.9 68.3 63.4 65.9 66.7 

THIOPHENE 79.2 70.8 79.2 79.2 70.8 70.8 79.2 75.0 75.0 79.2 70.8 79.2 79.2 

SAND 87.3 86.9 88.4 88.4 89.9 86.9 88.4 87.3 86.9 87.3 66.0 88.4 90.9 

HEARTHDISEASE 59.3 58.3 57.7 59.8 56.6 58.2 57.7 59.6 58.1 60.1 58.5 56.8 59.7 

BIODEG 82.3 81.1 82.4 82.5 80.7 80.6 82.4 82.8 81.1 82.8 80.6 81.0 82.1 

SCHOOL 92.9 94.0 94.0 94.0 92.9 91.5 94.0 95.1 94.0 94.0 50.0 95.1 92.7 

ORUJOS 100 98.2 97.7 97.7 94.1 94.1 97.7 98.2 100 100 100 100 97.1 

HIRSUTISM 82.4 83.8 89.1 84.8 76.2 85.8 89.1 87.7 78.1 79.0 79.9 89.6 89.1 

SUNFLOWERS 90.0 88.5 91.2 93.1 90.8 83.6 91.2 90.0 87.8 92.0 84.4 89.2 95.8 

BLOOD 55.9 55.9 55.8 56.6 54.7 55.3 55.8 54.5 57.0 54.4 53.4 56.7 56.4 

VERTEBRAL 77.7 81.8 75.7 75.7 76.9 77.4 75.7 77.9 80.6 77.2 76.6 77.9 76.7 

BANK 78.9 80.5 84.9 80.9 82.9 78.5 84.9 76.5 80.5 76.5 64.2 80.9 86.9 

MEMBRANE 94.4 97.2 94.4 94.4 94.4 94.4 94.4 94.4 97.2 94.4 47.2 94.4 91.7 

HEMOPHILIA 79.4 80.0 85.0 83.9 77.8 78.3 85.0 80.6 80.0 78.3 85.0 76.7 81.7 

FISH 89.0 92.9 92.9 92.9 81.6 89.0 92.9 89.0 81.6 92.9 85.4 85.4 100 

SEDIMENT 85.4 85.9 85.9 85.9 85.1 83.4 85.9 84.9 85.8 85.0 86.6 86.6 83.8 
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Appendix D 

The weighted node based non-error rate (NER(0.05) measure) for each metric and each data set 

by using a membership threshold of 0.05. In bold, the absolute best results.  

 

