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Abstract

The PCI (Partial-Cycle-Index) method of Fujita’s USCI (Unit-Subduced-Cycle-
Index) approach has been applied to symmetry-itemized enumerations of cubane
derivatives, where groups for specifying three-aspects of symmetry, i.e., the point
groupOh for chirality/achirality, theRS -stereogenic groupOσ̃ for RS -stereogenicity/
RS -astereogenicity, and the LR-permutation group OÎ for sclerality/ascrelarity are
considered as the subgroups of the RS -stereoisomeric group Ohσ̃Î . Five types of
stereoisograms are adopted as diagrammatical expressions of Ohσ̃Î , after combined-
permutation representations (CPR) are created as new tools for treating various
groups according to Fujita’s stereoisogram approach. The use of CPRs under the
GAP (Groups, Algorithms and Programming) system has provided new GAP func-
tions for promoting symmetry-itemized enumerations. The type indices for charac-
terizing stereoisograms (e.g., [a,−,−] for a type-V stereoisogram) have been sophis-
ticated into RS -stereoisomeric indices (e.g., [[C ′

s, C̃
′
s, C1]] for a cubane derivative

with the composition H5App). The type-V stereoisograms for cubane derivatives
with the composition H5App are discussed under extended pseudoasymmetry as a
new concept.
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1 Introduction

Through the history of stereochemistry, two different ways taken by van’t Hoff (asymme-

try) [1, 2] and by Le Bel (dissymmetry) [3, 4] have caused serious conceptual confusions

continuously, as discussed detailedly [5]. Although the van’t Hoff’s term “asymmetry”

was replaced by the term “stereogenicity” in the article by Mislow-Siegel [6], while the

Le Bel’s term “dissymmetry” was replaced by the term “chirality” in the lecture by Lord

Kelvin [7], the serious conceptual confusions described above have not been overcome.

Mislow-Siegel’s “stereogenicity” [6] has been found to be an ad hoc remedy without

mathematical formulations. Thus, Mislow-Siegel’s “stereogenicity” with the use of the

term “chirotopicity” has enhanced exceptional treatment of “pseudoasymmetry”, so as to

increase the confusion due to permutation groups without differentiating reflections from

rotations.

Modern stereochemistry lays stress on van’t Hoff’s way (asymmetry and later stere-

ogenicity) as if Le Bel’s way (dissymmetry and later chirality) is involved subsidiarily

in van’t Hoff’s way. This methodology results in the misleading attitude that the con-

clusion due to van’t Hoff’s way (asymmetry and later stereogenicity) is discussed from

the aspect of chirality. Even if their target molecules are chiral, for example, experimen-

tal approaches (e.g., catalytic asymmetric synthesis by Ryoji Noyori (Nobel-Prize 2001))

are based on van’t Hoff’s way (asymmetry and later stereogenicity) as far as they are

interested in processes of stereospecific syntheses. Moreover, the chirality of each tar-

get molecule is specified by means of R/S -stereodescriptors, which stem from the CIP

(Cahn-Ingold-Prelog) system by Vladimir Prelog (Nobel-Prize 1975) et al. Note that al-

though such R/S -stereodescriptors rely mainly on stereogenicity proposed by Mislow and

Siegel [6] (not chirality, nor RS -stereogenicity), they aim at specifying chirality without

integration between misleading attitude concerning stereogenicity and chirality.

In order to discuss the net interaction between chirality and stereogenicity, the author

(Fujita) has proposed the concept of RS -stereogenicity [8, 9], which is a substantial and

meaningful restriction of Mislow-Siegel’s stereogenicity [6]. Fujita’s RS -stereogenicity is

differentiated from Mislow-Siegel’s stereogenicity by considering five types of stereoiso-

grams. In a previous account article [10], the author (Fujita) has pointed out two aspects

of symmetry, i.e., chirality and RS -stereogenicity, as two kinds of handedness. After he

has proposed sclerality as an additional aspect, he has accomplished the Aufheben of the
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three aspects so as to propose the concept of RS -stereoisomerism. Group-theoretically

speaking, a pair of chirality/achirality is discussed on the basis of point groups; a pair of

RS -stereogenicity/RS -astereogenicity is discussed on the basis of RS -stereogenic groups;

and a pair of sclerality/asclerality is discussed on the basis of LR (ligand-reflection) per-

mutation groups; and finally RS -stereoisomerism as the integrated concept is discussed

on the basis of RS -stereoisomeric groups [8, 9, 11].

The applicabilities of Fujita’s proligand method for gross enumeration [12] have been

studied by using a cubane skeleton of Oh-point group as a probe; i.e., gross enumerations

of cubane derivatives by Fujita’s proligand method [13], by Fujita’s markaracter method

[14], by Fujita’s characteristic-monomial method [15], by Fujita’s extended-superposition

method [16], and by Fujita’s double-coset-representation method [17].

Fujita’s USCI (unit-subduced-cycle-index) approach is based on the concepts of sub-

duction of coset representations, sphericities, and chirality fittingness, which are inte-

grated to develop the concept of unit subduced cycle indices without and with chirality

fittingness (USCIs and USCI-CFs) [18]. Fujita’s USCI approach [18, 19] have been ap-

plied to symmetry-itemized enumerations of cubane derivatives by the partial-cycle-index

method [20] and the elementary-superposition method of Fujita’s USCI approach [21]; as

well as enumeration due to the edge strategy [22]. Systematic enumeration and symmetries

of cubane derivatives have been discussed in a review article [23]. Fujita’s stereoisogram

approach [24,25] has been applied to discuss stereoisograms of cubane derivatives by using

an RS -stereoisomeric group [26].

Remaining tasks are the examination of applicability of newly-defined combined-

permutation representations (CPRs) [27] to Fujita’s stereoisogram approach under the

GAP (Groups, Algorithms and Programming) system, [28] as well as further feasibility

of Fujita’s stereoisogram approach to studies concerning symmetry-itemized enumeration

of RS -stereoisomers.

2 Construction of stereoisograms for cubane deriva-

tives

2.1 Elementary stereoisogram for a cubane skeleton

Although stereoisograms of cubane derivatives have been studied by using an RS -stereo-

isomeric group [26], they are now reinvestigated by using newly-defined combined-permu-
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tation representations (CPRs) [27] under the GAP system [28]. Note that early enumer-

ations of Fujita’s stereoisogram approach [26] under the RS -stereoisomeric group Ohσ̃Î

are conducted without adopting CPRs by using the Maple programming system as the

continuation of Fujita’s USCI approach [20].

Essences of the previous report [26] are repeated by using CPRs as a new matter. Fu-

jita’s stereoisogram approach adopts the concept of proligand-promolecule model based

on a given skeleton, where a proligand is presumed to be an abstract ligand (substituent)

with chirality/achirality but with no concrete 3D information, and a promolecule is re-

garded as an abstract molecule which is formed from a skeleton and several proligands.

During this process of forming a promolecule, the symmetry of a skeleton (e.g., the point

group Oh for a cubane skeleton) is restricted into an appropriate subgroup of Oh to

specify the point-group symmetry of the resulting promolecule. Fujita’s stereoisogram

approach presumes that such a skeleton is governed by an RS -stereoisomeric group (e.g.,

Ohσ̃Î for a cubane skeleton), which is an extention of the point group Oh. According to

the restriction of the point group Oh, the corresponding RS -stereoisomeric group Ohσ̃Î is

restricted to its subgroup to specify the resulting promolecule.

Figure 1 illustrates an elementary stereoisogram for a cubane skeleton. The skeleton

1 (A) is selected as a reference skeleton for indicating a cubane skeleton, which is paired

with an enantiomeric skeleton 1 (B). The pair of enantiomers [1 1] belongs to the point

group Oh.

2.2 Chiral point group O as a fundamental group

The skeleton 1 (A) is stabilized by the point group O (O cube: order 24), which is

composed by 24 rotations generated from a set of generators gen 1 by using a GAP

function Group as follows. The order of O (O cube) is obtained by using a GAP function

Size and the 24 rotations (as permutations) are obtained by a GAP function Elements.

Point Group O (O cube: order 24)

gap> #Point group O

gap> gen_1 := [(1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6)];;

gap> O_cube := Group(gen_1); #cube-vertical

Group([ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6) ])

gap> Size(O_cube);

24

gap> Display(Elements(O_cube));

[ (), (2,4,5)(3,8,6), (2,5,4)(3,6,8), (1,2)(3,5)(4,6)(7,8), (1,2,3,4)(5,6,7,8),

(1,2,6,5)(3,7,8,4), (1,3,6)(4,7,5), (1,3)(2,4)(5,7)(6,8), (1,3,8)(2,7,5),

(1,4,3,2)(5,8,7,6), (1,4,8,5)(2,3,7,6), (1,4)(2,8)(3,5)(6,7), (1,5,6,2)(3,4,8,7),
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Figure 1. Elementary stereoisogram for a cubane skeleton. The respective skele-
tons are tentatively linked with double-headed arrows [26].

(1,5,8,4)(2,6,7,3), (1,5)(2,8)(3,7)(4,6), (1,6,3)(4,5,7), (1,6)(2,5)(3,8)(4,7),

(1,6,8)(2,7,4), (1,7)(2,3)(4,6)(5,8), (1,7)(2,6)(3,5)(4,8), (1,7)(2,8)(3,4)(5,6),

(1,8,6)(2,4,7), (1,8,3)(2,5,7), (1,8)(2,7)(3,6)(4,5) ]

gap>

The mark table (tom O cube) of the point group O (O cube) is obtained by using the

GAP function TableOfMarks as a 11× 11 lower-triangular matrix as follows:

Mark Table of Point Group O (O cube: order 24)

gap> gen_1 := [(1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6)];;

gap> O_cube := Group(gen_1);

Group([ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6) ])

gap> Size(O_cube);

24

gap> tom_O_cube := TableOfMarks(O_cube);;

gap> Display(tom_O_cube);

1: 24

2: 12 4

3: 12 . 2

4: 8 . . 2

5: 6 6 . . 6

6: 6 2 . . . 2

7: 6 2 2 . . . 2

8: 4 . 2 1 . . . 1

9: 3 3 1 . 3 1 1 . 1

10: 2 2 . 2 2 . . . . 2

11: 1 1 1 1 1 1 1 1 1 1 1

gap>

This mark table tom O cube is not standardized (cf. Ref. [29]) so that the sequence

of the subgroups obey the convention of the GAP system, which is shown above each
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upperbrace of the following SSGO. It should be noted that the use of Size is neccessary

to obtain a mark table tom O cube with a settled sequence.

SSGO ={
1︷︸︸︷
C1︸︷︷︸
1

,

2︷︸︸︷
C2︸︷︷︸
2

,

3︷︸︸︷
C ′

2︸︷︷︸
3

,

4︷︸︸︷
C3︸︷︷︸
4

,

5︷︸︸︷
D2︸︷︷︸
6

,

6︷︸︸︷
C4︸︷︷︸
5

,

7︷︸︸︷
D ′

2︸︷︷︸
7

,

8︷︸︸︷
D3︸︷︷︸
8

,

9︷︸︸︷
D4︸︷︷︸
9

,

10︷︸︸︷
T︸︷︷︸
10

,

11︷︸︸︷
O︸︷︷︸
11

} (1)

The author (Fujita) has calculated the following standard mark table by means of the

FORTRAN77 calculation [20,21]. The mark table tom O cube calculated above by means

of the GAP function TableOfMarks should be sorted to convert into the standard mark

table shown below. In particular, tom O cube has the sequence

5︷︸︸︷
D2︸︷︷︸
6

6︷︸︸︷
C4︸︷︷︸
5

7︷︸︸︷
D ′

2︸︷︷︸
7

according

to upper sequential numbers, which should be sorted into the standard sequence

6︷︸︸︷
C4︸︷︷︸
5

5︷︸︸︷
D2︸︷︷︸
6

7︷︸︸︷
D ′

2︸︷︷︸
7

according to lower sequential numbers. As a result of this sorting, there emerges the

following standard mark table, which has originally been constructed by the subduction

procedure based on the FORTRAN77 programming language.

Standard Mark Table for the Point Group O (O cube)

O_______

/C1______24 0 0 0 0 0 0 0 0 0 0

/C2______12 4 0 0 0 0 0 0 0 0 0

/C2#_____12 0 2 0 0 0 0 0 0 0 0

/C3______ 8 0 0 2 0 0 0 0 0 0 0

/C4______ 6 2 0 0 2 0 0 0 0 0 0

/D2______ 6 6 0 0 0 6 0 0 0 0 0

/D2#_____ 6 2 2 0 0 0 2 0 0 0 0

/D3______ 4 0 2 1 0 0 0 1 0 0 0

/D4______ 3 3 1 0 1 3 1 0 1 0 0

/T_______ 2 2 0 2 0 2 0 0 0 2 0

/O_______ 1 1 1 1 1 1 1 1 1 1 1

The upper sequence of Eq. 1 is reprented by list1, while the lower sequence is

represented by list2. The resulting permutation is obtained by the GAP function

PermListList to be perm= (5,6). This is applied to the unsorted mark table tom O cube.

Thereby, the resulting sorted mark table is identical with the standard mark table shown

above obtained by the FORTRAN77 language.
gap> gen_1 := [(1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6)];; #generators for O

gap> O_cube := Group(gen_1);

Group([ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6) ])

gap> Display(Size(O_cube));;

24

gap> tom_O_cube := TableOfMarks(O_cube);;

gap>

gap> list1 := [1,2,3,4,5,6,7,8,9,10,11];;

gap> list2 := [1,2,3,4,6,5,7,8,9,10,11];;

gap>
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gap> perm := PermListList(list1, list2);

(5,6)

gap> Display(SortedTom(tom_O_cube, perm));

1: 24

2: 12 4

3: 12 . 2

4: 8 . . 2

5: 6 2 . . 2

6: 6 6 . . . 6

7: 6 2 2 . . . 2

8: 4 . 2 1 . . . 1

9: 3 3 1 . 1 3 1 . 1

10: 2 2 . 2 . 2 . . . 2

11: 1 1 1 1 1 1 1 1 1 1 1

Such standardizations of mark tables and USCI-CF (unit subduced cycle indices with

chirality fittingness) tables have been discussed by using different Oh-skeletons (e.g., oc-

tahedron (OC-6), cube (CU-8), cuboctahedron, truncated octahedron, and truncated

hexahedron) as probes [30] after various GAP functions were newly developed to carry

out concordant generation of standard mark tables and USCI tables [29].

2.3 Point group Oh for the first-kind of handedness

A pair of enantiomeric skeletons, 1 (A) and 1 (B), is controlled by the point group Oh

(Oh cube: order 48) which is composed of the 24 rotations (∈ O) and additional 24

reflections generated from a set of generators gen 2. The reflection σh(1) is illustrated

in Figure 2, where the interconversion of a pair of enantiomers 1/1 is controlled by

a CPR (combined-permutation representation). In the CPR, an overline for a mirror-

permutation (for the Maple programming language [20]) is replaced by an additional

2-cycle permutation (9 10) (for the GAP system in this article).

Point Group Oh (Oh cube: order 48)

gap> #Point group Oh

gap> gen_2 := [(1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (1,5)(2,6)(3,7)(4,8)(9,10)];;

gap> Oh_cube := Group(gen_2); #cube-vertical

Group([ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (1,5)(2,6)(3,7)(4,8)(9,10) ])

gap> Size(Oh_cube);

48

gap> #Display(Elements(Oh_cube));

gap> CosetDecomposition(Oh_cube,O_cube);

[ [ (), (2,4,5)(3,8,6), (2,5,4)(3,6,8), (1,2)(3,5)(4,6)(7,8), (1,2,3,4)(5,6,7,8),

(1,2,6,5)(3,7,8,4), (1,3,6)(4,7,5), (1,3)(2,4)(5,7)(6,8), (1,3,8)(2,7,5),

(1,4,3,2)(5,8,7,6), (1,4,8,5)(2,3,7,6), (1,4)(2,8)(3,5)(6,7),

(1,5,6,2)(3,4,8,7), (1,5,8,4)(2,6,7,3), (1,5)(2,8)(3,7)(4,6), (1,6,3)(4,5,7),

(1,6)(2,5)(3,8)(4,7), (1,6,8)(2,7,4), (1,7)(2,3)(4,6)(5,8), (1,7)(2,6)(3,5)(4,8),

(1,7)(2,8)(3,4)(5,6), (1,8,6)(2,4,7), (1,8,3)(2,5,7), (1,8)(2,7)(3,6)(4,5) ],

[ (3,6)(4,5)(9,10), (2,5)(3,8)(9,10), (2,4)(6,8)(9,10), (1,2)(3,4)(5,6)(7,8)(9,10),

(1,2,6,7,8,4)(3,5)(9,10), (1,2,3,7,8,5)(4,6)(9,10), (1,6)(4,7)(9,10),

(1,6,8,3)(2,5,7,4)(9,10), (1,6,3,8)(2,7,4,5)(9,10),

(1,5,8,7,3,2)(4,6)(9,10), (1,5)(2,6)(3,7)(4,8)(9,10), (1,5,6,7,3,4)(2,8)(9,10),

(1,4,8,7,6,2)(3,5)(9,10), (1,4)(2,3)(5,8)(6,7)(9,10), (1,4,3,7,6,5)(2,8)(9,10),

(1,3)(5,7)(9,10), (1,3,8,6)(2,4,7,5)(9,10),

(1,3,6,8)(2,7,5,4)(9,10), (1,7)(2,6,5,8,4,3)(9,10), (1,7)(2,3,4,8,5,6)(9,10),

(1,7)(2,8)(3,5)(4,6)(9,10),
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(1,8,3,6)(2,5,4,7)(9,10), (1,8,6,3)(2,4,5,7)(9,10), (1,8)(2,7)(9,10) ] ]

gap>

The resulting groupOh (Oh cube: order 48) is decomposed into two cosets by using the

GAP function CosetDecomposition. The 24 rotations of the first coset (surrounded by

the first inner pair of square brackets) belong to its maximum chiral subgroupO (order 24)

and the 24 reflections of the second coset (surrounded by the second inner pair of square

brackets) belongs to the coset Oσh(1) according to the following coset decomposition:

Oh = O︸︷︷︸
A

+ Oσ︸︷︷︸
B

= O︸︷︷︸
A

+ Oi︸︷︷︸
B

(2)

where the symbol σ represents an appropriate reflection (e.g., σh(1)). Note that the inver-

sion i is regarded as a kind of reflection, so that the coset Oσ is identical with the coset

Oi. The resulting coset for reflections, i.e., Oσ︸︷︷︸
B

(or Oi︸︷︷︸
B

), is composed of permutations

with an additional 2-cycle permutation (9 10).

2.4 RS-stereogenic group Oσ̃ for the second-kind of handedness

The horizontal direction of the elementary stereoisogram (Figure 1) indicates RS -stereoge-

nicity, where the two skeletons, i.e., 1 (A) and 2 (C), construct a pair of RS -diastereomers,

which are interchanged by an RS -permutation σ̃h(1) (∼ (1 5)(2 6)(3 7)(4 8)(1)(2) ∈ Oσ̃).

The effect of the RS -permutation σ̃h(1) onto the cubane skeleton 1 is depicted in Figure

3. If we obey the conventions of the GAP system, any 1-cycle can be omitted, so that

we can use (1 5)(2 6)(3 7)(4 8) after the deletion of an overline from (1 5)(2 6)(3 7)(4 8)

or the deletion of two 1-cycles (1)(2) from (1 5)(2 6)(3 7)(4 8)(9)(10), which is generated

from a 2-cycle (9 10). The resulting numbered skeleton 2 is not accompanied with ligand

reflections, so that the eight positions are numbered without using an overbar.

