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Abstract

Minimum Spanning Tree (MST) is a well-known clustering algorithm that provides a
graphical tree representation of the objects in a data set by exploiting local information to
link each pair of similar objects. The a-posteriori analysis of this tree in terms of nodes and
edges provides the basis to derive simple classifiers, namely semi-supervised classification
approaches based on the minimum spanning tree approach. In this work, we propose
different metrics to evaluate the MST ability to group objects of the same a-priori known
classes. The classification capability of the proposed approach, using 13 different distance
measures, was compared with that of classical supervised classification approaches such as
N-Nearest Neighbour (N3), Binned Nearest Neighbour (BNN), Partial Least Squares-
Discriminant Analysis (PLS-DA), K-Nearest Neighbour (KNN), exponentially weighted
K-Nearest Neighbour (WKNN) and Support Vector Machine with radial functions (SVM-
RBF) on 31 data sets. The proposed approach resulted to be competitive and comparable
with the considered classical supervised classification methods. Finally, we analysed the
role of the 13 different measures in terms of performance and percentage of not-assigned
objects.

1 Introduction
In classification problems, a typical data set consists of input variables (predictors) and one or
more categorical variables (classes). The identification of functional relationships between

predictors and categorical response is the aim of the so-called supervised pattern recognition
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methods (or simply, classification methods). These methods are applied in different scientific
fields such as analytical chemistry, food chemistry, toxicology, QSAR/QSPR, image analysis,
process and environmental monitoring, social, medical and economical sciences.

Given a set of training data that belong to G classes, classification methods address the problem
of assigning a new object to one of the G classes on the basis of a classification rule, which has
been inferred from the training data whose memberships to the G classes are known [1].
Existing classification algorithms are based on a variety of approaches that confer them
different characteristics and properties [1-3]. We can distinguish (i) probabilistic methods, such
as Kernel Density Estimators, (ii) methods intrinsically based on Principal Components
Analysis, such as SIMCA, (iii) methods based on discriminant analysis, such as, for example,
linear, quadratic, regularized discriminant analysis, (iv) methods based on local analysis of the
variable space, such as, for example, KNN and N3, and so on, (v) fuzzy methods, where to each
object is assigned a probability to belong to each class and (vi) classification tree methods, such
as CART, where the classification proceeds hierarchically by successively binary splitting of
the objects and producing easily interpretable graphs. All these methods are supervised
classification methods, where the knowledge of the class partition of the objects influences the
model development.

Minimum Spanning Tree (MST) is a clustering algorithm that provides a graphical tree
representation of the objects in a data set by exploiting local information to link each pair of
objects, namely analysing the object distance matrix.

The idea to use the Minimum Spanning Tree (MST) to perform classification was pursued by
different authors, for instance, by applying to the MST graph some rules to classify labelled
vertices.

In the paper of Zhou et. al. [4] the MST is combined with the KNN method. The assignment is
initially performed by analysing the classes of the first neighbours; in case of tied results, the
next paths are also taken into account for all the objects and so on, until the object is classified
by majority voting. The MST is built by the Euclidean metric and allows to predict one
unknown sample at a time. Juszczak et al. [S] applied the MST approach to asymmetric one-
class problems, thus, a weighted spanning tree is built only using the training objects of the
class of interest. Also in this case, the method exploits the Euclidean metric as in several
contributions provided by Vitale, Cesa-Bianchi and co-workers [6]. Chakrabarty and Roy [7]
proposed an optimized KNN classifier based on the MST algorithm to automatically classify
email documents with an initially unknown number of clusters filtering the emails in a two-

class problem by using the Jaccard-Tanimoto metric.
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La Grassa et al. [8] also worked on one-class problems combining MST and KNN in different
ways and performing an extended comparison with other classifiers on 6 data sets. Also in this
case, the MST is built by the Euclidean metric. Yang-Min Zhang et al. [9] proposed a different
algorithm to obtain a tree from a graph minimizing the sum of weights of the cuts, where the
cut is the link between two vertices having different labels.

In all the cited works, only a few numbers of data sets were used for comparisons with other
approaches and the role of the different metrics was never evaluated.

In this paper, a classification approach is proposed, namely a semi-supervised classification,
based on the a-posteriori analysis of a Minimum Spanning Tree (MST) obtained by using
different rules for links and nodes of the graph and different metrics.

An example of unsupervised classification methods was already proposed in literature, such as
the counter propagation artificial neural networks (CP-ANN), based on the self-organizing
maps (SOM), also called Kohonen maps [10]. In this method, the objects are clustered into a
map of N p-dimensional neurons, where p is the number of input variables of each object and
N the size of the map. During the clustering procedure, the class information of each object is
projected into an output map (Grossberg layers), without any feedback on the map.

To reach our goal by using MST for classification purposes, two approaches are proposed,
which, after the building of the MST graph, analyse the graph topology to obtain measures of

the MST classification performance from a link- and node-based points of view.

2 Theory

The Minimum Spanning Tree algorithm provides a bi-dimensional plot of the n objects
described by their pairwise distance matrix D (n x n).
The graph is constituted by a set of straight-line segments joining the n objects such that:

1. every point is connected to every other point by a set of lines (a path);

2. each point is visited by at least one line, its vertex degree is at least equal to 1;

3. no closed circuits appear in the structure, and thus, it is a tree.

Among the several algorithms proposed to build a MST, the most popular is an iterative
algorithm where, at any step, the segments belong to two sets A and B: set A contains the set
of segments (i.e., object pairs, the pairwise links) assigned to the MST (initially it is empty),
and set B, those not yet assigned to MST. Then, the algorithm assigns to A the shortest distance



276

in B that does not form a closed loop with any of the segments already present in A. The
iterations stop when the set A contains 7 — 1 elements (links).

Then, the MST can be thought of as a distance selection approach, where only a subset of n —
1 distances are used over the n x (n — 1)/2 distances, that is, a percentage equal to 2/n is used to
build the tree.