DATA EUC CAN LW MAN LAG CLA SOE BHA WE JT COS DEH INT 

IRIS 95.9 96.0 96.6 95.9 97.2 95.2 96.6 95.9 96.0 95.9 79.4 95.8 95.3 

WINES 95.9 97.2 96.4 97.6 95.0 99.5 96.4 97.3 97.2 96.5 98.0 98.1 96.9 

PERPOT 100 95.8 98.9 100 99.0 98.0 98.9 100 95.9 99.0 91.6 100 100 

ITAOLIS 94.8 93.6 94.5 94.7 94.2 92.0 94.5 93.9 92.8 95.1 94.6 94.6 95.5 

SULFA 77.1 75.1 81.6 78.9 82.4 71.9 78.5 76.9 73.2 71.0 53.4 77.5 73.9 

VINAGRES 95.2 100 100 100 91.7 100 100 100 100 100 100 100 100 

CHEESE 72.7 76.9 73.4 75.4 80.3 67.7 73.4 74.7 73.3 73.5 81.3 73.4 66.0 

OLITOS 70.1 67.1 72.1 70.8 73.3 68.3 72.1 73.5 64.1 77.6 73.2 63.4 81.0 

COFFEE 100 92.9 100 100 100 92.9 100 92.9 92.9 100 100 100 100 

DIGITS 68.0 64.7 70.2 69.1 66.2 65.0 69.2 65.9 63.9 68.7 64.8 70.0 68.0 

VEGOIL 100 100 100 100 99.0 96.8 100 100 100 100 100 100 99.0 

CRUDEOIL 83.1 63.6 73.1 74.4 76.7 71.9 73.1 78.6 62.1 90.0 90.0 81.4 72.9 

APPLE 91.5 93.4 92.1 90.4 89.1 92.4 92.1 93.5 93.0 90.0 91.4 89.2 89.2 

TOBACCO 80.1 76.9 80.9 80.8 88.5 80.8 80.9 87.5 76.9 80.9 87.1 80.8 79.2 

METACYCLINE 80.8 91.7 95.0 85.0 80.0 87.5 95.0 81.4 87.5 89.9 81.9 86.7 81.3 

DIABETES 69.7 61.6 68.8 68.4 69.6 60.7 68.8 66.3 62.0 68.7 64.8 65.9 67.6 

THIOPHENE 85.7 76.6 85.7 85.7 77.8 76.6 85.7 87.8 75.0 85.7 87.8 82.7 83.8 

SAND 91.3 87.8 91.4 92.8 91.8 91.0 91.4 92.9 87.8 92.6 64.6 89.2 93.1 

HEARTHDISEASE 63.2 57.8 60.5 61.3 61.2 58.3 60.5 59.3 58.0 63.5 59.9 56.7 61.0 

BIODEG 84.9 82.1 85.5 84.8 83.2 82.3 85.6 85.9 81.8 85.5 83.2 82.0 84.5 

SCHOOL 96.1 93.8 96.1 93.8 97.4 92.3 96.2 98.6 93.8 96.2 50.8 97.3 94.7 

ORUJOS 100 98.2 99.5 97.6 97.4 95.8 99.5 100 100 100 100 100 97.1 

HIRSUTISM 82.3 85.2 89.2 83.9 78.8 85.6 89.2 87.2 78.9 78.9 80.6 89.3 88.8 

SUNFLOWERS 94.5 88.5 94.6 92.9 91.6 84.8 94.6 92.8 87.8 94.6 85.6 89.2 96.9 

BLOOD 58.1 56.2 56.7 57.7 55.1 55.9 57.2 56.0 56.9 55.9 55.0 57.1 56.7 

VERTEBRAL 82.9 83.0 78.5 76.9 76.2 79.2 78.5 79.6 81.4 80.2 81.0 78.6 80.1 

BANK 83.3 81.6 87.2 82.5 87.6 80.9 85.0 85.4 79.6 81.0 69.9 84.2 85.7 

MEMBRANE 97.0 97.2 97.0 97.0 97.0 97.0 97.0 97.0 97.2 97.0 42.9 97.0 100 

HEMOPHILIA 82.6 80.1 87.1 87.1 81.5 81.4 87.1 84.8 79.2 83.9 86.0 80.4 86.7 

FISH 92.0 92.3 96.2 96.2 84.7 89.0 96.2 88.5 81.6 92.3 92.3 88.5 100 

SEDIMENT 85.4 86.1 85.2 86.4 85.2 84.2 85.5 84.6 86.7 84.2 86.2 86.7 82.7 
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Appendix E 

The percentage of not-classified objects compared with the PLS/DA. Bold character highlights 

the percentages of not-classified objects corresponding to the best NER results. 

 