The effect of σ̃h(1) means the detachment of substituents from one skeleton 1 (A) and

the reattachment of the detached substituents, so as to give the other skeleton 2 (C). No

inversion in each substituent occurs during the detachment-reattachment process shown

in Figure 3, so that no overline is attached in each position of the resulting skeleton 2

(C). The detachment-reattachment process (Figure 3) can be alternatively considered to

be the intervention of such a graph as 3, where the inner square of 3 moves upwards or

downwards to form a cubane skeleton.
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Group-theoretically speaking, the horizontal directions of the elementary stereoiso-

gram are governed by an RS -stereogenic group Oσ̃ (Os cube), which is generated by a set

of generators gen 3 as follows:

RS -stereogenic group Oσ̃ (Os cube: order 48)

gap> gen_3 := [(1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (1,5)(2,6)(3,7)(4,8)];;

gap> Os_cube := Group(gen_3);

Group([ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (1,5)(2,6)(3,7)(4,8) ])

gap> Size(Os_cube);

48

gap> CD_Os_O := CosetDecomposition(Os_cube,O_cube);;

gap> Display(CD_Os_O[1]);

[ (), (2,4,5)(3,8,6), (2,5,4)(3,6,8), (1,2)(3,5)(4,6)(7,8), (1,2,3,4)(5,6,7,8),

(1,2,6,5)(3,7,8,4), (1,3,6)(4,7,5),(1,3)(2,4)(5,7)(6,8), (1,3,8)(2,7,5),

(1,4,3,2)(5,8,7,6), (1,4,8,5)(2,3,7,6), (1,4)(2,8)(3,5)(6,7), (1,5,6,2)(3,4,8,7),

(1,5,8,4)(2,6,7,3), (1,5)(2,8)(3,7)(4,6), (1,6,3)(4,5,7), (1,6)(2,5)(3,8)(4,7),

(1,6,8)(2,7,4), (1,7)(2,3)(4,6)(5,8), (1,7)(2,6)(3,5)(4,8),

(1,7)(2,8)(3,4)(5,6), (1,8,6)(2,4,7), (1,8,3)(2,5,7),(1,8)(2,7)(3,6)(4,5) ]

gap> Display(CD_Os_O[2]);

[ (3,6)(4,5), (2,5)(3,8), (2,4)(6,8), (1,2)(3,4)(5,6)(7,8), (1,2,6,7,8,4)(3,5),

(1,2,3,7,8,5)(4,6), (1,6)(4,7), (1,6,8,3)(2,5,7,4), (1,6,3,8)(2,7,4,5),

(1,5,8,7,3,2)(4,6), (1,5)(2,6)(3,7)(4,8), (1,5,6,7,3,4)(2,8), (1,4,8,7,6,2)(3,5),

(1,4)(2,3)(5,8)(6,7), (1,4,3,7,6,5)(2,8), (1,3)(5,7),

(1,3,8,6)(2,4,7,5), (1,3,6,8)(2,7,5,4), (1,7)(2,6,5,8,4,3), (1,7)(2,3,4,8,5,6),

(1,7)(2,8)(3,5)(4,6), (1,8,3,6)(2,5,4,7), (1,8,6,3)(2,4,5,7), (1,8)(2,7) ]

gap>

The coset decomposition CD Os O, which is generated by means of the GAP function

CosetDecomposition, is separated into two cosets, where the second coset CD Os O[2]

(Oσ̃: C) is generated by omitting ligand-reflections (9 10) from the reflections collected

in the coset Oσ (B) of Eq. 2. They are collected as Oσ̃ (C) of Eq. 3:

Oσ̃ = O︸︷︷︸
A

+ Oσ̃︸︷︷︸
C

= O︸︷︷︸
A

+ Oı̃︸︷︷︸
C

(3)

2.5 LR-permutation group OÎ as a key group for integrating

two-kinds of handedness

Let us examine the diagonal directions of the elementary stereoisogram (Figure 1). At

first, the relationship between 1 (Figure 2) and 2 (Figure 3) indicates the following rela-

tionship:

σ̃h(1)σ
−1
h(1) = Î ∼ (1)(2)(3)(4)(5)(6)(7)(8)(9 10) = (9 10) (4)

It follows that the action of (9 10) (= Î) on 1 generates 2 vice versa along one of the

diagonal directions. In a parallel way, the action of (9 10) (= Î) on 1 generates 2 along
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the other one of diagonal directions. Because 2 is enantiomeric to 2 (Compare Figure

3 and Figure 4), the relationship between 1 and 2 (or between 1 and 2) is called a

holantimeric relationship. Note that the CPR (1)(2)(3)(4)(5)(6)(7)(8)(9 10) or (9 10) is

used to designate Î in place of the overlined expression, (1)(2)(3)(4)(5)(6)(7)(8).

Group-theoretically speaking, such a holantimeric pair 1 and 2 along the one of the

diagonal direction is governed by an LR-permutation group OÎ . A set of generators gen 4

generates the LR-permutation group OÎ (OI cube) as follows:

LR-permutation group OÎ (OI cube: order 48)

gap> gen_4 := [(1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (9,10)];;

gap> OI_cube := Group(gen_4);

Group([ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (9,10) ])

gap> Size(OI_cube);

48

gap> CD_OI_O := CosetDecomposition(OI_cube,O_cube);;

gap> Display(CD_OI_O[1]);

[ (), (2,4,5)(3,8,6), (2,5,4)(3,6,8), (1,2)(3,5)(4,6)(7,8), (1,2,3,4)(5,6,7,8),

(1,2,6,5)(3,7,8,4), (1,3,6)(4,7,5), (1,3)(2,4)(5,7)(6,8), (1,3,8)(2,7,5),

(1,4,3,2)(5,8,7,6), (1,4,8,5)(2,3,7,6), (1,4)(2,8)(3,5)(6,7), (1,5,6,2)(3,4,8,7),

(1,5,8,4)(2,6,7,3), (1,5)(2,8)(3,7)(4,6), (1,6,3)(4,5,7), (1,6)(2,5)(3,8)(4,7),

(1,6,8)(2,7,4), (1,7)(2,3)(4,6)(5,8), (1,7)(2,6)(3,5)(4,8), (1,7)(2,8)(3,4)(5,6),

(1,8,6)(2,4,7), (1,8,3)(2,5,7), (1,8)(2,7)(3,6)(4,5) ]

gap> Display(CD_OI_O[2]);

[ ( 9,10), ( 2, 4, 5)( 3, 8, 6)( 9,10), ( 2, 5, 4)( 3, 6, 8)( 9,10),

( 1, 2)( 3, 5)( 4, 6)( 7, 8)( 9,10), ( 1, 2, 3, 4)( 5, 6, 7, 8)( 9,10),

( 1, 2, 6, 5)( 3, 7, 8, 4)( 9,10), ( 1, 3, 6)( 4, 7, 5)( 9,10),

( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,10), ( 1, 3, 8)( 2, 7, 5)( 9,10),

( 1, 4, 3, 2)( 5, 8, 7, 6)( 9,10), ( 1, 4, 8, 5)( 2, 3, 7, 6)( 9,10),

( 1, 4)( 2, 8)( 3, 5)( 6, 7)( 9,10), ( 1, 5, 6, 2)( 3, 4, 8, 7)( 9,10),

( 1, 5, 8, 4)( 2, 6, 7, 3)( 9,10), ( 1, 5)( 2, 8)( 3, 7)( 4, 6)( 9,10),

( 1, 6, 3)( 4, 5, 7)( 9,10), ( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,10),

( 1, 6, 8)( 2, 7, 4)( 9,10), ( 1, 7)( 2, 3)( 4, 6)( 5, 8)( 9,10),

( 1, 7)( 2, 6)( 3, 5)( 4, 8)( 9,10), ( 1, 7)( 2, 8)( 3, 4)( 5, 6)( 9,10),

( 1, 8, 6)( 2, 4, 7)( 9,10), ( 1, 8, 3)( 2, 5, 7)( 9,10), ( 1, 8)( 2, 7)

( 3, 6)( 4, 5)( 9,10) ]

gap>

The coset decomposition CD OI O, which is generated by means of the GAP function

CosetDecomposition, is separated into two cosets, where the second coset CD OI O[2]

(OÎ: D) is generated by operating an LR-permutation (9 10) additionally onto the

operations of O (the first coset CD OI O[1]).

This process can be expressed by an usual mathematical expression. Thus, the second

coset OÎ (CD OI O[2]) can be constructed by starting the proper rotations contained

in O. The resulting elements contained in OÎ are called ligand-reflections, where their

symbols are attached by hat accents. As a result, the LR-permutation group OÎ (order

48) is constructed as follows:

OÎ = O︸︷︷︸
A

+ OÎ︸︷︷︸
D

(5)

where the representative element Î can be replaced by an arbitrary LR-permutation in-
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cluded in the coset OÎ (CD OI O[2]).

2.6 The RS-stereoisomeric group Ohσ̃Î for integrating two-kinds
of handedness

The RS -stereoisomeric group Ohσ̃Î is generated from a set of generators gen 5 by means

of the GAP function Group as follows. The GAP function CosetDecomposition is used

to obtain the coset decomposition of the group Ohσ̃Î by O (CD OhsI O). Each coset is

obtained by inputting CD OhsI O[1] to CD OhsI O[4]. The results are consistent with

Eq. 6.

The RS -stereoisomeric group Ohσ̃Î (OhsI cube: order 96)

gap> #Point group O_cube

gap> gen_1 := [ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6) ];;

gap> O_cube := Group(gen_1);

Group([ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6) ])

gap> #RS-stereoisomeric group OhsI_cube

gap> gen_5 := [(1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6),

> (1,5)(2,6)(3,7)(4,8)(9,10), (1,5)(2,6)(3,7)(4,8)];;

gap> OhsI_cube := Group(gen_5);

Group([ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (1,5)(2,6)(3,7)(4,8)(9,10),

(1,5)(2,6)(3,7)(4,8) ])

gap> Size(OhsI_cube);

96

gap> #Coset Decomposition

gap> CD_OhsI_O := CosetDecomposition(OhsI_cube,O_cube);;

gap> Display(CD_OhsI_O[1]);

[ (), (2,4,5)(3,8,6), (2,5,4)(3,6,8), (1,2)(3,5)(4,6)(7,8), (1,2,3,4)(5,6,7,8),

(1,2,6,5)(3,7,8,4), (1,3,6)(4,7,5), (1,3)(2,4)(5,7)(6,8), (1,3,8)(2,7,5),

(1,4,3,2)(5,8,7,6), (1,4,8,5)(2,3,7,6), (1,4)(2,8)(3,5)(6,7), (1,5,6,2)(3,4,8,7),

(1,5,8,4)(2,6,7,3), (1,5)(2,8)(3,7)(4,6), (1,6,3)(4,5,7), (1,6)(2,5)(3,8)(4,7),

(1,6,8)(2,7,4), (1,7)(2,3)(4,6)(5,8), (1,7)(2,6)(3,5)(4,8),

(1,7)(2,8)(3,4)(5,6), (1,8,6)(2,4,7), (1,8,3)(2,5,7), (1,8)(2,7)(3,6)(4,5) ]

gap> Display(CD_OhsI_O[2]);

[ ( 3, 6)( 4, 5), ( 2, 5)( 3, 8), ( 2, 4)( 6, 8), ( 1, 2)( 3, 4)( 5, 6)( 7, 8),

( 1, 2, 6, 7, 8, 4)( 3, 5), ( 1, 2, 3, 7, 8, 5)( 4, 6), ( 1, 6)( 4, 7),

( 1, 6, 8, 3)( 2, 5, 7, 4), ( 1, 6, 3, 8)( 2, 7, 4, 5), ( 1, 5, 8, 7, 3, 2)( 4, 6),

( 1, 5)( 2, 6)( 3, 7)( 4, 8), ( 1, 5, 6, 7, 3, 4)( 2, 8),

( 1, 4, 8, 7, 6, 2)( 3, 5), ( 1, 4)( 2, 3)( 5, 8)( 6, 7),

( 1, 4, 3, 7, 6, 5)( 2, 8), ( 1, 3)( 5, 7), ( 1, 3, 8, 6)( 2, 4, 7, 5),

( 1, 3, 6, 8)( 2, 7, 5, 4), ( 1, 7)( 2, 6, 5, 8, 4, 3), ( 1, 7)( 2, 3, 4, 8, 5, 6),

( 1, 7)( 2, 8)( 3, 5)( 4, 6), ( 1, 8, 3, 6)( 2, 5, 4, 7),

( 1, 8, 6, 3)( 2, 4, 5, 7), ( 1, 8)( 2, 7) ]

gap> Display(CD_OhsI_O[3]);

[ ( 9,10), ( 2, 4, 5)( 3, 8, 6)( 9,10), ( 2, 5, 4)( 3, 6, 8)( 9,10),

( 1, 2)( 3, 5)( 4, 6)( 7, 8)( 9,10), ( 1, 2, 3, 4)( 5, 6, 7, 8)( 9,10),

( 1, 2, 6, 5)( 3, 7, 8, 4)( 9,10), ( 1, 3, 6)( 4, 7, 5)( 9,10),

( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,10), ( 1, 3, 8)( 2, 7, 5)( 9,10),

( 1, 4, 3, 2)( 5, 8, 7, 6)( 9,10), ( 1, 4, 8, 5)( 2, 3, 7, 6)( 9,10),

( 1, 4)( 2, 8)( 3, 5)( 6, 7)( 9,10), ( 1, 5, 6, 2)( 3, 4, 8, 7)( 9,10),

( 1, 5, 8, 4)( 2, 6, 7, 3)( 9,10), ( 1, 5)( 2, 8)( 3, 7)( 4, 6)( 9,10),

( 1, 6, 3)( 4, 5, 7)( 9,10), ( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,10),

( 1, 6, 8)( 2, 7, 4)( 9,10),

( 1, 7)( 2, 3)( 4, 6)( 5, 8)( 9,10), ( 1, 7)( 2, 6)( 3, 5)( 4, 8)( 9,10),

( 1, 7)( 2, 8)( 3, 4)( 5, 6)( 9,10), ( 1, 8, 6)( 2, 4, 7)( 9,10),

( 1, 8, 3)( 2, 5, 7)( 9,10), ( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,10) ]

gap> Display(CD_OhsI_O[4]);

[ ( 3, 6)( 4, 5)( 9,10), ( 2, 5)( 3, 8)( 9,10), ( 2, 4)( 6, 8)( 9,10),

( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10), ( 1, 2, 6, 7, 8, 4)( 3, 5)( 9,10),

( 1, 2, 3, 7, 8, 5)( 4, 6)( 9,10), ( 1, 6)( 4, 7)( 9,10),

( 1, 6, 8, 3)( 2, 5, 7, 4)( 9,10), ( 1, 6, 3, 8)( 2, 7, 4, 5)( 9,10),

( 1, 5, 8, 7, 3, 2)( 4, 6)( 9,10), ( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,10),

( 1, 5, 6, 7, 3, 4)( 2, 8)( 9,10), ( 1, 4, 8, 7, 6, 2)( 3, 5)( 9,10),
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( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,10), ( 1, 4, 3, 7, 6, 5)( 2, 8)( 9,10),

( 1, 3)( 5, 7)( 9,10), ( 1, 3, 8, 6)( 2, 4, 7, 5)( 9,10),

( 1, 3, 6, 8)( 2, 7, 5, 4)( 9,10), ( 1, 7)( 2, 6, 5, 8, 4, 3)( 9,10),

( 1, 7)( 2, 3, 4, 8, 5, 6)( 9,10), ( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,10),

( 1, 8, 3, 6)( 2, 5, 4, 7)( 9,10),

( 1, 8, 6, 3)( 2, 4, 5, 7)( 9,10), ( 1, 8)( 2, 7)( 9,10) ]

gap>

The element () (∼ I) in the first coset CD OhsI O[1] corresponds to the reference skele-

ton 1 (A) shown in Figure 1; the element (1, 5)(2, 6)(3, 7)(4, 8) (∼ σ̃) in the second coset

CD OhsI O[2] corresponds to the RS -diasteromeric skeleton 2 (C); the element (9, 10)

(∼ Î) in the third coset CD OhsI O[3] corresponds to the holantimeric skeleton 2 (D);

and finally the element (1, 5)(2, 6)(3, 7)(4, 8)(9, 10) (∼ σ) in the fourth coset CD OhsI O[4]

corresponds to the enantiomeric skeleton 1 (B). The assignment of the symbols A to D

are consistent to the assignment shown in Eq. 6.

Figure 1 shows an elementary stereoisogram for a cubane skeleton, from which we

are able to depict stereoisograms for characterizing the RS -stereoisomeric group Ohσ̃Î . A

skeleton having an appropriate numbering such as 1 is selected as a reference skeleton.

Then, a mirror-numbered skeleton 1, an RS -diastereomeric skeleton 2, and a ligand-

reflection (LR) skeleton 2 are depicted according to the following coset decomposition of

the RS -stereoisomeric group Ohσ̃Î by the O-subgroup:

Ohσ̃Î = O︸︷︷︸
A

+ Oσ︸︷︷︸
B

+ Oσ̃︸︷︷︸
C

+ OÎ︸︷︷︸
D

= O︸︷︷︸
A

+ Oi︸︷︷︸
B

+ Oı̃︸︷︷︸
C

+ OÎ︸︷︷︸
D

, (6)

3 Symmetry-itemized enumeration of cubane deriva-

tives

3.1 Partial cycle indices with chirality fittingness (PCI-CFs) un-

der the point group Oh

The point group Oh (order 48) has 33 subgroups up to conjugacy, which have been

discussed in terms of a non-redundant set of subgroups (SSG) [31]:
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SSGOh
={ C1︸︷︷︸

1

, C2︸︷︷︸
2

, C ′
2︸︷︷︸

3

, Cs︸︷︷︸
4

, C ′
s︸︷︷︸

5

, Ci︸︷︷︸
6

, C3︸︷︷︸
7

, C4︸︷︷︸
8

, S4︸︷︷︸
9

, D2︸︷︷︸
10

,

D ′
2︸︷︷︸

11

, C2v︸︷︷︸
12

, C ′
2v︸︷︷︸

13

, C ′′
2v︸︷︷︸

14

, C2h︸︷︷︸
15

, C ′
2h︸︷︷︸

16

, D3︸︷︷︸
17

, C3v︸︷︷︸
18

, C3i︸︷︷︸
19

, D4︸︷︷︸
20

,

C4v︸︷︷︸
21

, C4h︸︷︷︸
22

, D2d︸︷︷︸
23

, D ′
2d︸︷︷︸

24

,D2h︸︷︷︸
25

,D ′
2h︸︷︷︸

26

, T︸︷︷︸
27

, D3d︸︷︷︸
28

,D4h︸︷︷︸
29

, O︸︷︷︸
30

, Th︸︷︷︸
31

, Td︸︷︷︸
32

, Oh︸︷︷︸
33

} (7)

where the subgroups are aligned and numbered sequentially in the ascending order of

their orders.

The author (Fujita) has calculated the following standard mark table of the point

group Oh by means of the FORTRAN77 calculation.