As each segment joins a pair of objects that are the most similar between them, MST is used,
de facto, as clustering method. For the same data set, several MSTs can be obtained for metrics

calculated by different distance measures.

2.1 Link-based strategy

Once the MST was calculated, the knowledge of the classes to which the objects belong to
allows to (1) assess the discriminant power of the MST and (2) use MST as a classification
method. To reach this purpose, a measure of the MST discriminant power is needed.

The first step is based on a very simple rule: each link of two objects belonging to different
classes is considered an error, except G — 1 links which is the minimum number of links to
maintain a tree structure having G classes. Mathematically, it is defined as the following.

Let A be the n x n symmetric binary matrix (i.e., the adjacency matrix) containing the links of

each object with the other ones. The overall tree classification rate (T) can be defined as:

n-1 n
ZZ‘JU'SU*(G’U 5 {] if ¢, %c,
gl =

T=1- i=1 j=i+] _ 1
0 ife¢=c M

L

where c are the classes of the objects and L the total number of links, which is equal to n — 1 in
the MST; q;; is the entry of A and it is equal to 1 if objects i and j are connected, 0 otherwise.
The Dirac delta function §;; is equal to 1 if the classes of the j-th and i-th objects differ, and 0
otherwise. In other words, T provides the accuracy of the MST partition where the second term
of Eq. (1) is the fraction of the links between objects belonging to different classes, which
represent the errors in the MST partitions. As already explained above, the term G —1 is the
minimum number of transition links between objects belonging to different classes for data
partitioned into G classes. An overall tree classification rate equal to 1 indicate perfect partitions
of the classes by MST.

To get a classification rate measure for each class (or class sensitivities) we considered the same
very simple rule: each link of the obtained tree, where the two objects belong to different

classes, is considered as error. Considering n objects partitioned into G classes, a link-based
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confusion matrix C (G x G) can be constructed where all the diagonal elements are filled by
the number of links between objects belonging to the same class. All the links between objects
belonging to two different classes are stored in the corresponding off-diagonal cell with a score
of 0.5, in a symmetric way. Finally, a quantity of 0.5 is subtracted to all the off-diagonal
elements greater than zero of the link-based confusion matrix. This symmetric correction plays
the same role of the G — 1 correction term in the formula (1).
More formally, the diagonal values Cgy (i.e., correct assignations for the g-th class) are defined
as:
. 1 ife,=g

Cyp = ;;av "8 8 ={0 ife,#g @

where ¢; is the class of the j-th object. The Dirac delta function §; is equal to 0 if the class of

the j-th object differs from g, and 1 otherwise. The off-diagonal values of C are defined as:
ngr:ng:ZZaij-O.S g*g 3)

ieg /Eg'
From the link-based confusion matrix C, traditional classification metrics can be computed.

The MST ability to identify the g-th class can thus be quantified by the sensitivity (Sng) value

as:
RS, —ER,
=& "z 4
-t )
where:
1 ifC,>0
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and the total sum of the entries equal to the number of links can be expressed as:
G
Z:RS/g =n-1 (@)
g=1

Finally, a link-based Non-Error Rate (L) is computed as the average of the class sensitivities:

G
2.5n,
-1

G

L=

®

For example, for a data set constituted by 30 objects in class C1 and 20 objects in class C2 and
a perfect MST (i.e., a tree able to separate the two classes), the following confusion matrix is

obtained:



278

gi (i‘!; |, which is successively corrected subtracting 0.5 from the off-diagonal values to:
|209 109|. In this case, the 48 total links constituted by the objects belonging to the same class

are recognized and both L and T measures are equal to 1.

2.2 Node-based strategy
Changing perspective from links to nodes allows to calculate a membership matrix M (n x G)
and to assign a new object to a class by a majority voting criterion. Starting from the adjacency

matrix A (n x n), the elements of the membership matrix are calculated as:

i=ln g=1G (10)

g

a; 9. .
7%!/ J 5 - 1 !fc/_:g
= ;=

iai/ 0 ifc,#g
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where ¢; is the class the j-th object linked to i belongs to.

If the m; membership vector has a unique highest value, the object is assigned to the
corresponding class, otherwise is considered not-classified.

However, to take into account the real space defined by distances, a new membership matrix
M (n x G), which replaces the previous one, can be obtained. In other words, the spanning tree
defines the topology, and the distances are used to classify the objects using the given topology.
This choice allows to take full advantage of the peculiarities and fuzzy differences of the metrics
used.

Starting from the adjacency matrix A, the elements of the membership matrix are calculated as:

Za:/ ~€xp(—d‘/)'81 1 if ¢, =g '
== ;= i=ln g=1G (11)

o ife =g

where dj; is the actual distance between objects i and ;.
Then, each object is assigned to the class when the two highest membership values differ more
than a membership threshold #, here selected as 0.05, otherwise the object is considered not-
classified, or more formally:

ieg, if my —my >t 12)
where g1 and g» are the classes for which the i-th object has the first and second maximum
membership values.

A threshold equal to zero is also taken into account to obtain a crisp classification rule.
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This approach with a distance-based membership matrix can be considered as a variant of the
exponentially weighted KNN (wKNN) [11], where the variable & values are given by the tree
topology, that is by the vertex degree of each object. This approach is different from the original
wKNN method (where, as usual, the optimal k value is searched for by validation) being the
number of k neighbours assigned a priori by the tree topology, and thus not dependent of the
knowledge of the classes. The wKNN method has been demonstrated to perform as the classical
KNN method and, in some cases, to slightly outperform it [3].

Therefore, from the membership function, an object-based confusion matrix C can be defined

with diagonal and off-diagonal values are defined as:

1 ifmax(mlg):g
C. = )-8, S = 13
P gmax(m,g) ig ig {0 lfmax(m‘.g)¢g ( )
o= Smar(m ), o, T melme) (14)
« icg L * o ifmax(m,g,):tg'

Similarly, to L, also in this case sensitivities and a node-based non-error rate with threshold ¢
(NER;) can be defined in the classical way as:

Sn, =% (15)

NER, = %2 16
, G (16)

where n is the number of object belonging to class g. In the following analysis we
considered two values for t: 0 (NER(0)) and 0.5 (NER(0.05).