DATA EUC CAN LW MAN LAG CLA SOE BHA WE JT COS DEH INT PLS/DA 

IRIS 2.7 0.7 1.3 1.3 3.3 2.0 1.3 3.3 0.7 2.7 14.0 3.3 1.3 23.2 

WINES 1.1 0.0 3.9 1.1 3.9 1.7 2.8 2.8 0.0 2.8 2.2 0.6 3.4 0 

PERPOT 2.0 4.0 9.0 3.0 3.0 1.0 5.0 4.0 3.0 2.0 17.0 3.0 5.0 0 

ITAOLIS 3.3 2.4 3.0 1.4 3.7 3.1 3.0 3.1 1.2 3.3 3.3 1.2 4.0 0 

SULFA 14.0 4.0 22.0 4.0 14.0 6.0 18.0 14.0 8.0 14.0 18.0 4.0 14.0 0 

VINAGRES 1.5 1.5 1.5 0.0 3.0 1.5 1.5 1.5 1.5 1.5 1.5 0.0 1.5 4.5 

CHEESE 6.7 0.7 7.5 1.5 11.2 0.7 7.5 3.7 0.0 6.0 10.4 0.7 12.7 20.9 

OLITOS 10.0 0.0 12.5 1.7 12.5 5.8 12.5 7.5 0.0 10.0 15.0 0.0 10.0 18.3 

COFFEE 0.0 0.0 4.7 0.0 0.0 0.0 2.3 0.0 0.0 0.0 0.0 0.0 2.3 0 

DIGITS 11.2 7.8 15.4 12.6 10.0 7.4 12.4 15.0 6.6 11.8 11.6 14.0 11.8 88 

VEGOIL 0.0 0.0 2.4 0.0 3.6 1.2 1.2 0.0 0.0 0.0 1.2 0.0 1.2 3.6 

CRUDEOIL 1.8 0.0 8.9 0.0 5.4 5.4 8.9 7.1 1.8 8.9 5.4 0.0 7.1 12.5 

APPLE 3.7 0.8 3.5 1.2 4.9 1.4 3.5 3.7 0.8 3.5 5.3 0.4 4.1 0 

TOBACCO 7.7 0.0 19.2 0.0 15.4 0.0 19.2 7.7 0.0 19.2 11.5 0.0 7.7 0 

METACYCLINE 9.1 0.0 13.6 9.1 9.1 0.0 9.1 4.5 0.0 9.1 4.5 0.0 9.1 0 

DIABETES 11.2 6.8 11.1 9.0 10.9 10.4 10.8 10.9 6.0 11.2 15.6 3.6 10.2 0 

THIOPHENE 8.3 12.5 12.5 12.5 16.7 12.5 12.5 25.0 0.0 8.3 25.0 4.2 25.0 16.7 

SAND 7.4 2.5 7.4 7.4 3.7 7.4 7.4 7.4 2.5 11.1 37.0 2.5 4.9 0 

HEARTHDISEASE 14.5 5.6 16.0 11.0 13.0 9.5 15.8 12.1 5.0 15.8 14.3 1.7 13.2 0 

BIODEG 9.1 3.1 9.1 6.3 8.4 4.2 8.8 6.6 1.6 9.1 9.1 2.7 9.4 0 

SCHOOL 7.1 2.4 7.1 3.5 8.2 4.7 4.7 7.1 1.2 4.7 43.5 2.4 5.9 30.6 

ORUJOS 2.5 0.0 3.3 1.7 4.2 0.8 2.5 0.8 0.8 1.7 1.7 0.8 0.8 0 

HIRSUTISM 6.8 3.0 4.5 2.3 8.3 3.8 4.5 9.0 1.5 8.3 8.3 1.5 6.0 0 

SUNFLOWERS 7.1 0.0 7.1 1.4 4.3 2.9 5.7 5.7 0.0 5.7 7.1 0.0 1.4 0 

BLOOD 11.0 6.4 9.8 10.6 8.7 7.1 9.0 11.1 4.9 9.4 10.6 10.0 8.3 0 

VERTEBRAL 10.6 4.5 7.7 6.1 8.4 5.5 7.7 9.0 2.9 11.6 11.6 3.9 13.2 0 

BANK 8.7 6.5 15.2 13.0 13.0 8.7 13.0 10.9 4.3 8.7 19.6 4.3 8.7 0 

MEMBRANE 11.1 8.3 13.9 11.1 11.1 13.9 11.1 13.9 2.8 11.1 38.9 8.3 16.7 41.7 

HEMOPHILIA 10.7 9.3 9.3 9.3 12.0 13.3 9.3 12.0 8.0 12.0 18.7 12.0 10.7 0 

FISH 7.4 7.4 7.4 3.7 7.4 0.0 7.4 3.7 0.0 11.1 7.4 3.7 7.4 0 

SEDIMENT 3.0 2.0 3.9 1.6 3.8 3.1 4.0 3.5 1.4 4.0 4.2 1.3 4.7 0 

AVERAGE 6.8 3.3 8.8 4.8 7.9 4.7 7.8 7.3 2.1 7.7 14.3 2.9 7.8 8.4 

STD. DEVIATION 4.1 3.4 5.3 4.5 4.3 4.1 4.9 5.4 2.5 4.8 11.1 3.6 5.4 18.3 
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Appendix F 

Comparison of the results obtained by T, L, NER(0) and NER(0.05)  measures, and by the NER 

of wKNN, KNN, N3, PLS/DA, SVM and BNN classification methods, assumed as references. 