Standard Mark Table for the Point Group Oh (Oh cube)

OH______

/C1______48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/C2______24 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/C2#_____24 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/CS______24 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/CS#_____24 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/CI______24 0 0 0 024 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/C3______16 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/C4______12 4 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/S4______12 4 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/D2______1212 0 0 0 0 0 0 012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/D2#_____12 4 4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/C2V_____12 4 0 8 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/C2V#____12 4 0 0 4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/C2V##___12 0 2 4 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/C2H_____12 4 0 4 012 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/C2H#____12 0 2 0 212 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/D3______ 8 0 4 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/C3V_____ 8 0 0 0 4 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/C3I_____ 8 0 0 0 0 8 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/D4______ 6 6 2 0 0 0 0 2 0 6 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

/C4V_____ 6 2 0 4 2 0 0 2 0 0 0 2 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

/C4H_____ 6 2 0 2 0 6 0 2 2 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

/D2D_____ 6 6 0 0 2 0 0 0 2 6 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0

/D2D#____ 6 2 2 4 0 0 0 0 2 0 2 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

/D2H_____ 6 6 0 6 0 6 0 0 0 6 0 6 0 0 6 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0

/D2H#____ 6 2 2 2 2 6 0 0 0 0 2 0 2 2 2 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

/T_______ 4 4 0 0 0 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0

/D3D_____ 4 0 2 0 2 4 1 0 0 0 0 0 0 0 0 2 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

/D4H_____ 3 3 1 3 1 3 0 1 1 3 1 3 1 1 3 1 0 0 0 1 1 1 1 1 3 1 0 0 1 0 0 0 0

/O_______ 2 2 2 0 0 0 2 2 0 2 2 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 2 0 0 2 0 0 0

/TH______ 2 2 0 2 0 2 2 0 0 2 0 2 0 0 2 0 0 0 2 0 0 0 0 0 2 0 2 0 0 0 2 0 0

/TD______ 2 2 0 0 2 0 2 0 2 2 0 0 2 0 0 0 0 2 0 0 0 0 2 0 0 0 2 0 0 0 0 2 0

/OH______ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The mark table generated by the GAP function TableOfMarks is sorted to be con-

verted into the standard mark table (obeying SSGOh
of Eq. 7) [30]. This calculation

depending on the GAP system by using CPRs is consistent with the results due to the

FORTRAN77 calculation [20, 21].

The resulting standard mark table of Oh is applied to calculate partial-cycle indices
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with chirality fittingness (PCI-CFs) [20] as shown below.

PCI-CFs under the point group Oh

#PCI-CFs for subgroups

PCI-CF[1] := 1/48*b_1^8-1/8*a_1^4*c_2^2-1/12*b_1^2*b_3^2-3/16*b_2^4+1/4*a_1^2*a_3^2

+1/8*a_2^4-1/12*c_2^4+1/2*a_2^2*c_4+1/4*b_2*b_6+1/4*b_4^2-1/2*a_2*a_6-3/4*a_4^2

+1/12*c_2*c_6+1/4*c_4^2-1/4*b_8+1/2*a_8-1/4*c_8

PCI-CF[2] := 1/8*b_2^4-1/8*a_2^4-3/8*b_4^2+3/4*a_4^2-3/8*c_4^2+1/4*b_8-a_8+3/4*c_8

PCI-CF[3] := 1/4*b_2^4-1/2*a_2^2*c_4-1/2*b_2*b_6-1/4*b_4^2+1/2*a_2*a_6+1/2*a_4^2

+1/2*b_8-1/2*a_8

PCI-CF[4] := 1/8*c_2^4-1/4*a_2^2*c_4+1/4*a_4^2-3/8*c_4^2+1/4*c_8

PCI-CF[5] := 1/4*a_1^4*c_2^2-1/2*a_1^2*a_3^2-1/4*a_2^4-1/2*a_2^2*c_4+1/2*a_2*a_6

+a_4^2-1/2*a_8

PCI-CF[6] := 1/24*c_2^4-1/4*a_2^2*c_4+1/2*a_2*a_6+1/4*a_4^2-1/6*c_2*c_6-1/8*c_4^2

-1/2*a_8+1/4*c_8

PCI-CF[7] := 1/4*b_1^2*b_3^2-1/4*a_1^2*a_3^2-1/4*b_2*b_6-1/4*b_4^2+1/2*a_2*a_6+1/4*a_4^2

-1/4*c_2*c_6+1/4*b_8-1/2*a_8+1/4*c_8

PCI-CF[8] := 1/4*b_4^2-1/4*a_4^2-1/4*b_8+1/2*a_8-1/4*c_8

PCI-CF[9] := -1/4*a_4^2+1/4*c_4^2+1/2*a_8-1/2*c_8

PCI-CF[10] := 0

PCI-CF[11] := 1/4*b_4^2-1/4*a_4^2-1/4*b_8+1/2*a_8-1/4*c_8

PCI-CF[12] := -1/4*a_4^2+1/4*c_4^2+1/2*a_8-1/2*c_8

PCI-CF[13] := 1/4*a_2^4-3/4*a_4^2+1/2*a_8

PCI-CF[14] := 1/2*a_2^2*c_4-1/2*a_4^2

PCI-CF[15] := -1/4*a_4^2+1/4*c_4^2+1/2*a_8-1/2*c_8

PCI-CF[16] := 1/2*a_2^2*c_4-a_2*a_6-1/2*a_4^2+a_8

PCI-CF[17] := 1/2*b_2*b_6-1/2*a_2*a_6-1/2*b_8+1/2*a_8

PCI-CF[18] := 1/2*a_1^2*a_3^2-1/2*a_2*a_6-1/2*a_4^2+1/2*a_8

PCI-CF[19] := -1/2*a_2*a_6+1/2*c_2*c_6+1/2*a_8-1/2*c_8

PCI-CF[20] := 0

PCI-CF[21] := 1/2*a_4^2-1/2*a_8

PCI-CF[22] := -1/2*a_8+1/2*c_8

PCI-CF[23] := 0

PCI-CF[24] := -1/2*a_8+1/2*c_8

PCI-CF[25] := 0

PCI-CF[26] := 1/2*a_4^2-1/2*a_8

PCI-CF[27] := 1/4*b_4^2-1/4*a_4^2-1/4*b_8+1/2*a_8-1/4*c_8

PCI-CF[28] := a_2*a_6-a_8

PCI-CF[29] := 0

PCI-CF[30] := 1/2*b_8-1/2*a_8

PCI-CF[31] := -1/2*a_8+1/2*c_8

PCI-CF[32] := 1/2*a_4^2-1/2*a_8

PCI-CF[33] := a_8

These PCI-CFs in the GAP expressions are converted into formulas of usual mathe-
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matic conventions as follows:

PCI-CFOh1(C1, $d) =
1

48
b81 −

1

8
c22a

4
1 −

1

12
b21b

2
3 −

3

16
b42 −

1

12
c42 +

1

4
a21a

2
3

+
1

8
a42 +

1

2
c4a

2
2 +

1

4
b2b6 +

1

12
c2c6 +

1

4
b24 +

1

4
c24 −

1

2
a2a6 −

3

4
a24

−1

4
b8 −

1

4
c8 +

1

2
a8 (8)

PCI-CFOh1(C2, $d) =
1

8
b42 −

1

8
a42 −

3

8
b24 −

3

8
c24 +

3

4
a24 +

1

4
b8 +

3

4
c8 − a8 (9)

PCI-CFOh1(C
′
2, $d) =

1

4
b42 −

1

2
c4a

2
2 −

1

2
b2b6 −

1

4
b24 +

1

2
a2a6 +

1

2
a24 +

1

2
b8 −

1

2
a8 (10)

PCI-CFOh1(Cs, $d) =
1

8
c42 −

1

4
c4a

2
2 −

3

8
c24 +

1

4
a24 +

1

4
c8 (11)

PCI-CFOh1(C
′
s, $d) =

1

4
c22a

4
1 −

1

2
a21a

2
3 −

1

4
a42 −

1

2
c4a

2
2 +

1

2
a2a6 + a24 −

1

2
a8 (12)

PCI-CFOh1(Ci, $d) =
1

24
c42 −

1

4
c4a

2
2 −

1

6
c2c6 −

1

8
c24 +

1

2
a2a6 +

1

4
a24

+
1

4
c8 −

1

2
a8 (13)

PCI-CFOh1(C3, $d) =
1

4
b21b

2
3 −

1

4
a21a

2
3 −

1

4
b2b6 −

1

4
c2c6 −

1

4
b24 +

1

2
a2a6 +

1

4
a24

+
1

4
b8 +

1

4
c8 −

1

2
a8 (14)

PCI-CFOh1(C4, $d) =
1

4
b24 −

1

4
a24 −

1

4
b8 −

1

4
c8 +

1

2
a8 (15)

PCI-CFOh1(S4, $d) =
1

4
c24 −

1

4
a24 −

1

2
c8 +

1

2
a8 (16)

PCI-CFOh1(D2, $d) = 0 (17)

PCI-CFOh1(D
′
2, $d) =

1

4
b24 −

1

4
a24 −

1

4
b8 −

1

4
c8 +

1

2
a8 (18)

PCI-CFOh1(C2v, $d) =
1

4
c24 −

1

4
a24 −

1

2
c8 +

1

2
a8 (19)

PCI-CFOh1(C
′
2v, $d) =

1

4
a42 −

3

4
a24 +

1

2
a8 (20)

PCI-CFOh1(C
′′
2v, $d) =

1

2
c4a

2
2 −

1

2
a24 (21)

PCI-CFOh1(C2h, $d) =
1

4
c24 −

1

4
a24 −

1

2
c8 +

1

2
a8 (22)

PCI-CFOh1(C
′
2h, $d) =

1

2
c4a

2
2 − a2a6 −

1

2
a24 + a8 (23)

PCI-CFOh1(D3, $d) =
1

2
b2b6 −

1

2
a2a6 −

1

2
b8 +

1

2
a8 (24)
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PCI-CFOh1(C3v, $d) =
1

2
a21a

2
3 −

1

2
a2a6 −

1

2
a24 +

1

2
a8 (25)

PCI-CFOh1(C3i, $d) =
1

2
c2c6 −

1

2
a2a6 −

1

2
c8 +

1

2
a8 (26)

PCI-CFOh1(D4, $d) = 0 (27)

PCI-CFOh1(C4v, $d) =
1

2
a24 −

1

2
a8 (28)

PCI-CFOh1(C4h, $d) =
1

2
c8 −

1

2
a8 (29)

PCI-CFOh1(D2d, $d) = 0 (30)

PCI-CFOh1(D
′
2d, $d) =

1

2
c8 −

1

2
a8 (31)

PCI-CFOh1(D2h, $d) = 0 (32)

PCI-CFOh1(D
′
2h, $d) =

1

2
a24 −

1

2
a8 (33)

PCI-CFOh1(T, $d) =
1

4
b24 −

1

4
a24 −

1

4
b8 −

1

4
c8 +

1

2
a8 (34)

PCI-CFOh1(D3d, $d) = a2a6 − a8 (35)

PCI-CFOh1(D4h, $d) = 0 (36)

PCI-CFOh1(O, $d) =
1

2
b8 −

1

2
a8 (37)

PCI-CFOh1(Th, $d) =
1

2
c8 −

1

2
a8 (38)

PCI-CFOh1(Td, $d) =
1

2
a24 − 1/2a8 (39)

PCI-CFOh1(Oh, $d) = a8 (40)

The results of Eqs. 8–40 are consistent with Eqs. 6–38 of Ref. [20], where the 7th term

−1
8
a24 in Eq. 7 of Ref. [20] (corresponding to Eq. 9 of present article) should be read as

−1
8
a42.

3.2 Partial cycle indices with chirality fittingness (PCI-CFs) un-

der the RS-stereogenic group Oσ̃

The RS -stereogenic group Oσ̃ (order 48) has 33 subgroups up to conjugacy, which can be

aligned in the corresponding sequence to SSGOh
(Eq. 7).
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SSGOσ̃
={ C1︸︷︷︸

1

, C2︸︷︷︸
2

, C ′
2︸︷︷︸

3

, C̃s︸︷︷︸
4

, C̃ ′
s︸︷︷︸

5

, C̃i︸︷︷︸
6

, C3︸︷︷︸
7

, C4︸︷︷︸
8

, S̃4︸︷︷︸
9

, D2︸︷︷︸
10

,

D ′
2︸︷︷︸

11

, C̃2v︸︷︷︸
12

, C̃ ′
2v︸︷︷︸

13

, C̃ ′′
2v︸︷︷︸

14

, C̃2h︸︷︷︸
15

, C̃ ′
2h︸︷︷︸

16

, D3︸︷︷︸
17

, C̃3v︸︷︷︸
18

, C̃3i︸︷︷︸
19

, D4︸︷︷︸
20

,

C̃4v︸︷︷︸
21

, C̃4h︸︷︷︸
22

, D̃2d︸︷︷︸
23

, D̃ ′
2d︸︷︷︸

24

, D̃2h︸︷︷︸
25

, D̃ ′
2h︸︷︷︸

26

, T︸︷︷︸
27

, D̃3d︸︷︷︸
28

, D̃4h︸︷︷︸
29

, O︸︷︷︸
30

, T̃h︸︷︷︸
31

, T̃d︸︷︷︸
32

, Oσ̃︸︷︷︸
33

} (41)

where the subgroups are aligned and numbered sequentially in the ascending order of

their orders. As found easily, SSGOh
(Eq. 7) and SSGOσ̃

(Eq. 41) commonly contain the

rotations due to the chiral subgroup O. Each subgroup with a tilde accent in SSGOσ̃
(Eq.

41) is generated from the corresponding subgroup without a tilde accent in SSGOh
(Eq.

7), where a 2-cycle (9 10) (or an overline) of each permutation for reflection is detached

to give a permutation with no reflection. For example, the subgroup C̃s in Eq. 41 (with

a set of generators gen[4] := [ ( 1, 5)( 2, 6)( 3, 7)( 4, 8) ];;) is generated by

omitting a 2-cycle (9 10) from the subgroup Cs in Eq. 7 (with a set of generators: gen[4]

:= [ ( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,10) ];;).

The mark table generated by the GAP function TableOfMarks is sorted in a parallel

way to be converted into the mark table obeying SSGOσ̃
(Eq. 41). The apparent feature

of the resulting mark table of Oσ̃ is identical with the standard mark table of Oh under

the GAP system.

On the basis of the mark table obeying SSGOσ̃
(Eq. 41), a set of partial-cycle indices

with chirality fittingness (PCI-CFs) is calculated as follows:

PCI-CFs under the the RS -stereogenic group Oσ̃

PCICF_Os_cube[1] :=1/48*b_1^8-1/8*b_1^4*b_2^2+1/6*b_1^2*b_3^2-7/48*b_2^4+1/2*b_2^2*b_4

-1/6*b_2*b_6-1/4*b_4^2;

PCICF_Os_cube[2] :=0;

PCICF_Os_cube[3] :=1/4*b_2^4-1/2*b_2^2*b_4+1/4*b_4^2;

PCICF_Os_cube[4] :=1/8*b_2^4-1/4*b_2^2*b_4-1/8*b_4^2+1/4*b_8;

PCICF_Os_cube[5] :=1/4*b_1^4*b_2^2-1/2*b_1^2*b_3^2-1/4*b_2^4-1/2*b_2^2*b_4+1/2*b_2*b_6

+b_4^2-1/2*b_8;

PCICF_Os_cube[6] :=1/24*b_2^4-1/4*b_2^2*b_4+1/3*b_2*b_6+1/8*b_4^2-1/4*b_8;

PCICF_Os_cube[7] :=0;

PCICF_Os_cube[8] :=0;

PCICF_Os_cube[9] :=0;

PCICF_Os_cube[10] :=0;

PCICF_Os_cube[11] :=0;

PCICF_Os_cube[12] :=0;

PCICF_Os_cube[13] :=1/4*b_2^4-3/4*b_4^2+1/2*b_8;

PCICF_Os_cube[14] :=1/2*b_2^2*b_4-1/2*b_4^2;

PCICF_Os_cube[15] :=0;

PCICF_Os_cube[16] :=1/2*b_2^2*b_4-b_2*b_6-1/2*b_4^2+b_8;

PCICF_Os_cube[17] :=0;

PCICF_Os_cube[18] :=1/2*b_1^2*b_3^2-1/2*b_2*b_6-1/2*b_4^2+1/2*b_8;

PCICF_Os_cube[19] :=0;
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PCICF_Os_cube[20] :=0;

PCICF_Os_cube[21] :=1/2*b_4^2-1/2*b_8;

PCICF_Os_cube[22] :=0;

PCICF_Os_cube[23] :=0;

PCICF_Os_cube[24] :=0;

PCICF_Os_cube[25] :=0;

PCICF_Os_cube[26] :=1/2*b_4^2-1/2*b_8;

PCICF_Os_cube[27] :=0;

PCICF_Os_cube[28] :=b_2*b_6-b_8;

PCICF_Os_cube[29] :=0;

PCICF_Os_cube[30] :=0;

PCICF_Os_cube[31] :=0;

PCICF_Os_cube[32] :=1/2*b_4^2-1/2*b_8;

PCICF_Os_cube[33] :=b_8;

It should be noted that sphericity indices due to $d (ad, bd, cd) are degenerated into

a single sphericity index bd. The resulting PCI-CFs contain a single kind of chirality

fittingness due to bd, so that many PCI-CFs (19 among 33 PCI-CFs) vanish into zero, as

found the above codes. These PCI-CFs in the GAP expressions are represented by usual

mathematic conventions as follows:

PCI-CFOσ̃1(C1, bd) =
1

48
b81 −

1

8
b41b

2
2 +

1

6
b21b

2
3

− 7

48
b42 +

1

2
b22b4 −

1

6
b2b6 −

1

4
b24 (42)

PCI-CFOσ̃1(C2, bd) = 0 (43)

PCI-CFOσ̃1(C
′
2, bd) =

1

4
b42 −

1

2
b22b4 +

1

4
b24 (44)

PCI-CFOσ̃1(C̃s, bd) =
1

8
b42 −

1

4
b22b4 −

1

8
b24 +

1

4
b8 (45)

PCI-CFOσ̃1(C̃
′
s, bd) =

1

4
b41b

2
2 −

1

2
b21b

2
3 −

1

4
b42 −

1

2
b22b4

+
1

2
b2b6 + b24 −

1

2
b8; (46)

PCI-CFOσ̃1(C̃i, bd) =
1

24
b42 −

1

4
b22b4 +

1

3
b2b6 +

1

8
b24 −

1

4
b8 (47)

PCI-CFOσ̃1(C3, bd) = 0 (48)

PCI-CFOσ̃1(C4, bd) = 0 (49)

PCI-CFOσ̃1(S̃4, bd) = 0 (50)

PCI-CFOσ̃1(D2, bd) = 0 (51)

PCI-CFOσ̃1(D
′
2, bd) = 0 (52)

PCI-CFOσ̃1(C̃2v, bd) = 0 (53)

PCI-CFOσ̃1(C̃
′
2v, bd) =

1

4
b42 −

3

4
b24 +

1

2
b8; (54)

PCI-CFOσ̃1(C̃
′′
2v, bd) =

1

2
b22b4 −

1

2
b24; (55)
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PCI-CFOσ̃1(C̃2h, bd) = 0 (56)

PCI-CFOσ̃1(C̃
′
2h, bd) =

1

2
b22b4 − b2b6 −

1

2
b24 + b8; (57)

PCI-CFOσ̃1(D3, bd) = 0 (58)