3 Prediction

The proposed approaches allow also predicting the class of new objects by (i) adding the object
to the training set, one at a time, (ii) calculating the distance matrix, (iii) calculating the MST
of n+ 1 objects and (iv) evaluating its class by a link or node-based strategy.

An example of prediction for a new object is given in Figure 1. In the link-based strategy the
number of links to the objects belonging to different classes is counted and the unknown object
is assigned to the class having the maximum number of links (e.g., a and ¢ in Figure 1). In this
case, an object can also result as unclassified when the number of links with two different
classes is equal (cases b and d in Figure 1). The prediction algorithm can be considered as a

KNN classification method with a variable number of &, where £ is obtained by the topological
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structure of the spanning tree, i.e., each vertex is characterized by the number of its links, or, in

other words, by its vertex degree.

o O p ‘. 4
@

Of’\

@
@
(O new unknown object

Figure 1. Examples of prediction of a new object (in grey colour) in a MST with two classes (white and
black objects).

The case of type b in the MST graph is usually very common and, consequently, the number of
not-classified objects is often quite high. To avoid this drawback, in the node-based strategy,
we took into account the real space defined by the distances and introducing a threshold 7. Also
in this case, the additional presence of not-classified objects is provided. For the cases @ and c,
the membership is equal to 1, while, for cases b and d, the calculated maximum membership
value is considered, according to formula (11).

Moreover, selecting as a distance threshold the maximum distance among the MST links of the
training set, that is coming back from the topological space of MST to the real space of the
distances, the MST can be transformed into a semi-supervised modelling method. In this case
anew object will be excluded from the applicability domain if the minimum distance of its links

is greater than the distance threshold.

4 Data sets

The 31 data sets used for evaluating the performances of MST as classification method are
collected in Table 1. The 13 distance measures studied in this work are collected in Table 2. All

the distances are calculated after a range scaling of the data.

Table 1. Characteristics of the considered benchmark data sets. In the different columns, the
data set name with the original reference, the total number of objects (N.obj.), variables (N.var.)
and classes (N.class) are reported; in column rel. dev.%, the relative deviation class size

obtained as percentage of the relative difference between the number of objects belonging to
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the biggest class and those belonging to the smallest class; in the last column the class partitions

are reported.

Id = Data set

IRIS [12]
WINES [13]
PERPOT [14]
ITAOILS [15]
SULFA [16]
VINEGARS [17]
CHEESE [18]
OLITOS [19]
COFFEE [20]

10 DIGITS [21]
VEGOIL [22]

12 CRUDEOIL [23]
13 APPLE [24]

14 TOBACCO [25]
15 METHACYCLINE [26]
16 DIABETES [27]
17 THIOPHENE [28]
18 SAND [29]

19 HEARTDISEASE [30]
20 BIODEG [31]

21 SCHOOL [32]

22 ORUIOS [33]

23 HIRSUTISM [34]
24  SUNFLOWERS [35]
25  BLOOD [36]

26 VERTEBRAL [37]
27  BANK [32]

28 MEMBRANE

29 HEMOPHILIA [38]
30  FISH [39]

31  SEDIMENT [40]

O 0 9 N AW N -

—_

obj.
150
178
100
572
50
66
134
120
43
500
83
56
508
26
22
768
24
81
462
837
85
120
133
70
748
310

N. class

NN W kG L N
SN B B WND O N WW

_
N
DR WD DR R PR W DN WD PR WA

rel. dev.%

0.0
324
0.0
87.9
61.1
75.8
72.1
78.0
80.6
27.6
73.0
81.6
64.5
0.0
16.7
46.4
0.0
27.7
47.0
48.6
16.1
69.6
75.7
40.9
68.8
52.3
16.0
0.0
333
7.1
84.0

class partition

50 50 50
59 71 48
50 50

25 56 206 36 65 33 50 5051
14 36
33258

68 19 27 20
50 25 34 11
36 7

47 42 49 57 54 42 58 45 56 50
37 25 11 10
7 11 38

133 375

13 13

12 10

268 500
888

34 47

160 302

553 284

31 28 26
28 92

107 26

44 26

178 570

210 100
2125
121212
3045

13 14

1218 195

Table 2. The definitions of the 13 distances used in this work The symbols x and y represent two objects
and p is the total number of variables.

Distance Symbol
Euclidean EUC
Canberra CAN

Definition
EUC S 2
b,” = Z(x.r_yj)
J=1
p ‘x. —yv‘
CAN _ RS
D" =) i1

= ‘x/‘ +‘y/‘

Range Average

DFEUC

EUC AEUC o)
0<D™ <0 | D" = T

p

CAN

CAN =CAN 5
0<D;" <p | D = %
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Lance-Williams Lw DL — = 0< DM <1 DLV — pLt»
» =y = Xy Xy
(e )
=
» B DMAN
Manhattan MAN D;A:;{AN = Z‘xl - yl‘ 0< DxAN <® D,AXAN =
j=1 p
Lagrange LAG DXLVAG =max; ‘Xj -V 0< DxLyAG <© DQAG = nyw
Clark ¢ N Dy
o cLa 0Dt sp | D=
Soergel SOE 0< Df\(,)ﬁ <1 BiOF = Df:)ﬁ
B S xy20 B DA
BHA BHA W
Bhattacharyya BHA ny = Z(q lxj - ,/y,. ) 0< D < o ny =—=
y= <Dy Jr
o min(x,,y - _ DVE
Wave-Edge WE DY = z pM ()g[)gﬁ <p szf v
Al max(x.y)) P
P
Jaccard-Tani ij o =
accard-Tanimoto | | D;yr - 1= - ,;;1 - OSD;VT <1 D;/JT :Df
2 2
fo + zyj ij Yj
J=l J=1 Jj=1
»
25
C =l =
Cosine COS D.WD =1- ; S 0< D,C}D <1 nyD = DnyD
2 2
ij : Zy/
= =
, (x, -y ]2 DEM
) 1 DEM ADEM _ Zxy
Dehmer DEH | pPiv — ) _§ e\ ¥ 0<D;™ <p | D™ = e

. INT _ J=1 INT INT INT
Intersection INT D, =1- 0<D" <1 Dy’ = ny

5 Software

The software code for the calculation of MST was developed by the Authors in MATLAB [41],

as well as the software code for the evaluation of the link and node measures. For the MST
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graphs, the free available software Pajek [42] was used. Moreover, a toolbox, designed in
MATLAB, is also available which allows to compare the 13 distances and different data scaling
methods on custom data providing a tree graph and predictions for a new object

(https://michem.unimib.it/download/matlab-toolboxes/mst-viewer-for-matlab/).