In bold are shown the best results and in italics the best results.  

 

DATA T L NER(0) NER(0.05) wKNN KNN N3 PLS-DA SVM BNN 

IRIS 
96.6 96.6 97.3 97.2 96.7 96.7 96.0 90.2 97.3 96.7 

WINES 
98.3 98.4 98.6 99.5 98.0 97.7 96.2 99.5 99.5 98.6 

PERPOT 
99.0 99.0 100 100 99.0 99.0 99.0 86.0 100 99.0 

ITAOLIS 
96.1 95.7 94.7 95.5 94.7 94.7 96.2 95.9 95.9 95.2 

SULFA 
77.6 73.6 79.6 82.4 73.8 73.8 77.4 74.0 88.7 73.8 

CHEESE 
83.5 78.8 79.0 81.0 79.4 78.1 76.1 84.7 85.6 78.3 

OLITOS 
82.4 80.5 75.8 81.0 70.4 70.4 89.1 94.0 87.6 73.6 

COFFEE 
100 100 100 100 100 100 100 100 100 100 

VEGOIL 
100 100 100 100 99.0 99.0 99.0 99.0 100 100 

TOBACCO 
88.0 88.0 84.6 88.5 92.3 92.3 92.3 88.5 92.3 92.3 

METACYCLINE 
85.7 85.7 91.7 95.0 82.5 82.5 82.5 55.8 82.5 86.7 

THIOPHENE 
87.0 87.1 79.2 87.8 83.3 83.3 83.3 90.5 83.3 83.3 

SAND 
92.5 92.2 90.9 93.1 93.9 93.9 93.9 93.9 94.9 94.9 

HEARTHDISEASE 
64.6 59.6 60.1 63.5 63.2 63.2 69.9 69.7 68.0 65.2 

SCHOOL 
97.6 97.5 95.1 98.6 96.2 96.2 95.3 89.4 96.4 96.6 

ORUJOS 
97.5 96.5 100 100 98.2 98.2 98.2 93.9 98.2 98.4 

HIRSUTISM 
87.1 81.7 89.6 89.3 90.0 90.0 88.3 84.1 93.8 90.1 

SUNFLOWERS 
92.8 92.0 95.8 96.9 91.2 91.2 92.3 92.7 96.9 90.4 

DIABETES 
70.3 66.5 68.3 69.7 70.5 70.5 73.6 75.1 72.8 71.1 

BLOOD 
68.0 57.3 57.0 58.1 63.6 62.3 67.9 68.7 64.1 62.2 

VERTEBRAL 
82.2 80.1 81.8 83.0 80.2 80.2 80.8 82.1 84.3 81.6 

BIODEG 
82.8 81.3 82.8 85.9 85.5 85.4 84.5 79.9 83.8 85.3 

DIGITS 
65.5 70.3 66.6 70.2 73.7 73.6 74.2 41.0 74.5 72.3 

BANK 
86.7 86.6 86.9 87.6 86.9 86.9 86.9 84.9 88.9 91.2 

VINAGRES 
100 100 100 100 95.8 95.8 100 100 100 95.8 

MEMBRANE 
94.3 94.3 97.2 100 94.4 94.4 94.4 96.7 94.4 94.4 

CRUDEOIL 
92.7 88.9 87.9 90.0 87.9 87.9 89.2 89.7 84.8 84.8 

HEMOPHILIA 
83.8 82.9 85.0 87.1 82.8 82.8 85.6 85.6 85.6 85.6 

FISH 
92.3 92.3 100 100 92.9 92.9 92.6 100 100 92.9 

APPLE 
93.7 91.7 93.0 93.5 91.9 91.9 94.0 95.4 92.3 92.3 

SEDIMENT 
90.4 79.5 86.6 86.7 89.9 89.9 88.9 79.4 69.9 88.9 
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Appendix G 

 

 

The score plot of the first two PCs for the metrics based on the L measures. B and W are the 

theoretical best and worst metrics. 

 