PCI-CFOσ̃1(C̃3v, bd) =
1

2
b21b

2
3 −

1

2
b2b6 −

1

2
b24 +

1

2
b8; (59)

PCI-CFOσ̃1(C̃3i, bd) = 0 (60)

PCI-CFOσ̃1(D4, bd) = 0 (61)

PCI-CFOσ̃1(C̃4v, bd) =
1

2
b24 −

1

2
b8; (62)

PCI-CFOσ̃1(C̃4h, bd) = 0 (63)

PCI-CFOσ̃1(D̃2d, bd) = 0 (64)

PCI-CFOσ̃1(D̃
′
2d, bd) = 0 (65)

PCI-CFOσ̃1(D̃2h, bd) = 0 (66)

PCI-CFOσ̃1(D̃
′
2h, bd) =

1

2
b24 −

1

2
b8 (67)

PCI-CFOσ̃1(T, bd) = 0 (68)

PCI-CFOσ̃1(D̃2h, bd) = b2b6 − b8 (69)

PCI-CFOσ̃1(D̃4h, bd) = 0 (70)

PCI-CFOσ̃1(O, bd) = 0 (71)

PCI-CFOσ̃1(T̃h, bd) = 0 (72)

PCI-CFOσ̃1(T̃d, bd) =
1

2
b24 −

1

2
b8; (73)

PCI-CFOσ̃1(Oσ̃, bd) = b8 (74)

3.3 Partial cycle indices with chirality fittingness (PCI-CFs) un-
der the LR-permutation group OÎ

The LR-permutation groupOÎ (OI cube) is obtained by using the set of generators gen 4,

which is generated by adding the 2-cycle (9,10) to the set of generators gen 1 for the

chiral subgroupO. In order to calculate PCIs under LR-permutation groupOÎ (OI cube),

the corresponding mark table (table of marks) named tom OI cube is first obtained by

using the GAP function TableOfMarks as follows:

gap> OI_cube := Group([(1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (9,10)]);;

gap> Size(OI_cube);

48
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gap> tom_OI_cube := TableOfMarks(OI_cube);

TableOfMarks( Group([ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (9,10) ]) )

gap> Display(tom_OI_cube);

The produced mark table tom OI cube obeys the format of the GAP system, where

the alignment of the subgroups is in accord with the routine of the GAP system. No stan-

dardization is attempted (cf. Ref. [30]), because the LR-permutation group OÎ (OI cube)

does not correspond to the point group Oh of the cubane skeleton. Hence, the following

mark table tom OI cube obtained by the GAP function TableOfMarks is regarded as a

standard mark table as it is:

Mark table (tom OI cube) for the LR-permutation group OÎ (OI cube)

1: 48

2: 24 8

3: 24 . 4

4: 24 . . 24

5: 24 . . . 8

6: 24 . . . . 4

7: 16 . . . . . 4

8: 12 12 . . . . . 12

9: 12 4 . 12 4 . . . 4

10: 12 4 . . 8 . . . . 4

11: 12 4 . . . . . . . . 4

12: 12 4 . . . 4 . . . . . 4

13: 12 4 . . . . . . . . . . 4

14: 12 4 4 . . . . . . . . . . 4

15: 12 . 2 12 . 2 . . . . . . . . 2

16: 12 . 2 . 4 2 . . . . . . . . . 2

17: 8 . . 8 . . 2 . . . . . . . . . 2

18: 8 . 4 . . . 2 . . . . . . . . . . 2

19: 8 . . . . 4 2 . . . . . . . . . . . 2

20: 6 6 2 . . . . 6 . . . . 2 2 . . . . . 2

21: 6 6 . . . 2 . 6 . . 2 2 . . . . . . . . 2

22: 6 2 . 6 2 . . . 2 . 2 . 2 . . . . . . . . 2

23: 6 2 2 6 2 2 . . 2 . . 2 . 2 2 2 . . . . . . 2

24: 6 6 . 6 6 . . 6 6 6 . . . . . . . . . . . . . 6

25: 6 2 2 . 4 . . . . 2 2 . . 2 . . . . . . . . . . 2

26: 6 2 . . 4 2 . . . 2 . 2 2 . . . . . . . . . . . . 2

27: 4 . 2 4 . 2 1 . . . . . . . 2 . 1 1 1 . . . . . . . 1

28: 4 4 . . . . 4 4 . . . . . . . . . . . . . . . . . . . 4

29: 3 3 1 3 3 1 . 3 3 3 1 1 1 1 1 1 . . . 1 1 1 1 3 1 1 . . 1

30: 2 2 2 . . . 2 2 . . . . 2 2 . . . 2 . 2 . . . . . . . 2 . 2

31: 2 2 . 2 2 . 2 2 2 2 . . . . . . 2 . . . . . . 2 . . . 2 . . 2

32: 2 2 . . . 2 2 2 . . 2 2 . . . . . . 2 . 2 . . . . . . 2 . . . 2

33: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Each row (and each column) of the mark table (tom OI cube) is in accord with the SSG

of the LR-permutation group SSGO
Î
. The sequence of the SSG is calculated by means of

the GAP function RepresentativeTom and the respective set of generators (gen[i] for

i = 1 · · ·33) is calculated by the GAP function GeneratorsOfGroup:

gap> gen := [];;

gap> for i in [1..33] do

> gen[i] := RepresentativeTom(tom_OI_cube,i);

> Print("gen[", i, "] := ", GeneratorsOfGroup(gen[i]), "\n");

> od;
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Thereby, the sets of generators for producing the respective rows of subgroups of the

mark table tom OI cube are obtained:

gen := []

gen[1] := [ ] #1 C1 ---- 1

gen[2] := [ (1,3)(2,4)(5,7)(6,8) ] #2 C2----2

gen[3] := [ (1,7)(2,6)(3,5)(4,8) ] #3 C2’---3

gen[4] := [ ( 9,10) ] #4 ^I =====1

gen[5] := [ ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,10) ] #5 ^C2

gen[6] := [ ( 1, 7)( 2, 6)( 3, 5)( 4, 8)( 9,10) ] #6 ^C2’

gen[7] := [ (2,5,4)(3,6,8) ] #7 C3----4

gen[8] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8) ] #8 D2----5

gen[9] := [ ( 9,10), (1,3)(2,4)(5,7)(6,8) ] #9 C2^I =====2

gen[10] := [ ( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,10), (1,3)(2,4)(5,7)(6,8) ] #10 ^D2

gen[11] := [ ( 1, 2, 3, 4)( 5, 6, 7, 8)( 9,10), (1,3)(2,4)(5,7)(6,8) ] #11 ^C4

gen[12] := [ ( 1, 7)( 2, 6)( 3, 5)( 4, 8)( 9,10), (1,3)(2,4)(5,7)(6,8) ] #12 ^D2’

gen[13] := [ (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8) ] #13 C4 ----6

gen[14] := [ (1,7)(2,6)(3,5)(4,8), (1,3)(2,4)(5,7)(6,8) ] #14 D2’ ----7

gen[15] := [ ( 9,10), (1,7)(2,6)(3,5)(4,8) ] #15 C2’^I =====3

gen[16] := [ ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,10), (1,7)(2,6)(3,5)(4,8) ] #16 ^D2’’

gen[17] := [ ( 9,10), (2,5,4)(3,6,8) ] #17 C3^I =====4

gen[18] := [ (1,7)(2,6)(3,5)(4,8), (2,5,4)(3,6,8) ] #18 D3----8

gen[19] := [ ( 1, 7)( 2, 6)( 3, 5)( 4, 8)( 9,10), (2,5,4)(3,6,8) ] #19 ^D3

gen[20] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (1,2,3,4)(5,6,7,8) ] #20 D4----9

gen[21] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8),

( 1, 2, 3, 4)( 5, 6, 7, 8)( 9,10) ] #21 ^D4

gen[22] := [ ( 9,10), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8) ] #22 C4^I====5

gen[23] := [ ( 9,10), (1,7)(2,6)(3,5)(4,8), (1,3)(2,4)(5,7)(6,8) ] #23 D2’^I====6

gen[24] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), ( 9,10) ] #24 D2^I====7

gen[25] := [ ( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,10), (1,7)(2,6)(3,5)(4,8),

(1,3)(2,4)(5,7)(6,8) ] #25 ^D4’’

gen[26] := [ ( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,10), (1,2,3,4)(5,6,7,8),

(1,3)(2,4)(5,7)(6,8) ] #26 ^D4’

gen[27] := [ ( 9,10), (1,7)(2,6)(3,5)(4,8), (2,5,4)(3,6,8) ] #27 D3^I === 8

gen[28] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8) ] #28 T----10

gen[29] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), ( 9,10),

(1,2,3,4)(5,6,7,8) ] #29 D4^I=====9

gen[30] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8),

(1,2,3,4)(5,6,7,8) ] #30 O---11

gen[31] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8),

( 9,10) ] #31 T^I====10

gen[32] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8),

( 1, 2, 3, 4)( 5, 6, 7, 8)( 9,10) ] #32 ^O

gen[33] := [ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), ( 9,10) ] #33 O^I====11

gap>

The assigned subgroup is added after the # symbol in the right-side end of each set

of generators. These data can be summarized into the following set of subgroups SSGO
Î
.

SSGO
Î

= {
1︷︸︸︷
C1︸︷︷︸
1○

,

2︷︸︸︷
C2︸︷︷︸
2○

,

3︷︸︸︷
C ′

2︸︷︷︸
3○

,

4︷︸︸︷
CÎ︸︷︷︸
4

,

5︷︸︸︷
Ĉ2︸︷︷︸
5

,

6︷︸︸︷
Ĉ ′

2︸︷︷︸
6

,

7︷︸︸︷
C3︸︷︷︸
7○

,

8︷︸︸︷
D2︸︷︷︸
8○

,

9︷︸︸︷
C2Î︸︷︷︸
9

,

10︷︸︸︷
D̂2︸︷︷︸
10

,

11︷︸︸︷
Ĉ4︸︷︷︸
11

,

12︷︸︸︷
D̂ ′

2︸︷︷︸
12

,

13︷︸︸︷
C4︸︷︷︸
13○

,

14︷︸︸︷
D ′

2︸︷︷︸
14○

,

15︷︸︸︷
C ′

2Î︸︷︷︸
15

,

16︷︸︸︷
D̂ ′′

2︸︷︷︸
16

,

17︷︸︸︷
C3Î︸︷︷︸
17

,

18︷︸︸︷
D3︸︷︷︸
18○

,

19︷︸︸︷
D̂3︸︷︷︸
19

,

20︷︸︸︷
D4︸︷︷︸
20○

,

21︷︸︸︷
D̂4︸︷︷︸
21

,

22︷︸︸︷
C4Î︸︷︷︸
22

,

23︷︸︸︷
D

,′
2Î︸︷︷︸

23

,

24︷︸︸︷
D2Î︸︷︷︸
24

,

25︷︸︸︷
D̂ ′′

4︸︷︷︸
25

,

26︷︸︸︷
D̂ ′

4︸︷︷︸
26

,

27︷︸︸︷
D3Î︸︷︷︸
27

,

28︷︸︸︷
T︸︷︷︸
28○

,

29︷︸︸︷
D4Î︸︷︷︸
29

,

30︷︸︸︷
O︸︷︷︸
30○

,
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31︷︸︸︷
TÎ︸︷︷︸
31

,

32︷︸︸︷
Ô︸︷︷︸
32

,

33︷︸︸︷
OÎ︸︷︷︸
33

} (75)

This set of subgroups SSGO
Î
contains eleven subgroups coming from the maximum

chiral subgroup O, the sequential numbers of which are encircled by a circle(e.g., 1○,

2○, · · · , 30○) (see Eq. 1). On the other hand, this set of subgroups SSGO
Î
contains

eleven subgroups containing an LR-permutation Î represented by an independent 2-cycle

symbol (9 10), the sequential numbers of which are surrounded by a double frame box

(e.g., 4 , 9 , · · · , 33 ). Because the set of generators
︷︸︸︷
OÎ

33

is an equal set to gen 4, it

generates the LR-permutation group OÎ (OI cube). This fact is testified by the following

GAP functions. The coset decomposition due to the GAP function CosetDecomposition

(CD OI O) is described above.

gap> gen_33 := [ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), ( 9,10) ];; #O^I====11

gap> OI_cube := Group(gen_33);

Group([ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (9,10) ])

gap> Display(Size(OI_cube));

48

gap> CD_OI_O := CosetDecomposition(OI_cube,O_cube);;

(omitted)

The resulting LR-permutation group OÎ (OI cube) (order 48) contains the subgroup

TÎ (TI cube) (order 24), which is generated by means of the set of generators gen 31.

Their supergroup-subgroup relationship is confirmed by the GAP function IsSubgroup.

The LR-permutation group TÎ (TI cube)

gap> gen_28 := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8) ];; #T----10

gap> gen_31 := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8),

> ( 9,10) ];; #T^I====10

gap> T_cube := Group(gen_28);

Group([ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8) ])

gap> T_cube := Group(gen_28);

Group([ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8) ])

gap> TI_cube := Group(gen_31);

Group([ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8), (9,10) ])

gap> Display(Size(TI_cube));

24

gap> CD_TI_O := CosetDecomposition(TI_cube,T_cube);;

gap> Display(CD_TI_O);

[ [ (), (2,4,5)(3,8,6), (2,5,4)(3,6,8), (1,3,6)(4,7,5), (1,3)(2,4)(5,7)(6,8),

(1,3,8)(2,7,5), (1,6,3)(4,5,7), (1,6)(2,5)(3,8)(4,7), (1,6,8)(2,7,4),

(1,8,6)(2,4,7), (1,8,3)(2,5,7), (1,8)(2,7)(3,6)(4,5) ],

[ ( 9,10), ( 2, 4, 5)( 3, 8, 6)( 9,10), ( 2, 5, 4)( 3, 6, 8)( 9,10),

( 1, 3, 6)( 4, 7, 5)( 9,10), ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,10),

( 1, 3, 8)( 2, 7, 5)( 9,10), ( 1, 6, 3)( 4, 5, 7)( 9,10),

( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,10), ( 1, 6, 8)( 2, 7, 4)( 9,10),

( 1, 8, 6)( 2, 4, 7)( 9,10),

( 1, 8, 3)( 2, 5, 7)( 9,10), ( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,10) ] ]

gap>
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The set of generators gen 30 generates the point group O, which is also generated by

means of the set of generators gen 1

The point group O (O cubeX) as th subgroup of the LR-permutation group OÎ(OI cube)

gap> gen_30 := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8),

> (1,2,3,4)(5,6,7,8) ];; #O---11

gap> O_cubeX := Group(gen_30); #cube-vertical

Group([ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8), (1,2,3,4)(5,6,7,8) ])

gap> Display(Size(O_cubeX));

24

gap> Display(Elements(O_cubeX));

[ (), (2,4,5)(3,8,6), (2,5,4)(3,6,8), (1,2)(3,5)(4,6)(7,8), (1,2,3,4)(5,6,7,8),

(1,2,6,5)(3,7,8,4), (1,3,6)(4,7,5), (1,3)(2,4)(5,7)(6,8), (1,3,8)(2,7,5),

(1,4,3,2)(5,8,7,6), (1,4,8,5)(2,3,7,6), (1,4)(2,8)(3,5)(6,7),

(1,5,6,2)(3,4,8,7), (1,5,8,4)(2,6,7,3), (1,5)(2,8)(3,7)(4,6), (1,6,3)(4,5,7),

(1,6)(2,5)(3,8)(4,7), (1,6,8)(2,7,4), (1,7)(2,3)(4,6)(5,8), (1,7)(2,6)(3,5)(4,8),

(1,7)(2,8)(3,4)(5,6), (1,8,6)(2,4,7), (1,8,3)(2,5,7), (1,8)(2,7)(3,6)(4,5) ]

gap> IsSubgroup(OI_cube, O_cubeX);

true

gap>

Compare O cube (from gen 1) and O cubeX (from gen 30). Although their sets of

generators gen 1 and gen 30 are not equal to each other, the resulting groups O cube and

O cubeX contain the same set of elements, as confirmed by the following GAP code:

gap> gen_1 := [ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6) ];;

gap> gen_30 := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8),

> (1,2,3,4)(5,6,7,8) ];; #O---11

gap> O_cube := Group(gen_1);

Group([ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6) ])

gap> O_cubeX := Group(gen_30);

Group([ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8), (1,2,3,4)(5,6,7,8) ])

gap> Display(O_cube=O_cubeX);

true

gap>

Finally, the remaining eleven subgroups are designated by the sequential numbers of

which are surrounded by a single frame box (e.g., 5 , 10 , · · · , 32).
As listed in Appendix B, the GAP functions developed for the concordant generation

of mark tables and USCI-CF tables can be applied to this unsorted case by using the SSG

shown as SSGO
Î
(Eq. 75).

#mark table sorted for USCI table

MarkTableOI_cube := MarkTableforUSCI(OI_cube,O_cube,33,gen,8,10);;

Display(MarkTableOI_cube);

USCITableOI_cube := constructUSCITable(OI_cube,O_cube,33,gen,8,10);

Display("##USCI-CF table (USCITableOI_cube) :");

Display(USCITableOI_cube);

The resulting standard mark table MarkTableOI cube is identical with the unsorted

mark table (tom OI cube cited above) in this case of the LR-permutation group OÎ

(OI cube). The concordantly generated USCI table USCITableOI cube is obtained as

a list having 33 inner lists [[· · · ] · · · [· · · ] · · · [· · · ]], each of which is surrounded by an inner

pair of square brackets. For the simplicity’s sake, the 17th inner list is extracted in the
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following output.
[ [ .... (omitted)... ]

....

[ b_1^8, b_2^4, b_2^4, a_1^8, c_2^4, c_2^4, b_1^2*b_3^2, b_4^2, a_2^4, c_4^2,

c_4^2, c_4^2, b_4^2, b_4^2, a_2^4, c_4^2, a_1^2*a_3^2, b_2*b_6, c_2*c_6, b_8,

c_8, a_4^2, a_4^2, a_4^2, c_8, c_8, a_2*a_6, b_4^2, a_8, b_8, a_4^2, c_8, a_8 ],

...

[...(omitted)...]]

To accomplish further calculations, the standard mark table MarkTableOI cube is

converted into a matrix format by using GAP function MatTom as follows. The resulting

matrix named Matrix tomOI cube is a GAP list format, in which an outer list contains

33 rows of inner lists.
#Matrix form of mark table

Matrix_tomOI_cube := MatTom(MarkTableOI_cube);

Display(Matrix_tomOI_cube);

Matrix Form Matrix tomOI cube of Mark Table MarkTableOI cube

Matrix tomOI cube :=

[ [48, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[24, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[24, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[24, 0, 0,24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[24, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[24, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[16, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[12,12, 0, 0, 0, 0, 0,12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[12, 4, 0,12, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[12, 4, 0, 0, 8, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[12, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[12, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[12, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[12, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[12, 0, 2,12, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[12, 0, 2, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[ 8, 0, 0, 8, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[ 8, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[ 8, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[ 6, 6, 2, 0, 0, 0, 0, 6, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[ 6, 6, 0, 0, 0, 2, 0, 6, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[ 6, 2, 0, 6, 2, 0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[ 6, 2, 2, 6, 2, 2, 0, 0, 2, 0, 0, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[ 6, 6, 0, 6, 6, 0, 0, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],

[ 6, 2, 2, 0, 4, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0 ],

[ 6, 2, 0, 0, 4, 2, 0, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0 ],

[ 4, 0, 2, 4, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ],

[ 4, 4, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0 ],

[ 3, 3, 1, 3, 3, 1, 0, 3, 3, 3, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 3, 1, 1, 0, 0, 1, 0, 0, 0, 0 ],

[ 2, 2, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0 ],

[ 2, 2, 0, 2, 2, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0 ],

[ 2, 2, 0, 0, 0, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0 ],

[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ]

The newly-developed GAP function calculateFPvector gives a fixed-point vector

FPVcube for characterizing eight substitution positions of a holantimeric cubane skeleton

2 (D).