6 Results and discussion

The performances in terms of the two link-measures (T and L), and of the two node measures
(NER(0) and NER(0.05)) for the 31 data sets and the considered 13 distance measures are
collected in Appendix A, Appendix B, Appendix C and Appendix D, respectively. In Appendix
E, the percentages of not-classified objects in case of NER (0.05) are also collected.

In the paragraph Comparison of the models the models obtained are discussed and compared
with other classification methods, together with some comments about the role of the different
metrics, while in the paragraph Comparison of the metrics an extended multivariate comparison

of the metrics is performed.

6.1 Comparison of the models

The comparison of the classification performances is performed with the Non-Error Rate (NER)
of six other methods studied in [3] for the same data sets.

The considered benchmark methods are N-Nearest Neighbour (N3) [3], which resulted as the
best method in the comparison with other 10 classification methods; Partial Least Squares
Discriminant Analysis (PLS-DA) [1], which is the unique method among the methods studied
in [3] also giving not-classified objects, K-Nearest Neighbour (KNN) [3], Binned Nearest
Neighbour (BNN) [3], Support Vector Machine with radial function (SVM-RBF) [1]. Finally,
the exponentially weighted K-Nearest Neighbour (WKNN) [3] was also considered, being the
most similar classification method to the proposed approach; indeed, as already noted above,
wKNN differs from the NER(t) approach by using a fixed optimal & value of neighbours, found
by a validation procedure [11].

Looking at the metrics giving the best result for each data set reported in Appendix D for
NER(0.05), the performances of the proposed measure appear immediately as quite
satisfactory. Figure 2 shows the performance in terms of NER(0.05) as filled black circles,
while inner white circles represent the proportion of not classified objects.

For eight data sets, different metrics achieved equal performance as in the case of the Vinagres

and Vergoil data sets where 10 metrics provided a NER(0.05) of 100%. For the remaining 23
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data sets, one metric showed an absolute best value in terms of NER(0.05), which was not
always balanced by a low percentage of unassigned items. For example, with the Bhattacharyya
metric we achieved the best NER(0.05) for the Thiophene data set (87.8%) with a high
percentage of unclassified objects (25%), while using the Euclidean or Jaccard-Tanimoto
metrics with only 8.3% of unclassified objects we achieved a slightly lower NER(0.05) of
85.7%.
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MEMBRANE OO O © © © C © © -0
viNaGREs - & © 0000000000
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Figure 2. Graphical representation as filled and empty circles of NER(0.05) (Appendix D) and not
classified objects (Appendix E), respectively. Maximum values of NER(0.05) are
highlighted.
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A comparison of the weighted results was also performed with the NER(0) crisp results
(reported in Appendix B) obtained with a membership threshold equal to zero, thus avoiding
not-classified objects. In the 86% of the cases, the presence of not-classified objects allowed
increasing (or equal) performances; only in 56 cases over 403 (13 x 31), the weighted
performances with a membership threshold of 0.05 resulted worse than those without a
membership threshold equal to 0, with only 13 values with differences lower than -1.

In Figure 3 the score plot of a PCA performed on the best results achieved by the presented
methods (NER(0.05), NER(0), L and T) and by traditional approaches (PLS-DA, SVM-RBF,
N3, BNN, KNN and wKNN) is showed. Performances for traditional approaches are expressed
as NER calculated with a leave one out strategy and the optimized parameters are given in ref
[3]. Two theoretical metrics were also added to the rows, called B (best) and W (worst), defined
by the best and worst results obtained for each data set. These added theoretical metrics allow
stretching the first component for a better evaluation of the behaviour of the approaches. A full
comparison of the proposed measures with other classification methods is reported in Appendix
F.

T and L are calculated in a link-based strategy, while the other performances are computed on
objects and thus fully comparable. Considering the first component, which can be related to the
overall quality of the approaches, the node-based strategy with a threshold of 0.05 (NER(0.05))
achieved satisfying performances comparable with SVM-RBF results and better than N3, BNN
and KNN. The second component explains the consistency of the results given by the
approaches on different data set. The approach showing more dataset-dependent result variation
is PLS-DA.

1.5 N

. oBNN WKNN
% os oL
(2}
© ONER(0)
n
E 0 . .?NS wa
. NER(0.05)
o~
o 05 OSVM-RBF
o
5 | =
?
o
8
@15

2

OPLS-DA
5 -4 3 2 - 0

scoresonPC 1-EV =81.16%

Figure 3. The score plot of the first two PCs for the best results achieved by the presented methods
(filled circles, NER(0.05), NER(0), L and T) and by traditional approaches (empty circles,
PLS-DA, SVM-RBF, N3, BNN, KNN and wKNN). B and W (filled squares) are the best and
worst metrics.
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Summarizing the results, it can be said that the unsupervised approaches to classification
problems are rightfully considered competitive and comparable with the other classical
classification tools. Moreover, a not marginal advantage is the possibility to obtain a graphical
efficient representation of the results by means of the minimum spanning tree graph.