Display("#Fixed point vector for cube");

FPVcube := calculateFPvector(OI_cube,O_cube,33,gen,8,10);;

Display(FPVcube);
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#Fixed point vector for cube

[ 8, 0, 0, 8, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

Because the eight positions of 2 belong to one orbit governed by the coset represen-

tation (C3Î\)OÎ , the resulting fixed-point vector FPVcube is identical with the 17th row

of the standard mark table MarkTableOI cube (and the 17th row of the corresponding

matrix Matrix tomOI cube) of the LR-permutation group OÎ . Note that each position

of the holantimeric cubane skeleton 2 (D) exhibits its local symmetry C3Î under the ac-

tion of LR-permutation group OÎ . Strictly speaking, the above discussions are concerned

with the pair of holantimeric skeletons 1/2, which appears in a diagonal direction and is

governed by the LR-permutation group OÎ .

This conclusion is confirmed in terms of the multiplicity of orbits as a multiplicity

vector orbit OI cube, which is calculated by the multiplication of the FPV (FPVcube)

with the inverse matrix of the mark table Inverse(Matrix tomOI cube) as follows:

Display("#Multiplicity of Orbits");

orbit_OI_cube := FPVcube * Inverse(Matrix_tomOI_cube);;

Display(orbit_OI_cube);

#Multiplicity of Orbits

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

The value 1 at the 17th position of the list orbit OI cube represents the appearance of

one orbit governed by the coset representation (C3Î\)OÎ .

The SCI-CFs for a cubane skeleton under LR-permutation group OÎ are obtained

by referring the multiplicity vector orbit OI cube. Because it contains the value 1 at

the 17th position, the corresponding list of SCI-CFs l SCICF OI cube is occasionally

concerned with only one orbit, i.e., the 17th inner list of the above simplified citation of the

standard USCI table USCITableOI cube. According to the procedure of general multiple-

orbit cases, the newly-developed function constructSCICF can be used to calculate a list

of SCI-CFs l SCICF OI cube, even in this one-orbit case.

Display("#SCI-CF for cube");

l_SCICF_OI_cube :=

constructSCICF(OI_cube,O_cube,Matrix_tomOI_cube,USCITableOI_cube,FPVcube);;

Display(l_SCICF_OI_cube);

#SCI-CF for cube

[ b_1^8, b_2^4, b_2^4, a_1^8, c_2^4, c_2^4, b_1^2*b_3^2, b_4^2, a_2^4,

c_4^2, c_4^2, c_4^2, b_4^2, b_4^2, a_2^4, c_4^2, a_1^2*a_3^2, b_2*b_6, c_2*c_6, b_8,

c_8, a_4^2, a_4^2, a_4^2, c_8, c_8, a_2*a_6, b_4^2, a_8, b_8, a_4^2, c_8, a_8 ]

The resulting list of SCI-CFs l SCICF OI cube is multiplied by the inverse matrix of

the mark table Inverse(Matrix tomOI cube), so as to give a list of PCI-CFs.
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Display("#list of PCI-CFs for cube");

l_PCICF_OI_cube := l_SCICF_OI_cube * Inverse(Matrix_tomOI_cube);;

Display(l_PCICF_OI_cube);

The list of PCI-CFs l PCICF OI cube contains PCI-CFs for thirty-three subgroups,

each of which is represented as l PCICF OI cube[i] (i = 1, 2, . . . , 33) and taken out as a

polynomial expression.
Display("#PCI-CFs for subgroups");

for i in [1..33] do

Print("PCICF_OI_cube[", i, "] := ", l_PCICF_OI_cube[i], "\n");

od;

#PCI-CFs for subgroups

PCICF_OI_cube[1] := 1/48*b_1^8-1/48*a_1^8-1/12*b_1^2*b_3^2-3/16*b_2^4+1/12*a_1^2*a_3^2

+3/8*a_2^4-3/16*c_2^4+1/4*b_2*b_6+1/4*b_4^2-1/2*a_2*a_6-3/4*a_4^2+1/4*c_2*c_6

+1/2*c_4^2-1/4*b_8+1/2*a_8-1/4*c_8

PCICF_OI_cube[2] := 1/8*b_2^4-1/8*a_2^4-3/8*b_4^2+3/4*a_4^2-3/8*c_4^2+1/4*b_8-a_8+3/4*c_8

PCICF_OI_cube[3] := 1/4*b_2^4-1/4*a_2^4-1/2*b_2*b_6-1/4*b_4^2+1/2*a_2*a_6+1/2*a_4^2

-1/4*c_4^2+1/2*b_8-1/2*a_8

PCICF_OI_cube[4] := 1/24*a_1^8-1/6*a_1^2*a_3^2-3/8*a_2^4+1/2*a_2*a_6+1/2*a_4^2-1/2*a_8

PCICF_OI_cube[5] := -1/8*a_2^4+1/8*c_2^4+1/2*a_4^2-1/2*c_4^2

PCICF_OI_cube[6] := -1/4*a_2^4+1/4*c_2^4+1/2*a_2*a_6+1/2*a_4^2-1/2*c_2*c_6-1/2*c_4^2

-1/2*a_8+1/2*c_8

PCICF_OI_cube[7] := 1/4*b_1^2*b_3^2-1/4*a_1^2*a_3^2-1/4*b_2*b_6-1/4*b_4^2+1/2*a_2*a_6

+1/4*a_4^2-1/4*c_2*c_6+1/4*b_8-1/2*a_8+1/4*c_8

PCICF_OI_cube[8] := 0

PCICF_OI_cube[9] := 1/4*a_2^4-3/4*a_4^2+1/2*a_8

PCICF_OI_cube[10] := -1/4*a_4^2+1/4*c_4^2+1/2*a_8-1/2*c_8

PCICF_OI_cube[11] := -1/4*a_4^2+1/4*c_4^2+1/2*a_8-1/2*c_8

PCICF_OI_cube[12] := -1/4*a_4^2+1/4*c_4^2+1/2*a_8-1/2*c_8

PCICF_OI_cube[13] := 1/4*b_4^2-1/4*a_4^2-1/4*b_8+1/2*a_8-1/4*c_8

PCICF_OI_cube[14] := 1/4*b_4^2-1/4*a_4^2-1/4*b_8+1/2*a_8-1/4*c_8

PCICF_OI_cube[15] := 1/2*a_2^4-a_2*a_6-1/2*a_4^2+a_8

PCICF_OI_cube[16] := -1/2*a_4^2+1/2*c_4^2

PCICF_OI_cube[17] := 1/2*a_1^2*a_3^2-1/2*a_2*a_6-1/2*a_4^2+1/2*a_8

PCICF_OI_cube[18] := 1/2*b_2*b_6-1/2*a_2*a_6-1/2*b_8+1/2*a_8

PCICF_OI_cube[19] := -1/2*a_2*a_6+1/2*c_2*c_6+1/2*a_8-1/2*c_8

PCICF_OI_cube[20] := 0

PCICF_OI_cube[21] := 0

PCICF_OI_cube[22] := 1/2*a_4^2-1/2*a_8

PCICF_OI_cube[23] := 1/2*a_4^2-1/2*a_8

PCICF_OI_cube[24] := 0

PCICF_OI_cube[25] := -1/2*a_8+1/2*c_8

PCICF_OI_cube[26] := -1/2*a_8+1/2*c_8

PCICF_OI_cube[27] := a_2*a_6-a_8

PCICF_OI_cube[28] := 1/4*b_4^2-1/4*a_4^2-1/4*b_8+1/2*a_8-1/4*c_8

PCICF_OI_cube[29] := 0

PCICF_OI_cube[30] := 1/2*b_8-1/2*a_8

PCICF_OI_cube[31] := 1/2*a_4^2-1/2*a_8

PCICF_OI_cube[32] := -1/2*a_8+1/2*c_8

PCICF_OI_cube[33] := a_8

These PCI-CFs for the LR-permutation group OÎ in the GAP expressions are repre-

sented by usual mathematic conventions as follows:
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Î
1(C1, $d) =
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′
2, $d) = −1

4
a42 +

1

4
c42 +

1

2
a2a6 +

1

2
a24 −

1

2
c2c6 −

1

2
c24 −

1

2
a8 +

1

2
c8(81)

PCI-CFO
Î
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1(D3Î , $d) = a2a6 − a8 (102)

PCI-CFO
Î
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Î
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4 Combinatorial enumerations

Fujita’s USCI approach supports four methods of combinatorial enumeration, i.e., (1) the

fixed-point matrix (FPM) method based on generating functions derived from subduced

cycle indices (SCIs) and mark tables [32–34], (2) the partial-cycle-index (PCI) method

based on generating functions derived from partial cycle indices (PCIs) [35, 36], (3) the

elementary superposition method [37], and (4) the partial superposition method [35, 37].

Among the four methods, the present paper adopts the partial-cycle-index (PCI) method,

where the use of CPR (combined-permutation representation) under the GAP system is

a new matter.

4.1 Symmetry-itermized enumeration under point group Oh

The PCI-CFs calculated under the point group Oh (Eqs. 8–40) are used in symmetry-

itemized enumeration of cubane derivatives under the point group Oh. For the sake of

simplicity, a set of eight proligands is selected from the following inventory of proligands:

L = {H,A,B,X,Y,Z; p, p; q, q} (109)

where H, A, B, X, Y, and Z are achiral proligands in isolation, while a pair of p and p (or q

and q) represents an enantiomeric pair of chiral proligands in isolation. The corresponding
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ligand-inventory functions are obtained according to Eqs. 5–7 in Theorem 1 of Ref. [38].

ad = Hd +Ad + Bd +Xd +Yd + Zd (110)

bd = Hd +Ad + Bd +Xd +Yd + Zd + pd + pd + qd + qd (111)

cd = Hd +Ad + Bd +Xd +Yd + Zd + 2pd/2pd/2 + 2qd/2qd/2 (112)

The ligand-inventory functions (Eqs. 110–112) are introduced into the PCI-CFs (Eqs.

8–40). The resulting equation is expanded to give a generating function, in which the

coefficient of each term HhAaBbXxYyZzppppqqqq represents the number of pairs of enan-

tiomeric cubane derivatives with the composition C8HhAaBbXxYyZzppppqqqq.

Because the coefficients appear symmetrically, such a mode of substitution is repre-

sented by a substitution pattern [h, a, b, x, y, z; p, p, q, q] for the sake of convenience in enu-

meration. The symmetrical appearance permits us to presume h ≥ a ≥ w ≥ x ≥ y ≥ z;

p ≥ q, p ≥ p, and q ≥ q without losing generality. Appendix A shows a typical procedure

for Fujita’s USCI approach by using the combined-permutation representation (CPR).

The coefficients obtained are collected in a tabular form (Tables 1 to 3).

Because a pair of enantiomers is counted once in the enumeration under the point

group Oh, a coefficient should be duplicated if there is a pair of terms which corresponds

to a pair of enantiomers (each substitution pattern with an asterisk). Each substitution

pattern marked by an asterisk (e.g., [7,0,0,0,0,0;1,0,0,0]* for H7p) has the counterpart

of opposite chirality sense (e.g., [7,0,0,0,0,0;0,1,0,0]* for H7p), so that the corresponding

coefficient should be duplicated to generate the number of cubane derivatives.

The symmetry-itemized enumeration has been conducted by means of the partial-

cycle-index (PCI) method of Fujita’s USCI approach (Appendix A), where the non-

redundant set of subgroups SSGOh (Eq. 7) has been postulated. The resulting data are

collected in Tables 1 to 3. These data are consistent with the previous results which have

been obtained by applying the fixed-point matrix (FPM) method of Fujita’s USCI ap-

proach [39], the elementary-superposition method of Fujita’s USCI approach [21], as well

as the partial-cycle-index (PCI) method of Fujita’s USCI approach [20]. Among them,

the last report deals with the PCI method, but it has been conducted under the Maple

programming language in place of the GAP system and with no use of CPR (combined-

permutation representation).
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Table 1. Cubane Derivatives as 3D Structural Isomers Under the Point Group Oh

(Part 1)

partition C1 C2 C′
2 Cs C′

s Ci C3 C4 S4 D2 D′
2 C2v C′

2v C′′
2v C2h C′

2h D3 C3v C3i D4

C4v C4h D2d D′
2d D2h D′

2h T D3d D4h O Th Td Oh

[8, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

[7, 1, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 2, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0

[6, 1, 1, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 3, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 2, 1, 0, 0, 0, 0, 0, 0, 0] 1 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 1, 1, 1, 0, 0, 0, 0, 0, 0] 4 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 4, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 0 1 0

[4, 3, 1, 0, 0, 0, 0, 0, 0, 0] 3 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 2, 2, 0, 0, 0, 0, 0, 0, 0] 4 0 2 1 4 0 0 0 0 0 0 0 3 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 2, 1, 1, 0, 0, 0, 0, 0, 0] 13 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 1, 1, 1, 1, 0, 0, 0, 0, 0] 32 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3, 2, 0, 0, 0, 0, 0, 0, 0] 7 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3, 1, 1, 0, 0, 0, 0, 0, 0] 18 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 2, 1, 0, 0, 0, 0, 0, 0] 28 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 1, 1, 1, 0, 0, 0, 0, 0] 64 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 2, 2, 0, 0, 0, 0, 0, 0] 40 0 6 3 12 1 0 0 0 0 0 0 6 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 2, 1, 1, 0, 0, 0, 0, 0] 96 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 1, 1, 1, 1, 0, 0, 0, 0] 204 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 0, 0, 0, 0, 0, 1, 0, 0, 0]* 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 1, 0, 0, 0, 0, 1, 0, 0, 0]* 1 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 0, 0, 0, 0, 0, 2, 0, 0, 0]* 0 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 0, 0, 0, 0, 0, 1, 1, 0, 0] 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 2, 0, 0, 0, 0, 1, 0, 0, 0]* 7/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 1, 1, 0, 0, 0, 1, 0, 0, 0]* 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 1, 0, 0, 0, 0, 2, 0, 0, 0]* 7/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 1, 0, 0, 0, 0, 1, 1, 0, 0] 5 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 0, 0, 0, 0, 0, 3, 0, 0, 0]* 1 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 0, 0, 0, 0, 0, 2, 1, 0, 0]* 7/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 0, 0, 0, 0, 0, 1, 1, 1, 0]* 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 2. Cubane Derivatives as 3D Structural Isomers Under the Point Group Oh

(Part 2)

partition C1 C2 C′
2 Cs C′

s Ci C3 C4 S4 D2 D′
2 C2v C′

2v C′′
2v C2h C′

2h D3 C3v C3i D4

C4v C4h D2d D′
2d D2h D′

2h T D3d D4h O Th Td Oh

[4, 0, 0, 0, 0, 0, 4, 0, 0, 0]* 1/2 0 1 0 0 0 1/2 1/2 0 0 1/2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1/2 0 0 0 0 0 0

[4, 3, 0, 0, 0, 0, 1, 0, 0, 0]* 11/2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 2, 0, 0, 0, 0, 2, 0, 0, 0]* 13/2 3/2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 0, 0, 0, 0, 0, 2, 2, 0, 0] 6 0 2 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 0, 0, 0, 0, 0, 2, 0, 2, 0]* 13/2 3/2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 2, 1, 0, 0, 0, 1, 0, 0, 0]* 35/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 2, 0, 0, 0, 0, 1, 1, 0, 0] 12 0 0 3 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 1, 1, 1, 0, 0, 1, 0, 0, 0]* 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 1, 1, 0, 0, 0, 1, 1, 0, 0] 29 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 1, 0, 0, 0, 0, 1, 1, 1, 0]* 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 0, 0, 0, 0, 0, 1, 1, 1, 1] 30 0 0 6 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3, 1, 0, 0, 0, 1, 0, 0, 0]* 23 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3, 0, 0, 0, 0, 1, 1, 0, 0] 19 0 0 0 8 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3, 0, 0, 0, 0, 2, 0, 0, 0]* 23/2 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 2, 0, 0, 0, 1, 0, 0, 0]* 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 0, 0, 0, 0, 2, 1, 0, 0]* 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 1, 0, 0, 0, 1, 1, 0, 0] 62 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 0, 0, 0, 0, 1, 1, 1, 0]* 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 1, 1, 1, 1, 0, 0, 0, 0] 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 1, 1, 1, 0, 1, 0, 0, 0] 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 1, 1, 0, 0, 1, 1, 0, 0] 128 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 1, 0, 0, 0, 1, 1, 1, 0]* 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 0, 0, 0, 0, 1, 1, 1, 1] 136 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 0, 0, 0, 0, 0, 3, 2, 0, 0]* 23/2 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 0, 0, 0, 0, 0, 3, 1, 1, 0]* 23 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 0, 0, 0, 0, 0, 2, 2, 1, 0]* 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 0, 0, 0, 0, 0, 2, 1, 1, 1]* 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 1, 1, 0, 0, 1, 0, 0, 0]* 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 3. Cubane Derivatives as 3D Structural Isomers Under the Point Group Oh

(Part 3)

partition C1 C2 C′
2 Cs C′

s Ci C3 C4 S4 D2 D′
2 C2v C′

2v C′′
2v C2h C′

2h D3 C3v C3i D4

C4v C4h D2d D′
2d D2h D′

2h T D3d D4h O Th Td Oh

[2, 2, 2, 0, 0, 0, 2, 0, 0, 0]* 48 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 0, 0, 0, 0, 2, 2, 0, 0] 43 3 4 5 4 1 0 0 0 0 0 0 0 2 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 0, 0, 0, 0, 0, 2, 2, 2, 0]* 48 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 2, 1, 0, 0, 1, 0, 0, 0]* 105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 2, 0, 0, 0, 1, 1, 0, 0] 92 0 0 6 18 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 1, 1, 1, 0, 1, 0, 0, 0]* 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 1, 1, 0, 0, 1, 1, 0, 0] 198 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 1, 0, 0, 0, 1, 1, 1, 0]* 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 0, 0, 0, 0, 1, 1, 1, 1] 196 0 0 12 12 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 1, 1, 1, 1, 1, 1, 0, 0, 0]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 1, 1, 1, 1, 0, 1, 1, 0, 0] 408 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 1, 1, 1, 0, 0, 1, 1, 1, 0]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 1, 1, 0, 0, 0, 1, 1, 1, 1] 408 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 1, 1, 2, 0, 0, 0]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 1, 0, 2, 1, 0, 0]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 0, 0, 2, 1, 1, 0]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 0, 0, 0, 2, 1, 1, 1]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 1, 1, 1, 1, 0, 0] 840 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 1, 0, 1, 1, 1, 0]* 840 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 0, 0, 1, 1, 1, 1] 816 0 0 0 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

4.2 Symmetry-itermized enumeration under RS-stereogenic
group Oσ̃

The PCI-CFs calculated under the RS -stereogenic group Oσ̃ (Eqs. 42–74) are used in

symmetry-itemized enumeration of cubane derivatives under the RS -stereogenic group

Oσ̃.

The same ligand inventory L (Eq. 109) is adopted. Because these PCI-CFs depend only

on a hemispheric indices bd, the ligand-inventory function shown by Eq. 111 is employed

in the enumeration under Oσ̃.

After the introduction of the ligand-inventory function (Eq. 111) is introduced into

the PCI-CFs (Eqs. 42–74), the resulting polynomials are expanded into the respective

generating functions, the coefficient of each term HhAaBbXxYyZzppppqqqq is extracted to
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give Tables 4–6.

4.3 Symmetry-itermized enumeration under LR-permutation
group OÎ

As discussed in Subsection 3.3, the PCI-CFs under the LR-permutation group OÎ are

aligned by adopting the standard mark table and the USCI-CF table, which are obtained

with no sorting applied to the native GAP mark table. The PCI-CFs calculated under

the LR-permutation group OÎ (Eqs. 76–108) are used in symmetry-itemized enumeration

of cubane derivatives under the LR-permutation group OÎ (Eq. 5).

The same ligand inventory L (Eq. 109) is adopted. Because the employed PCI-CFs

depend on USCI-CFs with three kinds of sphericity indices ($d: ad, bd, and cd), the

ligand-inventory functions shown by Eq. 110–112 are employed in the enumeration under

OÎ .

After the ligand-inventory functions (Eqs. 110–112) are introduced into the PCI-CFs

(Eqs. 42–74), the resulting polynomials are expanded into the respective generating func-

tions. The coefficient of each term HhAaBbXxYyZzppppqqqq is extracted to give Ta-

bles 7–9, which summarize the enumeration results based on the respective partitions

[h, a, b, x, y, z; p, p, q, q] for the sake of convenience in enumeration.

The symmetrical appearance permits us to presume h ≥ a ≥ w ≥ x ≥ y ≥ z; p ≥ q,

p ≥ p, and q ≥ q without losing generality. Appendix B shows a typical procedure for

Fujita’s USCI approach by using the combined-permutation representation (CPR). The

coefficients obtained are collected in a tabular form (Tables 7–9).

4.4 Five types of stereoisograms based on a cubane skeleton

The above discussions deal with symmetry-itemized enumerations concerning three sub-

groups for specifying stereoisograms of cubane derivatives, i.e., the point group Oh (Eq.

2), the RS -stereogenic group Oσ̃ (Eq. 3), and the LR-permutation group OÎ (Eq. 5).

Thereby, the RS -stereoisomeric group Ohσ̃Î providing the integration of three aspects of

stereoisograms [8, 9, 11] can be discussed more detailedly in symmetry-itemized fashion.

Thus, chirality/achirality can be discussed on the basis of enumeration data under Oh;

RS -stereogenicity/RS -astereogenicity can be discussed on the basis of enumeration data

under OÎ , sclerality/asclerality can be discussed on the basis of enumeration data under

OÎ . Such detailed enumeration results as based on the three subgroups provide us with
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Table 4. Cubane Derivatives as 3D Structural Isomers Under the RS -Stereogenic
Group Oσ̃ (Part 1)

partition C1 C2 C ′
2 C̃s C̃ ′

s C̃i C3 C4 S̃4 D2 D ′
2 C̃2v C̃ ′

2v C̃ ′′
2v C̃2h C̃ ′

2h D3 C̃3v C̃3i D4

C̃4v C̃4h D̃2d D̃ ′
2d D̃2h D̃ ′

2h T D̃3d D̃4h O T̃h T̃d Oσ̃

[8, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

[7, 1, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 2, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0

[6, 1, 1, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 3, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 2, 1, 0, 0, 0, 0, 0, 0, 0] 1 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 1, 1, 1, 0, 0, 0, 0, 0, 0] 4 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 4, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 0 1 0

[4, 3, 1, 0, 0, 0, 0, 0, 0, 0] 3 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 2, 2, 0, 0, 0, 0, 0, 0, 0] 4 0 2 1 4 0 0 0 0 0 0 0 3 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 2, 1, 1, 0, 0, 0, 0, 0, 0] 13 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 1, 1, 1, 1, 0, 0, 0, 0, 0] 32 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3, 2, 0, 0, 0, 0, 0, 0, 0] 7 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3, 1, 1, 0, 0, 0, 0, 0, 0] 18 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 2, 1, 0, 0, 0, 0, 0, 0] 28 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 1, 1, 1, 0, 0, 0, 0, 0] 64 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 2, 2, 0, 0, 0, 0, 0, 0] 40 0 6 3 12 1 0 0 0 0 0 0 6 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 2, 1, 1, 0, 0, 0, 0, 0] 96 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 1, 1, 1, 1, 0, 0, 0, 0] 204 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 0, 0, 0, 0, 0, 1, 0, 0, 0]* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 1, 0, 0, 0, 0, 1, 0, 0, 0]* 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 0, 0, 0, 0, 0, 2, 0, 0, 0]* 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0

[6, 0, 0, 0, 0, 0, 1, 1, 0, 0] 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 2, 0, 0, 0, 0, 1, 0, 0, 0]* 1 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 1, 1, 0, 0, 0, 1, 0, 0, 0]* 4 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 1, 0, 0, 0, 0, 2, 0, 0, 0]* 1 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 1, 0, 0, 0, 0, 1, 1, 0, 0] 4 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 0, 0, 0, 0, 0, 3, 0, 0, 0]* 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 0, 0, 0, 0, 0, 2, 1, 0, 0]* 1 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 0, 0, 0, 0, 0, 1, 1, 1, 0]* 4 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 5. Cubane Derivatives as 3D Structural Isomers Under the RS -Stereogenic
Group Oσ̃ (Part 2)

partition C1 C2 C ′
2 C̃s C̃ ′

s C̃i C3 C4 S̃4 D2 D ′
2 C̃2v C̃ ′

2v C̃ ′′
2v C̃2h C̃ ′

2h D3 C̃3v C̃3i D4

C̃4v C̃4h D̃2d D̃ ′
2d D̃2h D̃ ′

2h T D̃3d D̃4h O T̃h T̃d Oσ̃

[4, 0, 0, 0, 0, 0, 4, 0, 0, 0]* 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0 0 0 0 1 0

[4, 3, 0, 0, 0, 0, 1, 0, 0, 0]* 3 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 2, 0, 0, 0, 0, 2, 0, 0, 0]* 4 0 2 1 4 0 0 0 0 0 0 0 3 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 0, 0, 0, 0, 0, 2, 2, 0, 0] 4 0 2 1 4 0 0 0 0 0 0 0 3 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 0, 0, 0, 0, 0, 2, 0, 2, 0]* 4 0 2 1 4 0 0 0 0 0 0 0 3 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 2, 1, 0, 0, 0, 1, 0, 0, 0]* 13 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 2, 0, 0, 0, 0, 1, 1, 0, 0] 13 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 1, 1, 1, 0, 0, 1, 0, 0, 0]* 32 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 1, 1, 0, 0, 0, 1, 1, 0, 0] 32 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 1, 0, 0, 0, 0, 1, 1, 1, 0]* 32 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 0, 0, 0, 0, 0, 1, 1, 1, 1] 32 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3, 1, 0, 0, 0, 1, 0, 0, 0]* 18 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3, 0, 0, 0, 0, 1, 1, 0, 0] 18 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3, 0, 0, 0, 0, 2, 0, 0, 0]* 7 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 2, 0, 0, 0, 1, 0, 0, 0]* 28 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 0, 0, 0, 0, 2, 1, 0, 0]* 28 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 1, 0, 0, 0, 1, 1, 0, 0] 64 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 0, 0, 0, 0, 1, 1, 1, 0]* 64 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 1, 1, 1, 1, 0, 0, 0, 0] 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 1, 1, 1, 0, 1, 0, 0, 0]* 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 1, 1, 0, 0, 1, 1, 0, 0] 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 1, 0, 0, 0, 1, 1, 1, 0]* 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 0, 0, 0, 0, 1, 1, 1, 1] 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 0, 0, 0, 0, 0, 3, 2, 0, 0]* 7 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 0, 0, 0, 0, 0, 3, 1, 1, 0]* 18 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 0, 0, 0, 0, 0, 2, 2, 1, 0]* 28 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 0, 0, 0, 0, 0, 2, 1, 1, 1]* 64 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 1, 1, 0, 0, 1, 0, 0, 0]* 64 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 6. Cubane Derivatives as 3D Structural Isomers Under the RS -Stereogenic
Group Oσ̃ (Part 3)

partition C1 C2 C ′
2 C̃s C̃ ′

s C̃i C3 C4 S̃4 D2 D ′
2 C̃2v C̃ ′

2v C̃ ′′
2v C̃2h C̃ ′

2h D3 C̃3v C̃3i D4

C̃4v C̃4h D̃2d D̃ ′
2d D̃2h D̃ ′

2h T D̃3d D̃4h O T̃h T̃d Oσ̃

[2, 2, 2, 0, 0, 0, 2, 0, 0, 0]* 40 0 6 3 12 1 0 0 0 0 0 0 6 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 0, 0, 0, 0, 2, 2, 0, 0] 40 0 6 3 12 1 0 0 0 0 0 0 6 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 0, 0, 0, 0, 0, 2, 2, 2, 0]* 40 0 6 3 12 1 0 0 0 0 0 0 6 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 2, 1, 0, 0, 1, 0, 0, 0]* 96 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 2, 0, 0, 0, 1, 1, 0, 0] 96 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 1, 1, 1, 0, 1, 0, 0, 0]* 204 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 1, 1, 0, 0, 1, 1, 0, 0] 204 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 1, 0, 0, 0, 1, 1, 1, 0]* 204 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 0, 0, 0, 0, 1, 1, 1, 1] 204 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 1, 1, 1, 1, 1, 1, 0, 0, 0]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 1, 1, 1, 1, 0, 1, 1, 0, 0] 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 1, 1, 1, 0, 0, 1, 1, 1, 0]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 1, 1, 0, 0, 0, 1, 1, 1, 1] 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 1, 1, 2, 0, 0, 0]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 1, 0, 2, 1, 0, 0]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 0, 0, 2, 1, 1, 0]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 0, 0, 0, 2, 1, 1, 1]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 1, 1, 1, 1, 0, 0] 840 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 1, 0, 1, 1, 1, 0]* 840 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 0, 0, 1, 1, 1, 1] 840 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

versatile methodology for clarifying the action of the RS -stereoisomeric group Ohσ̃Î on

stereoisograms (Eq. 6 in Subsection 2.6) in symmetry-itemized fashion.

Under the action of an RS -stereoisomeric group Ohσ̃Î , the three pairs of attributes

in the corresponding stereoisogram, i.e., chirality/achirality (Subsection 4.1) along the

vertical direction, RS-astereogenicity/RS-stereogenicity (Subsection 4.2) along the hori-

zontal direction, and sclerality/asclerality (Subsection 4.3) along the diagonal direction,

are combined on the basis of the elementary stereoisogram (Figure 1 in Subsection 2.1),

so as to give five types of stereoisograms, as shown in Figure 5.

For our deeper information, it is useful to reveal the modification history of the charts

of stereoisograms. At first, a primitive chart of stereoisograms has been reported as

Figure 6 of the proposal of the concept of stereoisograms [8]. This primitive chart has
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Table 7. Cubane Derivatives as 3D Structural Isomers Under the LR-Permutation
Group O

Î
(Part 1)

partition C1 C2 C ′
2 CÎ Ĉ2 Ĉ ′

2 C3 D2 C2Î D̂2 Ĉ4 D̂ ′
2 C4 D ′

2 C ′
2Î

D̂ ′′
2 C3Î D3 D̂3 D4

D̂4 C4Î D ′
2Î

D2Î D̂ ′′
4 D̂ ′

4 D3Î T D4Î O TÎ Ô OÎ

[8, 0, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

[7, 1, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 2, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0

[6, 1, 1, 0, 0, 0, 0, 0, 0, 0] 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 3, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 2, 1, 0, 0, 0, 0, 0, 0, 0] 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 1, 1, 1, 0, 0, 0, 0, 0, 0] 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 4, 0, 0, 0, 0, 0, 0, 0, 0] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0

[4, 3, 1, 0, 0, 0, 0, 0, 0, 0] 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 2, 2, 0, 0, 0, 0, 0, 0, 0] 0 0 0 13 0 0 0 0 3 0 0 0 0 0 6 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 2, 1, 1, 0, 0, 0, 0, 0, 0] 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 1, 1, 1, 1, 0, 0, 0, 0, 0] 0 0 0 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3, 2, 0, 0, 0, 0, 0, 0, 0] 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3, 1, 1, 0, 0, 0, 0, 0, 0] 0 0 0 46 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 2, 1, 0, 0, 0, 0, 0, 0] 0 0 0 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 1, 1, 1, 0, 0, 0, 0, 0] 0 0 0 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 2, 2, 0, 0, 0, 0, 0, 0] 0 0 0 96 0 0 0 0 6 0 0 0 0 0 12 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 2, 1, 1, 0, 0, 0, 0, 0] 0 0 0 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 1, 1, 1, 1, 0, 0, 0, 0] 0 0 0 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[7, 0, 0, 0, 0, 0, 1, 0, 0, 0]* 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 1, 0, 0, 0, 0, 1, 0, 0, 0]* 1 0 0 0 0 0 1/2 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 0, 0, 0, 0, 0, 2, 0, 0, 0]* 0 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[6, 0, 0, 0, 0, 0, 1, 1, 0, 0] 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 2, 0, 0, 0, 0, 1, 0, 0, 0]* 7/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 1, 1, 0, 0, 0, 1, 0, 0, 0]* 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 1, 0, 0, 0, 0, 2, 0, 0, 0]* 7/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 1, 0, 0, 0, 0, 1, 1, 0, 0] 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 0, 0, 0, 0, 0, 3, 0, 0, 0]* 1 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 0, 0, 0, 0, 0, 2, 1, 0, 0]* 7/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[5, 0, 0, 0, 0, 0, 1, 1, 1, 0]* 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 8. Cubane Derivatives as 3D Structural Isomers Under the LR-Permutation
Group OÎ (Part 2)

partition C1 C2 C ′
2 CÎ Ĉ2 Ĉ ′

2 C3 D2 C2Î D̂2 Ĉ4 D̂ ′
2 C4 D ′

2 C ′
2Î

D̂ ′′
2 C3Î D3 D̂3 D4

D̂4 C4Î D ′
2Î

D2Î D̂ ′′
4 D̂ ′

4 D3Î T D4Î O TÎ Ô OÎ

[4, 0, 0, 0, 0, 0, 4, 0, 0, 0]* 1/2 0 1 0 0 0 1/2 0 0 0 0 0 1/2 1/2 0 0 0 0 0 0
0 0 0 0 0 0 0 1/2 0 0 0 0 0

[4, 3, 0, 0, 0, 0, 1, 0, 0, 0]* 11/2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 2, 0, 0, 0, 0, 2, 0, 0, 0]* 13/2 3/2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 0, 0, 0, 0, 0, 2, 2, 0, 0] 4 0 2 0 1 4 0 0 0 1 1 1 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 0, 0, 0, 0, 0, 2, 0, 2, 0]* 13/2 3/2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 2, 1, 0, 0, 0, 1, 0, 0, 0]* 35/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 2, 0, 0, 0, 0, 1, 1, 0, 0] 13 0 0 0 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 1, 1, 1, 0, 0, 1, 0, 0, 0]* 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 1, 1, 0, 0, 0, 1, 1, 0, 0] 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 1, 0, 0, 0, 0, 1, 1, 1, 0]* 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[4, 0, 0, 0, 0, 0, 1, 1, 1, 1] 26 0 0 0 6 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3, 1, 0, 0, 0, 1, 0, 0, 0]* 23 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3, 0, 0, 0, 0, 1, 1, 0, 0] 23 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 3, 0, 0, 0, 0, 2, 0, 0, 0]* 23/2 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 2, 0, 0, 0, 1, 0, 0, 0]* 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 0, 0, 0, 0, 2, 1, 0, 0]* 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 1, 0, 0, 0, 1, 1, 0, 0] 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 0, 0, 0, 0, 1, 1, 1, 0]* 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 1, 1, 1, 1, 0, 0, 0, 0] 0 0 0 280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 1, 1, 1, 0, 1, 0, 0, 0]* 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 1, 1, 0, 0, 1, 1, 0, 0] 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 1, 0, 0, 0, 1, 1, 1, 0]* 140 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 1, 0, 0, 0, 0, 1, 1, 1, 1] 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 0, 0, 0, 0, 0, 3, 2, 0, 0]* 23/2 0 0 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 0, 0, 0, 0, 0, 3, 1, 1, 0]* 23 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 0, 0, 0, 0, 0, 2, 2, 1, 0]* 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 0, 0, 0, 0, 0, 2, 1, 1, 1]* 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[3, 2, 1, 1, 0, 0, 1, 0, 0, 0]* 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 9. Cubane Derivatives as 3D Structural Isomers Under the LR-Permutation
Group O

Î
(Part 3)

partition C1 C2 C ′
2 CÎ Ĉ2 Ĉ ′

2 C3 D2 C2Î D̂2 Ĉ4 D̂ ′
2 C4 D ′

2 C ′
2Î

D̂ ′′
2 C3Î D3 D̂3 D4

D̂4 C4Î D ′
2Î

D2Î D̂ ′′
4 D̂ ′

4 D3Î T D4Î O TÎ Ô OÎ

[2, 2, 2, 0, 0, 0, 2, 0, 0, 0]* 48 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 0, 0, 0, 0, 2, 2, 0, 0] 39 3 6 0 6 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 0, 0, 0, 0, 0, 2, 2, 2, 0]* 48 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 2, 1, 0, 0, 1, 0, 0, 0]* 105 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 2, 0, 0, 0, 1, 1, 0, 0] 96 0 0 0 6 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 1, 1, 1, 0, 1, 0, 0, 0]* 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 1, 1, 0, 0, 1, 1, 0, 0] 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 1, 0, 0, 0, 1, 1, 1, 0]* 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 2, 0, 0, 0, 0, 1, 1, 1, 1] 192 0 0 0 12 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 1, 1, 1, 1, 1, 1, 0, 0, 0]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 1, 1, 1, 1, 0, 1, 1, 0, 0] 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 1, 1, 1, 0, 0, 1, 1, 1, 0]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[2, 1, 1, 0, 0, 0, 1, 1, 1, 1] 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 1, 1, 2, 0, 0, 0]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 1, 0, 2, 1, 0, 0]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 0, 0, 2, 1, 1, 0] 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 0, 0, 0, 2, 1, 1, 1]* 420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 1, 1, 1, 1, 0, 0] 840 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 1, 0, 1, 1, 1, 0]* 840 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

[1, 1, 1, 1, 0, 0, 1, 1, 1, 1] 840 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
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RS-astereogenic (RS-non-stereogenic) RS-stereogenic

Type I: [−,−,a]

chiral/RS-stereogenic/ascleral


















✲S

❄
C

A ✲✛ ❝ A
✻
❄
s❡ ��
��
❅❅
❅❅
��
��
❅❅
❅❅
s ✻

❄
s❡

A ✲✛ ❝ A



















I
O two promolecules
Oh one pair of enantiomers
O
˜σ one pair of RS-diastereomers

O
̂I two ascleral promolecules

Oh˜σ̂I one quadruplet of RS-stereoisomers
chiral

Type II: [−,a,−]

chiral/RS-astereogenic/scleral


















✲S

❄
C

A ❝ A
✻
❄
s❡ ��✒
��✠
❅❅■
❅❅❘
s ✻

❄
s❡

A ❝ A



















II
O two promolecules
Oh one pair of enantiomers
O
˜σ two RS-astereogenic promolecules

O
̂I one pair of holantimers

Oh˜σ̂I one quadruplet of RS-stereoisomers

Type III: [−,−,−]

chiral/RS-stereogenic/scleral


















✲S

❄
C

A ✲✛ ❝ B
✻
❄
s❡ ��✒
��✠
❅❅■
❅❅❘
s ✻

❄
s❡

A ✲✛ ❝ B



















III
O four promolecules
Oh two pairs of enantiomers
O
˜σ two pairs of RS-diastereomers

O
̂I two pairs of holantimers

Oh˜σ̂I one quadruplet of RS-stereoisomers
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Figure 5. Stereoisograms for representing RS-stereoisomers of five types, each of
which is a modification of the diagram reported in a previous article [9].
Each type is designated by a Roman-numeral subscript attached below
a closing parenthesis. The rows below each stereoisogram indicate the
respective entities, which are counted once or twice under the point group
Oh, the RS -stereogenic group Oσ̃, the LR-permutation group OÎ , and
the RS -stereoisomeric group Ohσ̃Î .
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been generalized into Figure 4 of a previous article reported in this journal [40], which

has given a general proof for the existence of five stereoisogram types on the basis of

the existence of five types of subgroups of RS -stereoisomeric groups. The generalized

chart [40] has been further improved by adding the number of unit promolecules (orbits)

assigned to each of the three aspects of a stereoisogram [9, 26]. This improved chart

(Figure 12 of the more recent reference [26]) has been slightly modified to give Figure 5

by adding the roles of O, Oh, Oσ̃, OÎ , and Ohσ̃Î .