Two examples of MST graphs for the data set Tobacco are reported in Figure 4, for
Bhattacharyya and Soergel metrics. In this case the former metric provided better results than
the latter metric, with a higher NER(0.05) of 87.5% and a lower percentage of not assigned
objects (7.7%).

A) Data set: Tobacco — Metric: Bhattacharyya; B) Data set: Tobacco — Metric: Soergel;
N.errors:4—-1; N. errors: 6—1;
T=88.0% L=88.0% NER(0)=280.8% T=80.0% L=80.0% NER(0)=76.9%
NER(0.05)=87.5% NC=7.7% NER(0.05) =80.9%  NC% =19.2%
//)m
N A X
. \ -
A
.u\\ />.;/
%
5.
i3
9/’ X
P
$a
X/ X
&—— 0,
X(‘/ X
%
\
I
/ 0,
[ *Q,/
o D,

Figure 4. MST of the data set Tobacco (2 classes), with the Bhattacharyya metric (A), and Soergel
metric (B). The symbol x denotes the links considered as errors.

6.2 Comparison of the metrics
Being the proposed approaches unsupervised, we produced several spanning trees with
different metrics and evaluated a-posteriori the best topological space for classification.
The 13 metrics were arbitrarily represented by different symbols as the following:
1) EUC, MAN, LAG, BHA, JT in the first group (up triangles)
2) CAN, LW, CLA, COS in the second group (down triangles)
3) SOE, WE, INT in the third group (empty circles)
4) DEH in the fourth group (filled circle).
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The first group is constituted by Minkowski-like metrics (Euclidean, Manhattan and Lagrange),
together with Euclidean-like metrics such as Jaccard-Tanimoto and Bhattacharyya. The second
group is constituted by metrics based on ratio of sums or sum of ratios, such as Canberra, Lance-
Williams, Clark and Cosine metrics. The third group is constituted by metrics where min/max
functions are present in their definition, while the Dehmer metric is isolated, being the unique
based on the exponential function and fully invariant to scaling.

A PCA was performed on a matrix where the rows are the 13 metrics, the columns are the 31
data sets and each entry is the calculated NER(0.05) measure (Figure 5A). Looking at the first
component (explaining 86.2% of the total variance), the best metrics are the Lance-Williams
and Soergel metrics.

It can be noted that here, for the first time, the Dehmer metric is compared with other classical
metrics [43]. Indeed, proposed as a measure of difference between two molecules described by
a topological descriptor of a molecular graph [44], DEH has been here extended into a
multivariate distance measure.

The second component (explaining 4.1% of the total variance) is related to the different
behaviour of the metrics for the diverse data sets. In particular, WE, CLA and CAN are more

sensible to the data sets.

A NER(0.05) measures B NER(0.05) not classified
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Figure 5. The score plot of the first two PCs for the metrics based on the NER(0.05) measures (A) and
not classified objects (B). B and W are the theoretical best and worst metrics.

The analysis of the behaviour of the metrics with respect to the percentage of not-classified
objects (Figure 5B) was also performed with the purpose to highlight the metrics giving, in the
average, the minimum number of not-classified objects. Two cases B (best) and W (worst) are

added to the 13 metrics representing the two extreme behaviours: B is always zero implying
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that no not-classified object is given, while W is 24-dimensional vector with the maximum
percentage of not-classified objects for each data set. The first component of PCA explains the
87.5% of the total variance and the three metrics nearest to the best are DEH, WE and CAN,
indicating that these metrics, on average, give a small percentage of not-classified objects. CLA
and MAN are not so far from the first ones. Metrics that, on average, give high percentages of
not-classified objects are COS, LW, LAG, SOE, JT, INT, followed by BHA and EUC metrics.
The COS metric appears isolated on the bottom of the figure being its standard deviation twice
the other greatest standard deviations (last row of Appendix E).

The same approach was applied to a matrix where the row are the 13 metrics, the column are
the 31 data sets and each entry is the calculated L measure (Appendix G). Considerations about

this plot are analogous to those given for Fig. SA.

7 Conclusions

In general, both link-based and node-based measures show good performances for classification
purposes and can be considered as a possible reliable complement to other classical
classification tools.

Moreover, the use of 13 different metrics enlarges the possibilities to obtain reliable models,
also increasing the knowledge about the optimal topological space to perform classification. In
particular, the Dehmer metric has been here extended into a multivariate distance measure and
compared with other classical metrics. Manhattan, Lance-Williams, Soergel and Dehmer
metrics seem to perform quite well in several cases. Among the best metrics, Dehmer and
Manhattan give, on average, small reasonable percentages of not-classified objects.

A not marginal advantage of this approach, shared with the SOM method used for classification,
is that the results can be graphically analysed by the obtained spanning tree. Moreover, being a
semi-supervised classification method, an informative representation of a class is not necessary,
since in this case a class can be also represented by a singleton. Indeed, in the link-based
approach, if the object appears as a terminal node, being the number of classes minus one
subtracted to the total link errors, it is correctly viewed as a singleton. This kind of classification
can be also possible also for the node-based approach, but at least two objects of the same class

must be present in a terminal chain.
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Appendix A

The overall classification rate (T) values for each metric and each data set. In bold, the best

results of the T measure.