In Figure 5, the symbols A and A (or B and B) represent a pair of enantiomeric

promolecules. Each stereoisogram consists of a quadruplet of RS-stereoisomeric pro-

molecules, which may coalesce with one another according to either one of the five RS-

stereoisomeric types. The five RS-stereoisomeric types are represented by type indices,

in which a letter a means “achiral”, “RS -astereogenic”, or “ascleral”, while a letter −
means “chiral”, “RS -stereogenic”, or “scleral”. For example, a type-V stereoisogram is

represented by the type index [a,−,−], which means [achiral, RS -stereogenic, scleral],

where the achirality is characterized by the presence of vertical equality symbols in the

type-V stereoisogram. A type-II stereoisogram [−, a,−] is characterized by the presence

of horizontal equality symbols and a type-I stereoisogram [−,−, a] is characterized by the

presence of diagonal equality symbols. As one extreme case, the four RS-stereoisomeric

promolecules of a Type-III stereoisogram are different (i.e., A, A, B and B), as shown

by the type index [−,−,−]. The other extreme case is a Type-IV stereoisogram, which

consists of a degenerate RS-stereoisomer (i.e., A), as shown by the type index [a, a, a].

By means of the symmetry-itemized enumerations introduced in the present article,

type indices can be further sophisticated to reach RS -stereoisomeric indices. For example,

a type index [a,−,−] for a type-V stereoisogram can be replaced by a more itemized de-

scription such as an RS -stereoisomeric index [[C ′
s,C1,C1]]. Thus, “achirality” in [a,−,−]

is replaced by the point-group symbol “C ′
s” in [[C ′

s,C1,C1]].

It should be noted that Figure 5 is divided into four parts by means of a double vertical

line and a double horizontal line. Thereby, “chirality” is concerned with Type I, II, and

III (younger-numbered types in the upper part of Figure 5), while achirality is concerned

with Type IV and V (older-numbered types in the lower part of Figure 5). On the other

hand, “RS -stereogenicity” is concerned with Type I, III, and V (odd-numbered types in

the right part of Figure 5), while RS -astereogenicity (RS -non-stereogenicity) is concerned
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with II and IV (even-numbered types in the left part of Figure 5).

5 Discussions on examples of symmetry-itemized

enumerations of cubane derivatives

This section adopts several examples of symmetry-itemized enumerations of cubane deriva-

tives, where the three aspects of symmetry i.e., chirality/achirality, RS -stereogenicity/RS -

astereogenicity, and sclerality/asclerality, are discussed by examining symmetry-itemized

enumerations under the point group Oh (Tables 1–3), under the RS -stereogenic group Oσ̃

(Tables 4–6), and under the LR-permutation group OÎ (Tables 7–9), respectively, where

the RS -stereoisomeric group Ohσ̃Î is used as an integrated group for controlling five-types

of stereoisograms of a cubane skeleton.

5.1 Disubstituted cubane derivatives

5.1.1 Cubane derivatives with composition H6A2

The [6, 2, 0, 0, 0, 0, 0, 0, 0, 0]-row of Table 1 indicates the presence of the value 1 at the

C ′
2v-column (the 13th column), the C ′′

2v-column (the 14th column), and the D3d-column

(the 28th column) under the point group Oh. They are depicted as 4 (C ′
2v), 6 (C ′′

2v), and

8 (D3d) in the type-IV stereoisograms of Figure 6. Because one pair of enantiomers or

one pair of self-enantiomers (i.e., one achiral promolecule) is counted once under the point

group Oh, they are depicted along the vertical direction. Because there appear achiral

derivatives, they are depicted by simplified expressions, i.e., ([4])IV, ([6])IV, and ([8])IV.

In this enumeration, one pair of self-enantiomers (an achiral promolecule) is linked by a

vertical equality symbol with an encircled bullet ( t❣ ). It should be emphasized that the

point group Oh is concerned with a pair of self-enantiomers ([4(= 4)])IV, ([6(= 6)])IV, or

([8(= 8)])IV, although the achirality aspect results in the presence of a vertical equality

symbol.

The [6, 2, 0, 0, 0, 0, 0, 0, 0, 0]-row of Table 3 of the previous gross-enumeration [26] re-

ported the total number 3 of cubane derivatives of the composition H6A2 under the point

group Oh and the presence of 3 stereoisograms under the RS -stereoisomeric group Ohσ̃Î .

These gross values are consistent with the present symmetry-itemized enumeration.

The [6, 2, 0, 0, 0, 0, 0, 0, 0, 0]-row of Table 4 indicates the presence of the value 1 at the

C̃ ′
2v-column (the 13th column), the C̃ ′′

2v-column (the 14th column), and the D̃3d-column
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Figure 6. Stereoisograms of cubane derivative with the composition H6A2. The
type index [a, a, a] is assigned to such a type-IV stereoisogram, which is
specified to be achiral, RS -astereogenic, and ascleral.

(the 28th column) under the RS -stereogenic group Oσ̃. They are depicted as 5 (C̃ ′
2v),

7 (C̃ ′′
2v), and 9 (D̃3d) in the type-IV sterereoisograms of Figure 6. Because one pair of

RS -diastereomers or one piar of self-RS -diastereomers (i.e., one RS -astereogenic or RS -

non-stereogenic promolecule) is counted once under the RS -stereogenic group Oσ̃, they

are depicted along the horizontal direction, e.g., ([[4(= 5)]])IV. In this enumeration, the

pair of 4 and 5 is linked by a horizontal equality symbol with a circle ( ❞ ) and regarded

to be identical with each other under the RS -stereogenic group Oσ̃. Hence, ([[4]])IV is

selected, because the presence of a horizotal equality symbol. As a result, one pair of self-

RS -diastereomers (an RS -astereogenic promolecule) i.e., ([[4]])IV as a C̃ ′
2v-promolecule,

([[6]])IV as a C̃ ′′
2v-promolecule, or ([[8]])IV as a D̃3d-promolecule, is counter once under
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the RS -stereogenic group Oσ̃.

The [6, 2, 0, 0, 0, 0, 0, 0, 0, 0]-row of Table 7 indicates the presence of the value 1 at the

C2Î-colulmn (the 9th column), the C′
2Î
-column (the 15th column), and the D3Î-column

(the 27th column) under the LR-permutation group OÎ . They are depicted as 5 (C2Î),

7 (C′
2Î
), and 9 (D3Î) in the type-IV sterereoisograms of Figure 6. Because one pair of

(self-)holantimers is counted once under the LR-permutation group OÎ , they are depicted

along the diagonal direction, (< [4(= 5)] >)IV, (< [6(= 7)] >)IV, and (< [8(= 9)] >)IV.

In this enumeration, one pair of self-holantimers (an ascleral promolecule) is linked by a

diagonal equality symbol with a bullet ( t ) so that we simply specify (< [4] >)IV,

(< [6] >)IV, and (< [8] >)IV.

Each of the type-IV stereoisograms depicted in Figure 6 is characterized by the

type index [a, a, a], which means achiral, RS -astereogenic, and ascleral. By the present

symmetry-itemized enumeration, they are further characterized by RS -stereoisomeric in-

dices, [[C ′
2v, C̃

′
2v, C2Î ]], [[C

′′
2v, C̃

′′
2v, C

′
2Î
]], and [[D3d, D̃3d, D3Î ]], respectively, in which

the point-group symmetry (∈ Oh), the RS -stereogenic symmetry (∈ Oσ̃) , and the LR-

permutation symmetry (∈ OÎ) are collectively shown in a pair of double square brackets.

5.1.2 Derivatives with composition H6p2 (H6p2)

The [6, 0, 0, 0, 0, 0, 2, 0, 0, 0]*-row of Table 1 indicates the presence of the value 1 (= 1/2

× 2) at the C2-column (the 2nd column), the C ′
2-column (the 3rd column), and the D3-

column (the 17th column) under the point group Oh. They are depicted as 10 (C2),

12 (C ′
2), and 14 (D3) in the type-II sterereoisograms of Figure 7. Because one pair of

enantiomers is counted once under the point groupOh, they are depicted along the vertical

direction, ([10 10](= [11 11]))II, ([12 12](= [13 13]))II, and ([14 14](= [15 15]))II.

In this enumeration, the first pair of enantiomers (e.g., [10 10]), which is linked by a

vertical double-headed arrow with an encircled bullet ( ✲✛ t❣ ), is degenerated with the

second pair of enantiomers (e.g., [11 11]), so that the first pair is selected to give a

selected pair of enantiomers (e.g. ([10 10])II belonging to C2 (∈ Oh). Note that the

promolecule 10 corresponds to the composition H6p2, while its enantiomer 10 corresponds

to the composition H6p2. Similarly, ([12 12])II belonging to C ′
2 (∈ Oh), and ([14 14])II

belonging to D3 (∈ Oh) are selected under the point group Oh.

The [6, 0, 0, 0, 0, 0, 2, 0, 0, 0]*-row of Table 3 of the previous gross-enumeration [26]

reported the total number 3 (= 3/2 × 2) of cubane derivatives of the composition H6p2
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Figure 7. Stereoisograms of cubane derivative with the composition H6p2 (H6p2).
The type index [−, a,−] is assigned to such a type-II stereoisogram,
which is specified to be chiral, RS -astereogenic, and scleral.

(H6p2) under the point group Oh and the presence of 3 (= 3/2 × 2) stereoisograms under

the RS -stereoisomeric group Ohσ̃Î . These gross values are consistent with the present

symmetry-itemized enumeration.

The [6, 0, 0, 0, 0, 0, 2, 0, 0, 0]*-row of Table 4 indicates the apperance of the value 2

(= 1 × 2) at the C̃ ′
2v-column (the 13th column), the C̃ ′′

2v-column (the 14th column),

and the D̃3d-column (the 28th column) under the RS -stereogenic group Oσ̃. They are

depicted as 11 (C̃ ′
2v), 13 (C̃ ′′

2v), and 15 (D̃3d) in the type-II sterereoisograms of Figure

7. Because one pair of self-RS -diastereomers is counted once under the RS -stereogenic

group Oσ̃, they are depicted along the horizontal direction, ([[10(= 11)]] [[10(= 11)]])II,

([[12(= 13)]] [[12(= 13)]])II, and ([[14(= 15)]] [[14(= 15)]])II, where each pair of self-
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RS -diastereomers (an RS -astereogenic promolecule) are surrounded by a pair of double

square brackets. In this enumeration under Oσ̃, one pair of self-RS -diastereomers (an

RS -astereogenic promolecule) is counted once. In each type-II stereoisogram in Figure 7,

one pair of self-RS -diastereomers (an RS -astereogenic promolecule), e.g., ([[10(= 11)]],

is linked by a horizontal equality symbol with a circle ( ❞ ). Another pair of self-

RS -diastereomers (an RS -astereogenic promolecule), e.g., [[10(= 11)]])II, is linked by a

horizontal equality symbol with a circle ( ❞ ). These two pairs of self-RS -diastereomers

(two RS -astereogenic promolecules) are counted separately to give the value 2 under the

RS -stereogenic group Oσ̃.

The [6, 0, 0, 0, 0, 0, 2, 0, 0, 0]*-row of Table 7 indicates the appearance of the value 1 (=

1/2 × 2) at the C2-column (the 2nd column), the C′
2-column (the 3rd column), and the

D3-column (the 18th column) under the LR-permutation group OÎ . They are depicted

as 11 (C2), 13 (C′
2), and 15 (D3) in the type-II sterereoisograms of Figure 7. Because

one pair of holantimers is counted once under the LR-permutation group OÎ , they are

depicted along the diagonal direction, i.e., (< [10 11] >)II, (< [12 13] >)II, and

(< [14 15] >)II, each of which is counted once as a one pair of holantimers (< [...] >). In

this enumeration under OÎ , one pair of holantimers is linked by a diagonal double-headed

arrow with a bullet ( ✲✛ t ) in each type-II stereoisogram. Note that (< [10 11] >)II

is selected to be counted, so as to nullify (< [11 10] >)II because of the presence of

horizontal equality symbols (10 ❞ 11 and 11 ❞ 10).

Each type-II stereoisograms depicted in Figure 7 is characterized by the type index

[−, a,−], which means chiral, RS -astereogenic, and scleral. By the present symmetry-

itemized enumeration, they are further characterized by RS -stereoisomeric indices, [[C2,

C̃ ′
2v, C2]], [[C ′

2, C̃ ′′
2v, C ′

2]], and [[D3, D̃3d, D3]], in which the respective point-group

symmetry (C2, C ′
2, or D3 (∈ Oh)), the respective RS -stereogenic symmetry (C̃ ′

2v, C̃
′′
2v,

or D̃3d (∈ Oσ̃)) , and the respective LR-permutation symmetry (C2, C ′
2, or D3 (∈ OÎ))

are collectively shown in a pair of double square brackets.

5.2 Trisubstituted cubane derivatives

5.2.1 Derivatives with composition H5ABX

The [5, 1, 1, 1, 0, 0, 0, 0, 0, 0]-row of Table 1 indicates the presence of the value 4 at the

C1-column (the 1st column) and the value 6 at the C ′
s-column (the 5th column) under
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the point group Oh.

Each of the four pairs of enantiomeric C1-derivatives belongs to a type-I stereoiso-

gram shown in Figure 8, so that the value 4 at the C1-column means the appearance

of four stereoisograms shown in Figure 8. The enantiomeric pair 16/16 is homomeric

with the other enantiomeric pair 17/17 because of asclerality of the type-I stereoiso-

gram ([−,−, a]). Because of this type of homomerism, the four type-I stereoisograms are

represented by ([16 16])I, ([18 18])I, ([20 20])I, and ([22 22])I in a simplified manner.

In addition, the value 6 at the C ′
s-column (the 5th column) under the point group Oh,

which appear in the [5, 1, 1, 1, 0, 0, 0, 0, 0, 0]-row of Table 1, indicates the presence of six

C ′
s cubane derivatives shown in Figure 9. They are achiral (belonging to the point group

C ′
s (∈ Oh)) and designated by the type-IV stereoisogram symbols: ([24])IV, ([26])IV,

([28])IV, ([30])IV, ([32])IV, and ([34])IV.

The [5, 1, 1, 1, 0, 0, 0, 0, 0, 0]-row of Table 3 of the previous gross-enumeration [26] re-

ported the total number 10 of cubane derivatives of the composition H6ABX under the

point group Oh and the presence of 10 stereoisograms under the RS -stereoisomeric group

Ohσ̃Î . These gross values are consistent with the present symmetry-itemized enumeration

summarized in Figures 8 and 9.

The [5, 1, 1, 1, 0, 0, 0, 0, 0, 0]-row of Table 4 indicates the presence of the value 4 at the

C1-column (the 1st column) and the value 6 at the C̃ ′
s-column (the 5th column) under

the RS -stereogenic group Oσ̃.

As a result, the four type-I stereoisograms shown in Figure 8 are alternatively ex-

amined by the action of the RS -stereogenic group Oσ̃. For example, the C1-pair of

RS -diastereomers 16/17 is homomeric with the other C1-pair of RS -diastereomers 17/16

because of asclerality of the type-I stereoisogram ([−,−, a]). Because of this type of homo-

merism, there appear four simplified C1-pair of RS -diastereomers, ([16 17])I, ([18 19])I,

([20 21])I, and ([22 23])I, which are selected under the action of the RS -stereogenic

group Oσ̃. This set can be equalified to the set of ([16 16])I, ([18 18])I, ([20 20])I,

and ([22 22])I, which are obtained under the point group Oh.

In addition, the value 6 at the C̃ ′
s-column (the 5th column) under the RS -stereogenic

group Oσ̃, which appear in the [5, 1, 1, 1, 0, 0, 0, 0, 0, 0]-row of Table 4, indicates the pres-

ence of six C̃ ′
s-cubane derivatives shown in Figure 9. For example, the derivative 24 in the

first type-IV stereoisogram belongs to the RS -stereogenic group C̃ ′
s, which is a subgroup
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Figure 8. Four type-I stereoisograms of cubane derivative with the composition
H5ABX. The type index [−,−, a] is assigned to such a type-I stereoiso-
gram, which is specified to be chiral, RS -stereogenic, and ascleral.

of the RS -stereogenic group Oσ̃.

The [5, 1, 1, 1, 0, 0, 0, 0, 0, 0]-row of Table 7 indicates the presence of the value 14 at the

CÎ-colum (the 4th column) under the LR-permutation group OÎ .

Because one pair of (self-)holantimers is counted once under the LR-permutation

group OÎ , the two promolecues along the diagonal direction are coupled to give a pair

of holantimers or self-holantimers. For example, the set of two self-holantimeric pairs

(< 16 17 > < 17 16 >)I in the first type-I stereoisogram of Figure 8 are counted sep-

arately under OÎ . Thus, the self-holantimeric pair < 16 17 > (an ascleral promolecule

belonging to CÎ) and the other self-holantimeric pair < 17 16 > (an ascleral promolecule

belonging to CÎ) are not superimposable under the LR-permutation group OÎ . It follows
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Figure 9. Six type-IV stereoisograms of cubane derivative with the composition
H5ABX. The type index [a, a, a] is assigned to such a type-IV stereoiso-
gram, which is specified to be achiral, RS -astereogenic, and ascleral.
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that two ascleral promolecules < 16 17 > and < 17 16 > are counted separately to

give a vaule 2 under the LR-permutation group OÎ . The remaining type-I stereoisograms

can be examined in a similar way to give the three sets: (< 18 19 > < 19 18 >)I,

(< 20 21 > < 21 20 >)I, (< 22 23 > < 23 22 >)I, Totally, the value 8 (= 2 ×
4) are estimated due to the four type-I stereoisograms of Figure 8 and contribute to the

value 14 under the LR-permuation group OÎ .