DATA EUC  CAN Lw MAN LAG CLA SOE BHA WE T cos DEH INT
IRIS 953 953 953 94.6 96.6 940 953 946 953 953 76.5 94.6 94.0
WINES 949 96.6 944 96.6 927 983 944 96.6 955 93.8 96.6 96.6 94.9
PERPOT 99.0 939 949 99.0 97.0 949 949 98.0 939 96.0 84.8 99.0 96.0
ITAOLIS 95.8 940 96.1 96.0 944 930 96.1 95.1 940 96.0 95.8 96.0 96.0
SULFA 755 755 776 75.5 735 776 77.6 755 735 735 67.3 75.5 77.6
VINAGRES 969 985 100.0 985 93.8 985 1000 985 985 1000 985 98.5  100.0
CHEESE 82.0 835 827 82.0 820 767 827 80.5 812 827 82.7 82.7 76.7
OLITOS 79.8 748 798 80.7 739 697 798 79.8 756 824 79.8 76.5 79.8
COFFEE 100.0 97.6 100.0 100.0 100.0 97.6 1000 976 97.6 100.0 100.0 100.0 100.0
DIGITS 639 621 655 65.1 633 63.1 655 625 611 647 62.3 63.7 63.3
VEGOIL 100.0 97.6 100.0 100.0 98.8 927 100.0 100.0 98.8 100.0 100.0 100.0 98.8
CRUDEOIL 92.7 818 855 87.3 89.1 836 855 909 80.0 89.1 92.7 89.1 87.3
APPLE 915 937 923 92.3 90.5 925 923 93.1 935 907 90.7 91.5 90.3
TOBACCO 840 840 80.0 84.0 88.0 840 800 88.0 84.0 80.0 84.0 88.0 80.0
METACYCLINE 76.2 857 810 81.0 76.2 810 810 76.2 857 810 76.2 81.0 71.4
DIABETES 70.1 641 69.8 70.1 69.2 628 69.8 675 656 688 65.2 70.3 67.9
THIOPHENE 87.0 739 87.0 87.0 739 739 87.0 783 739 87.0 783 87.0 82.6
SAND 90.0 8388 838 913 913 913 888 913 838 838 61.3 90.0 92.5

HEARTHDISEASE | 63.8 60.7 63.6 64.6 633 623 63.6 603 61.0 629 62.0 62.9 63.6

BIODEG 816 815 828 823 79.2 813 828 821 804 817 80.5 81.0 81.2
SCHOOL 964 940 952 95.2 952 940 952 97.6 940 952 50.0 97.6 96.4
ORUJOS 975 950 941 95.0 95.0 933 941 95.8 950 975 97.5 95.8 95.0
HIRSUTISM 833 826 864 85.6 811 848 864 848 818 841 85.6 86.4 87.1

SUNFLOWERS 899 855 899 89.9 899 855 899 913 855 92.8 84.1 89.9 92.8

BLOOD 673 663 67.6 67.6 66.3 655 67.5 67.2 665 66.0 65.5 68.0 66.9
VERTEBRAL 796 8.2 773 773 76.1 799 773 79.3 809 780 783 79.9 76.4
BANK 822 86.7 844 82.2 822 800 844 844 867 80.0 68.9 82.2 80.0
MEMBRANE 943 943 943 94.3 943 943 943 943 943 943 42.9 94.3 94.3
HEMOPHILIA 784 79.7 83.8 83.8 784 784 83.8 79.7 784 824 81.1 78.4 83.8
FISH 885 923 885 923 80.8 923 885 846 835 885 88.5 84.6 923

SEDIMENT 89.9 899 904 90.4 899 896 904 895 902 89.8 89.9 89.7 89.4
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Appendix B

The link-based non-error rate (L measure) values for each metric and each data set. In bold, the

absolute best results.
DATA EUC CAN LW MAN  LAG CLA  SOE BHA WE JT COS  DEH INT
IRIS 953 953 953 946 966 940 953 946 953 953 765 946 94.0
WINES 95.0 96.9 947 96.7 927 984 947 96.7 958 940 96.7 96.7 952
PERPOT 99.0 939 949 99.0 97.0 949 949 980 939 960 848 99.0 96.0
ITAOLIS 952 925 957 954 935 912 957 942 928 954 951 952 952
SULFA 717 706 725 717 707 73.6 725 717 688 675 591 726 73.6
VINAGRES 95.8 98.8 100 98.8 913 988 100 988 988 100 988 988 100
CHEESE 761 788 763 750 771 688 763 743 750 760 788 753 66.8
OLITOS 774 719 756 780 714 682 756 784 702 805 768 709 79.6
COFFEE 100 95.1 100 100 100 951 100 951 951 100 100 100 100
DIGITS 692 665 703 695 69.3 67.6 703 682 659 701 67.8 69.0 687
VEGOIL 100 97.6 100 100 99.2 935 100 100 99.2 100 100 100 99.2
CRUDEOIL 889 687 759 788 830 720 759 861 647 827 889 824 788
APPLE 887 917 898 89.6 87.3 903 898 909 915 877 880 885 87.3
TOBACCO 839 840 800 840 880 840 80.0 880 840 800 840 88.0 80.0
METACYCLINE 76.1 857 810 810 761 808 810 761 857 810 761 810 714
DIABETES 66.5 601 662 660 657 589 662 637 616 657 620 656 646
THIOPHENE 871 793 8.8 871 778 793 868 821 791 868 783 8.1 864
SAND 89.5 883 882 909 909 908 8382 909 883 8382 604 895 922
HEARTHDISEASE | 59.4 57.2 59.0 59.6 594 584 590 561 576 591 580 570 59.1
BIODEG 800 796 813 809 780 79.6 8L3 804 787 800 789 794 79.6
SCHOOL 964 940 951 951 952 939 951 975 940 951 509 975 96.3
ORUJOS 9.5 929 916 929 927 905 916 942 929 965 965 942 93.1
HIRSUTISM 784 763 808 808 752 792 808 792 750 774 785 816 817
SUNFLOWERS 88.6 847 888 886 888 844 8388 90.7 842 92.0 830 886 92.0
BLOOD 573 553 568 571 553 549 56.7 557 558 554 541 572 556
VERTEBRAL 77.1 80.1 746 745 73.0 771 746 765 785 754 758 774 739
BANK 822 866 844 822 822 799 844 844 866 800 686 822 799
MEMBRANE 943 943 943 943 943 943 943 943 943 943 452 943 943
HEMOPHILA | 775 787 829 829 772 772 829 787 775 8l6 803 772 829
FISH 885 923 884 923 808 923 834 846 885 834 834 846 923
SEDIMENT 784 786 795 795 788 780 79.5 778 789 782 791 779 771
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Appendix C

The node-based non-error rate (NER(0) measure) values for each metric and each data set

without a membership threshold. In bold, the absolute best results.

DATA EUC CAN LW MAN LAG CIA SOE BHA WE JT COS DEH INT
IRIS 953 953 960 953 973 940 96.0 940 953 947 787 947 947
WINES 95.1 972 957 96.7 937 986 957 970 972 957 969 981 952
PERPOT 100 96.0 980 99.0 99.0 98.0 980 100 96.0 99.0 82.0 980 99.0
ITAOLIS 947 926 93.7 945 932 919 937 935 924 947 942 939 947
SULFA 738 766 724 788 796 675 724 675 716 688 589 752 716
VINAGRES 91.7 987 100 100 917 987 100 100 987 958 100 100 100
CHEESE 725 772 742 739 742 671 742 733 733 701 79.0 725 656
OLIToS 652 671 661 719 675 674 661 709 641 745 699 634 758
COFFEE 100 929 100 100 100 929 100 929 929 100 100 100 100
DIGITS 650 619 656 653 643 619 656 622 618 654 629 66.6 644
VEGOIL 100 100 100 100 990 948 100 100 100 100 100 100 99.0
CRUDEOIL 831 636 736 744 762 701 736 801 614 822 879 814 744
APPLE 896 93.0 898 902 883 918 898 916 926 888 832 890 879
TOBACCO 769 769 769 808 769 808 769 808 769 769 846 808 769

METACYCLINE 825 917 917 825 825 875 917 825 875 908 825 867 825

DIABETES 682 612 668 667 682 597 668 640 619 683 634 659 66.7
THIOPHENE 79.2 708 79.2 792 708 708 79.2 750 750 79.2 708 792 79.2
SAND 873 869 8384 8384 899 869 8384 873 869 873 66.0 834 909
HEARTHDISEASE | 59.3 583 57.7 598 566 582 577 596 581 601 585 56.8 59.7
BIODEG 823 811 824 85 807 806 824 828 811 828 806 810 821
SCHOOL 929 940 940 940 929 915 940 951 940 940 500 951 927
ORUJOS 100 982 977 977 941 941 977 982 100 100 100 100 97.1
HIRSUTISM 824 838 891 848 762 858 891 877 781 79.0 799 896 891

SUNFLOWERS 90.0 885 912 931 90.8 836 912 900 878 920 844 892 958

BLOOD 559 559 558 566 547 553 558 545 57.0 544 534 56.7 56.4
VERTEBRAL 77.7 818 757 757 769 774 757 779 806 772 766 779 767
BANK 789 805 849 809 829 785 849 765 805 765 642 809 869
MEMBRANE 944 97.2 944 944 944 944 944 944 97.2 944 472 944 917
HEMOPHILIA 794 80.0 850 839 778 783 850 806 800 783 850 767 817
FISH 89.0 929 929 929 816 89.0 929 890 816 929 854 854 100

SEDIMENT 854 859 859 859 851 834 859 849 858 850 86.6 86.6 838
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Appendix D

The weighted node based non-error rate (NER(0.05) measure) for each metric and each data set

by using a membership threshold of 0.05. In bold, the absolute best results.

DATA EUC CAN LW MAN LAG CLA SOE BHA WE T COS DEH INT
IRIS 959 960 966 959 97.2 952 96.6 959 96.0 959 794 958 953
WINES 959 972 9.4 976 950 99.5 964 973 972 965 980 981 96.9
PERPOT 100 95.8 989 100 99.0 980 989 100 959 99.0 916 100 100
ITAOLIS 948 936 945 947 942 920 945 939 928 951 946 946 955
SULFA 771 751 816 789 8.4 719 785 769 732 710 534 775 739
VINAGRES 952 100 100 100 917 100 100 100 100 100 100 100 100
CHEESE 727 769 734 754 803 677 734 747 733 735 813 734 66.0
OLITOs 70.1 671 721 708 733 683 721 735 641 776 732 634 810
COFFEE 100 929 100 100 100 929 100 929 929 100 100 100 100
DIGITS 680 647 702 691 662 650 692 659 639 687 648 700 68.0
VEGOIL 100 100 100 100 99.0 9.8 100 100 100 100 100 100 99.0
CRUDEOIL 831 636 731 744 767 719 731 786 621 90.0 90.0 814 729
APPLE 915 934 921 904 8.1 924 921 935 93.0 90.0 914 89.2 892
TOBACCO 80.1 769 809 808 885 808 809 875 769 809 871 808 792
METACYCLINE 80.8 917 950 850 8.0 875 950 814 875 899 819 867 813
DIABETES 69.7 616 688 684 696 607 688 663 620 687 648 659 67.6
THIOPHENE 857 76.6 857 8.7 778 76.6 857 878 750 857 878 827 838
SAND 913 878 914 928 918 910 914 929 878 926 646 892 931
HEARTHDISEASE | 63.2 57.8 605 613 612 583 605 593 580 635 599 567 610
BIODEG 849 821 855 848 8.2 823 856 859 818 855 832 820 845
SCHOOL 96.1 93.8 961 938 974 923 962 986 938 962 508 973 947
ORUJOS 100 982 995 976 974 958 995 100 100 100 100 100 97.1
HIRSUTISM 823 852 892 839 788 856 8.2 872 789 789 806 893 888
SUNFLOWERS 945 885 946 929 916 848 946 928 878 946 856 892 96.9
BLOOD 58.1 56.2 56.7 577 551 559 572 560 569 559 550 571 567
VERTEBRAL 829 8.0 785 769 762 792 785 79.6 814 802 810 786 80.1
BANK 833 816 872 825 876 809 8.0 854 796 810 699 842 857
MEMBRANE 970 972 970 970 970 970 970 970 972 97.0 429 97.0 100
HEMOPHILIA 826 80.1 871 871 815 814 871 848 792 839 860 804 867
FISH 920 923 962 962 847 890 962 885 8l6 923 923 8385 100
SEDIMENT 854 861 852 864 852 842 855 846 867 842 862 867 827
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Appendix E

The percentage of not-classified objects compared with the PLS/DA. Bold character highlights

the percentages of not-classified objects corresponding to the best NER results.

DATA EUC CAN LW MAN LAG CLA SOE BHA WE JT COS DEH INT PLS/DA
IRIS 27 07 13 13 33 20 13 33 07 27 140 33 13 [ 232
WINES 11 00 39 11 39 17 28 28 00 28 22 06 34 0
PERPOT 20 40 90 30 30 10 50 40 30 20 170 30 50 0
ITAOLIS 33 24 30 14 37 31 30 31 12 33 33 12 40 0
SULFA 140 40 220 40 140 60 180 140 80 140 180 4.0 140 0
VINAGRES 15 15 15 00 30 15 15 15 15 15 15 0.0 15 4.5
CHEESE 67 07 75 15 112 07 75 37 00 60 104 07 12.7| 209
ouTos 100 00 125 17 125 58 125 75 00 100 150 00 100 | 183
COFFEE 00 00 47 00 00 00 23 00 00 00 00 00 23 0
DIGITS 112 78 154 126 100 7.4 124 150 6.6 11.8 116 140 11.8 88
VEGOIL 00 00 24 00 36 12 12 00 00 00 12 0.0 12 36
CRUDEOIL 1.8 00 89 00 54 54 89 71 18 89 54 00 7.1 125
APPLE 37 08 35 12 49 14 35 37 08 35 53 04 41 0
TOBACCO 77 00 192 00 154 0.0 192 77 00 192 115 00 7.7 0
METACYCLINE 91 00 136 9.1 91 00 91 45 00 91 45 00 9.1 0
DIABETES 112 68 111 90 109 104 108 109 60 112 156 3.6 102 0
THIOPHENE 83 125 125 125 167 125 125 250 0.0 83 250 42 250 167
SAND 74 25 74 74 37 74 74 74 25 111 370 25 49 0
HEARTHDISEASE | 145 56 160 110 13.0 95 158 121 50 158 143 17 132 0
BIODEG 91 31 9.1 6.3 84 42 88 66 16 91 91 27 94 0
SCHOOL 714 24 71 35 82 47 47 71 12 47 435 24 59 30.6
ORUJOS 25 00 33 17 42 08 25 08 08 17 17 08 08 0
HIRSUTISM 68 30 45 23 83 38 45 90 15 83 83 15 60 0
SUNFLOWERS 714 00 71 14 43 29 57 57 00 57 71 00 14 0
BLOOD 110 64 98 106 87 71 90 111 49 94 106 100 83 0
VERTEBRAL 106 45 77 61 84 55 77 90 29 116 116 39 132 0
BANK 87 65 152 130 130 87 130 109 43 87 196 43 87 0
MEMBRANE 111 83 139 111 111 139 111 139 28 111 389 83 167 | 417
HEMOPHILIA 107 93 93 93 120 133 93 120 80 120 187 120 107 0
FISH 74 74 74 37 74 00 74 37 00 111 74 37 74 0
SEDIMENT 30 20 39 16 38 31 40 35 14 40 42 13 47 0
AVERAGE 68 33 88 48 79 47 78 73 21 77 143 29 78 8.4
STD.DEVIATION | 41 34 53 45 43 41 49 54 25 48 111 36 54 | 183
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Appendix F

Comparison of the results obtained by T, L, NER(0) and NER(0.05) measures, and by the NER
of wKNN, KNN, N3, PLS/DA, SVM and BNN classification methods, assumed as references.

In bold are shown the best results and in italics the best results.

DATA T L NER(0) NER(0.05) | wKNN KNN N3 PLS-DA SVM BNN
RIS 9.6 966 973 972 | 97 97 9.0 902 973 967
WINES 983 984 986 99.5 980 977 962 995 995 986
PERPOT 99.0 990 100 100 99.0 990 990 860 100 99.0
ITAOLIS 961 957 947 95.5 947 947 962 959 959 952
SULFA 776 736 796 82.4 738 738 774 740 887 738
CHEESE 835 788  79.0 81.0 794 781 761 847 856 783
otTos 824 805 758 810 704 704 891 940 876 736
COFFEE 100 100 100 100 100 100 100 100 100 100
VEGOIL 100 100 100 100 990 990 990 990 100 100
TosAcco 880 880 8456 885 | 923 923 23 885 923 923
METACYCLINE | 557 857 917 950 | 825 825 825 558 825 867
THIOPHENE 870 871 792 87.8 833 833 833 905 833 833
SAND 925 922 909 93.1 939 939 939 939 949 949
HEARTHDISEASE | c1 6 506  60.1 63.5 632 632 69.9 697 680 652
ScHoOL 976 975 951 98.6 92 962 953 894 964 966
ORUIOS 975 965 100 100 982 982 982 939 982 984
HIRSUTISM 871 817 896 89.3 900 900 883 841 938 90.1
SUNFLOWERS | g)8 920 9538 9.9 912 912 923 927 969 90.4
DIABETES 703 665 683 69.7 705 705 736 751 728 711
BLOOD 680 573 57.0 58.1 636 623 679 687 641 622
VERTEBRAL 822 801 818 830 | 802 802 808 821 843 8L6
BIODEG 828 813 8238 859 | 855 854 845 799 838 853
DIGITS 655 703 666 702 737 736 742 410 745 723
BANK 867 866 869 87.6 8.9 869 869 849 889 912
VINAGRES 100 100 100 100 958 958 100 100 100 958
MEMBRANE 943 943 972 100 944 944 944 967 944 944
CRUDEOIL 927 889 879 90.0 87.9 879 892 897 848 848
HEMOPHILIA 838 829 850 87.1 828 828 856 856 856 856
FisH 923 923 100 100 929 929 926 100 100 929
APPLE 937 917 930 935 919 919 940 954 923 923
SEDIMENT 9.4 795 866 86.7 89.9 899 889 794 699 889




298

Appendix G
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The score plot of the first two PCs for the metrics based on the L measures. B and W are the

theoretical best and worst metrics.