The remaining value 6 (= 14 − 8) among the value 14 in the enumeration under the

LR-permutation groupOÎ can be explained by six type-IV stereoisograms shown in Figure

9.

In the right of the above discussions, each type-I stereoisogram of Figure 8 is charac-

terized a type index and the type index [−,−, a] and the RS -stereoisomeric index [[C1,C1,

CÎ ]].

Each of the type-IV stereoisograms depicted in Figure 9 is characterized by the

type index [a, a, a], which means achiral, RS -astereogenic, and ascleral. By the present

symmetry-itemized enumeration, each of them is further characterized by aRS -stereoisomeric

index, [[C ′
s, C̃

′
s, CÎ ]], in which the point-group symmetry C ′

s (∈ Oh), the RS -stereogenic

symmetry C̃ ′
s (∈ Oσ̃), and the LR-permutation symmetry CÎ (∈ OÎ) are collectively

shown in a pair of double square brackets.

5.2.2 Derivatives with composition H5App

Enumeration under the point group Oh is consistent with the previous enumeration [20],

which was conducted by means of Maple programming system. The [5, 1, 0, 0, 0, 0, 1, 1, 0, 0]-

row of Table 1 indicates the presence of the value 5 at the C1-column (the first column)

and the value 4 at the C ′
s-column (the 5th column). They are depicted in Figure 10.

Among them, the top three type-II stereoisograms are characterized by the presence of

horizontal equality symbols. They are respectively composed of ([36 36])II, ([38 38])II,

and ([40 40])II, where each pair is a pair of enantiomers, which is counted once as a

C1-derivative under the point group Oh. In contrast, the type-III stereoisogram at the

right side of the middle row of Figure 10 is characterized by the absence of equality

symbols in all directions. This type-III stereoisogram is composed of two pairs of enan-

tiomers, i.e., ([42 42] [43 43])III, and counted to give the value 2 as two pairs of

C1-isomers. The sum value 3 from the three type-II stereoisograms and the value 2 from

the one type-III stereoisogram totally explain the value 5 at the intersection between the
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[5, 1, 0, 0, 0, 0, 1, 1, 0, 0]-row and the C1 column of Table 1.

The value 4 at the C ′
s-column (the 5th column) of the [5, 1, 0, 0, 0, 0, 1, 1, 0, 0]-row of

Table 1 is explained by the two type-V stereoisograms depicted at the bottom row of

Figure 10. These type-V stereoisograms are characterized by the presence of vertical

equality symbols. Each of the type-V stereoisograms contains two achiral cubane deriva-

tives ([42] [43])V (the bottom-left diagram) and ([44] [45])V (the bottom-right diagram).

Hence totally 4 (= 2× 2) achiral cubane derivatives are consistent with the data 4 at the

intersection between the [5, 1, 0, 0, 0, 0, 1, 1, 0, 0]-row and the 5th C ′
s-column of Table 1.

The [5, 1, 0, 0, 0, 0, 1, 1, 0, 0]-row of Table 4 indicates the presence of the value 4 at the

C1-column (the 1st column) and the value 6 at the C̃ ′
s-column (the 5th column) under

the RS -stereogenic group Oσ̃.

The three type-II stereoisograms shown in Figure 10 are alternatively examined by

the action of the RS -stereogenic group Oσ̃. Because of the existence of horizontal equal-

ity symbols, the pair of self-RS -diastereomers (i.e. one RS -astereogenic promolecule)

36/37 (= 36) is counted once under Oσ̃; and at the same time, the other pair of self-RS -

diastereomers (i.e. one RS -astereogenic promolecule) 36/37 (= 36) is counted once under

Oσ̃. These two pairs in the top-left type-II stereoisogram of Figure 10 are counted sepa-

rately under Oσ̃ (not under Oh), so that one type-II stereoisogram contributes 2 among

the value 6 at the 5th column of the [5, 1, 0, 0, 0, 0, 1, 1, 0, 0]-row of Table 4. In a similar

way, the pair of self-RS -diastereomers (i.e. one RS -astereogenic promolecule) 38/39 (=

38) and the other pair of self-RS -diastereomers (i.e. one RS -astereogenic promolecule)

38/39 (= 38) are counted separately in the top-right type-II stereoisogram of Figure 10;

as well as the pair of self-RS -diastereomers (i.e. one RS -astereogenic promolecule) 40/41

(= 40) and the other pair of self-RS -diastereomers (i.e. one RS -astereogenic promolecule)

40/41 (= 40) are counted separately in the middel-left type-II stereoisogram of Figure

10. Hence, the three type-II stereoisograms totally contribute 6 (= 2 × 3) so as to be

consistent with the enumeration data.

The value 4 at the intersection between the [5, 1, 0, 0, 0, 0, 1, 1, 0, 0]-row and the C1-

column (the 1st column) of Table 4 can be explained by the type-III stereoisogram (the

middle-right diagram in Figure 10) and the two type-V stereoisograms (the bottom two

diagrams in Figure 10). The one pair of RS -diastereomers 42/43 and the other pair of

RS -diastereomers 42/43 are counted separately so as to contribute 2 among the value 4.
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Figure 10. Stereoisograms of cubane derivatives with the composition H5App. The
type index [−, a,−] is assigned to such a type-II stereoisogram, which
is specified to be achiral, RS -astereogenic, and ascleral. The type index
[−,−,−] is assigned to such a type-III stereoisogram, which is specified
to be chiral, RS -stereogenic, and scleral. The type index [a,−,−] is
assigned to such a type-V stereoisogram, which is specified to be achiral,
RS -stereogenic, and scleral.
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On the other hand, ([44] [45])V is counted once as a pair of RS -diastereomers under Oσ̃

as well as ([46] [47])V is separately counted once as another pair of RS -diastereomers

under Oσ̃. Hence, the two type-V stereoisograms contribute 2 among the value 4. As a

result, the type III stereoisogram and the two type-V stereoisograms totally contribute 4

(= 2 + 1 × 2).

The [5, 1, 0, 0, 0, 0, 1, 1, 0, 0]-row of Table 7 indicates the presence of the value 7 at the

C1-column (the 1st column) under the LR-permutation group OÎ .

Under the LR-permutation group OÎ , all stereisograms shown in Figure 10 have di-

agonal double-headed arrows, which means that they are scleral to be concerned with

pairs of holantimers. Thus, one pair of holantimers is counted once in each type-II ste-

reoisograms (totally 1 × 3 = 3), two pairs of holantimers are counted to give 2 in type-III

stereisograms (totally 2 × 1 = 2), and one pair of holantimers is counted once in each

type-V stereoisogram (totally 1 × 2 = 2). As a result, we have the total value, as to be

3 + 2 + 2 = 7.

In the light of the above discussions, each type-II stereoisogram of Figure 10 is charac-

terized by a type index [−, a,−] and by the corresponding RS -stereoisomeric index [[C1,

C̃ ′
s, C1]]; the type-III stereoisogram of Figure 10 is characterized by a type index [−,−,−],

and the corresponding RS -stereoisomeric index [[C1, C1, C1]]; and each type-V stereo-

isogram of Figure 10 is characterized by a type index [a,−,−], and the corresponding

RS -stereoisomeric index [[C ′
s, C̃

′
s, C1]].

The above type-V stereoisograms, i.e., ([44] [45])V and ([46] [47])V, should be

discussed in details, because they are futher examples of an extended pseudoasymmetry

[41]. Thus, the two achiral cubane derivatives [44] and [45] with the composition H5App,

which are contained in the type-V stereoisogram ([44] [45])V, are RS -diastereomeric

to each other under the RS -stereogenic group Oσ̃. Similarly, the two achiral cubane

derivatives [46] and [47] with the composition H5App, which are contained in the other

type-V stereoisogram ([46] [47])V, are RS -diastereomeric to each other under the RS -

stereogenic group Oσ̃. For the assignment of C/A-descriptors, the code CU -8-14244434-a

is assigned to 44, while the code CU -8-14244434-c is assigned to 45. The lowercase letters

a and c are C/A-descriptors for specifying chirality-unfaithful features between 44 and

45 [26].

In contrast, the [6, 0, 0, 0, 0, 0, 1, 1, 0, 0]-row of Table 1 shows the presence of one Cs-,
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one C ′
s-, and one C3i-promolecules with the composition H6pp, which are found to be all

achiral and to belong to type-IV stereoisograms by referring to the corresponding rows

of the composition H6pp in Tables 4 and 7. Note that the proligand A is present in the

composition H5App (type-V, extended pseudoasymmetry) but absent in the composition

H6pp (type-IV). This situation is akin to the case of H2pp (type-IV) vs. HApp (type-V,

pseudoasymmetry) appearing in tetrahedral carbons [8, 9]. This parallelism reveals the

importance of skeletons in the proligand-promolecule model [42,43] proposed by us. Thus,

the cubane skeleton and the tetrahedral skeleton can be discussed on the basis of common

standpoints under the proligand-promolecule model both for Fujita’s USCI approach [42]

and Fujita’s stereoisogram approach [43].

6 Conclusive remarks

Symmetry-itemized enumerations of cubane derivatives are conducted by considering

three-aspects of symmetry, i.e., the point group Oh for chirality/achirality, the RS -

stereogenic group Oσ̃ for RS -stereogenicity/RS -astereogenicity, and the LR-permutation

group OÎ for sclerality/ascrelarity, where these groups are considered as subgroups of RS -

stereoisomeric group Ohσ̃Î . Each group is generated by using a set of generators under

the GAP (Groups, Algorithms and Programming) system, where a combined-permutation

representation (CPR) is proposed as a new expression of reflection operations. Stereoiso-

grams are adopted as diagramatical expressions of RS -stereoisomeric group Ohσ̃Î . The

partial-cycle-index (PCI) method of Fujita’s unit-subduced-cycle-index (USCI) approach

is adopted in symmetry-itemized enumerations due to Fujita’s stereoisogram approach.

Five types of stereoisograms are used to explain the data of symmetry-itemized enumera-

tions after the type indices for stereoisograms (e.g., [a,−,−] for a type-V stereoisogram)

is sophisticated into RS -stereoisomeric indices (e.g., [[C ′
s, C̃

′
s, C1]] for a cubane derivative

with the composition H5App). The type-V stereoisograms for cubane derivatives with the

composition H5App are discussed under extended pseudoasymmetry as a new concept.
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des Sciences exactes et naturelles 9 (1874) 445–454.

[2] J. H. van’t Hoff, A suggestion looking to the extension into space of the structural for-
mulas at present used in chemistry. And a note upon the relation between the optical



262

activity and the chemical constitution of organic compounds in: G. M. Richardson
(Ed.), Foundations of Stereochemistry, Memoirs of Pasteur, van’t Hoff, Le Bel and
Wislicenus , American Book, New York, 1901, pp. 35–46.

[3] J. A. Le Bel, Sur les relations qui existent entre les formules atomiques des corps
organique et le pouvoir rotatoire de leurs dissolutions, Bull. Soc. Chim. Fr. (2) 22
(1874) 337–347.

[4] J. A. Le Bel, On the relations which exist between the atomic formulas of organic
compounds and the rotatory power of their solutions, in: O. T. Benfey (Ed.), Classics
in the Theory of Chemical Combination, Dover, New York, 1963, pp 161–171.

[5] S. Fujita, Conceptual defects of modern stereochemistry. Comprehensive remedy by
stereoisograms based on RS -stereoisomerism for mediating between enantiomerism
and stereoisomerism, Tetrahedron: Asymmetry 28 (2017) 1–33.

[6] K. Mislow, J. Siegel, Stereoisomerism and local chirality, J. Am. Chem. Soc. 106
(1984) 3319–3328.

[7] W. T. Kelvin, The Baltimore Lectures on Molecular Dynamics and the Wave Theory
of Light , Clay & Sons, London, 1904, pp. 619–619.

[8] S. Fujita, Stereogenicity revisited. Proposal of holantimers for comprehending the
relationship between stereogenicity and chirality, J. Org. Chem. 69 (2004) 3158–
3165.

[9] S. Fujita, Pseudoasymmetry, stereogenicity, and the RS -nomenclature comprehended
by the concepts of holantimers and stereoisograms, Tetrahedron 60 (2004) 11629–
11638.

[10] S. Fujita, Chirality and RS -stereogenicity as two kinds of handedness. Their
Aufheben by Fujita’s stereoisogram approach for giving new insights into classifi-
cation of isomers, Bull. Chem. Soc. Jpn. 89 (2016) 987–1017.

[11] S. Fujita, Integrated discussion on stereogenicity and chirality for restructuring stere-
ochemisty, J. Math. Chem. 35 (2004) 265–287.

[12] S. Fujita, Combinatorial Enumeration of Graphs, Three-Dimensional Structures, and
Chemical Compounds, Univ. Kragujevac, Kragujevac, 2013.

[13] S. Fujita, Combinatorial enumeration of cubane derivatives as three-dimensional en-
tities. I. Gross enumeration by the proligand method, MATCH Commun. Math.
Comput. Chem. 67 (2012) 5–24.

[14] S. Fujita, Combinatorial enumeration of cubane derivatives as three-dimensional en-
tities. II. Gross enumeration by the markaracter method, MATCH Commun. Math.
Comput. Chem. 67 (2012) 25–54.

[15] S. Fujita, Combinatorial enumeration of cubane derivatives as three-dimensional en-
tities. III. Gross enumeration by the characteristic-monomial method, MATCH Com-
mun. Math. Comput. Chem. 67 (2012) 649–668.



263

[16] S. Fujita, Combinatorial enumeration of cubane derivatives as three-dimensional en-
tities. IV. Gross enumeration by the extended superposition method, MATCH Com-
mun. Math. Comput. Chem. 67 (2012) 669–686.

[17] S. Fujita, Combinatorial enumeration of cubane derivatives as three-dimensional en-
tities. V. Gross enumeration by the double coset representation method, MATCH
Commun. Math. Comput. Chem. 67 (2012) 687–712.

[18] S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry, Springer-Verlag,
Berlin, 1991.

[19] S. Fujita, Diagrammatical Approach to Molecular Symmetry and Enumeration of
Stereoisomers, Univ. Kragujevac, Kragujevac, 2007.

[20] S. Fujita, Symmetry-itemized enumeration of cubane derivatives as three-dimensional
entities by the partial-cycle-index method of the USCI approach, Bull. Chem. Soc.
Jpn. 85 (2012) 793–810.

[21] S. Fujita, Symmetry-itemized enumeration of cubane derivatives as three-dimensional
entities by the elementary-superposition method of the USCI approach, Bull. Chem.
Soc. Jpn. 85 (2012) 811–821.

[22] S. Fujita, Cage-shaped molecules derived by applying the edge strategy to a cubane
skeleton., J. Comput. Chem. Jpn. Int. Ed. 1 (2015) 1–4.

[23] S. Fujita, Systematic enumeration and symmetries of cubane derivatives, Chem. Rec.
16 (2016) 1116–1163.

[24] S. Fujita Stereoisograms: A remedy against oversimplified dichotomy between enan-
tiomers and diastereomers in stereochemistry, in: M. V. Putz (Ed.), Chemical Infor-
mation and Computational Challenge in the 21st Chentury, Nova, New York, 2012,
pp. 223–242.

[25] S. Fujita, Mathematical Stereochemistry, De Gruyter, Berlin, 2015.

[26] S. Fujita, Stereoisograms of cubane derivatives., Bull. Chem. Soc. Jpn. 88 (2015)
1653–1679.

[27] S. Fujita, Computer-oriented representations of point groups and cycle indices with
chirality fittingness (CI-CFs) calculated by the GAP system. Enumeration of three-
dimensional structures of ligancy 4 by Fujita’s proligand method, MATCH Commun.
Math. Comput. Chem. 76 (2016) 379–400.

[28] https://www.gap-system.org/.

[29] S. Fujita, Concordant generation of mark tables and USCI-CF (unit subduced cy-
cle indices with chirality fittingness) tables on the basis of combined-permutation
representations, MATCH Commun. Math. Comput. Chem. 82 (2019) 295–326.

[30] S. Fujita, Standardization of mark tables and USCI-CF (unit subduced cycle in-
dices with chirality fittingness) tables derived from different Oh-skeletons, MATCH
Commun. Math. Comput. Chem. 82 (2019) 327–373.



264

[31] S. Fujita, Promolecules with a subsymmetry of Oh. Combinatorial enumeration and
stereochemical properties, Polyhedron 12 (1993) 95–110.

[32] S. Fujita, Subduction of coset representations. An application to enumeration of
chemical structures, Theor. Chim. Acta 76 (1989) 247–268.

[33] S. Fujita, Subduction of coset representations. An application to enumeration of
chemical structures with achiral and chiral ligands, J. Math. Chem. 5 (1990) 121–
156.

[34] S. Fujita, Systematic enumeration of high symmetry molecules by means of unit
subduced cycle indices with and without chirality fittingness, Bull. Chem. Soc. Jpn.
63 (1990) 203–215.

[35] S. Fujita, Enumeration of digraphs with a given automorphism group, J. Math. Chem.
12 (1993) 173–195.

[36] S. Fujita, Generalization of partial cycle indices and modified bisected mark tables
for combinatorial enumeration, Bull. Chem. Soc. Jpn. 73 (2000) 329–339.

[37] S. Fujita, The USCI approach and elementary superposition for combinatorial enu-
meration, Theor. Chim. Acta 82 (1992) 473–498.

[38] S. Fujita, Graphs to chemical structures 1. Sphericity indices of cycles for stereo-
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Appendix A

#Read("c:/fujita000/fujita2021/cubaneType/gap/enum-Oh-cube.gap");

LogTo("c:/fujita000/fujita2021/cubaneType/gap/enum-Oh-cubelog.txt");

Read("c:/fujita000/fujita2021/cubaneType/gap/CICFgenCC.gapfunc");

#Loading of CICFgenCC.gapfunc

b_1 := Indeterminate(Rationals, "b_1"); b_2 := Indeterminate(Rationals, "b_2");

b_3 := Indeterminate(Rationals, "b_3"); b_4 := Indeterminate(Rationals, "b_4");

b_5 := Indeterminate(Rationals, "b_5"); b_6 := Indeterminate(Rationals, "b_6");

b_7 := Indeterminate(Rationals, "b_7"); b_8 := Indeterminate(Rationals, "b_8");

a_1 := Indeterminate(Rationals, "a_1"); a_2 := Indeterminate(Rationals, "a_2");

a_3 := Indeterminate(Rationals, "a_3"); a_4 := Indeterminate(Rationals, "a_4");

a_5 := Indeterminate(Rationals, "a_5"); a_6 := Indeterminate(Rationals, "a_6");

a_7 := Indeterminate(Rationals, "a_7"); a_8 := Indeterminate(Rationals, "a_8");

c_2 := Indeterminate(Rationals, "c_2"); c_4 := Indeterminate(Rationals, "c_4");

c_6 := Indeterminate(Rationals, "c_6"); c_8 := Indeterminate(Rationals, "c_8");

PCICF := [ ];

PCICF[1] := 1/48*b_1^8-1/8*c_2^2*a_1^4-1/12*b_1^2*b_3^2-3/16*b_2^4-1/12*c_2^4+1/4*a_1^2*a_3^2+1/8*a_2^4

+1/2*c_4*a_2^2+1/4*b_2*b_6+1/12*c_2*c_6+1/4*b_4^2+1/4*c_4^2-1/2*a_2*a_6-3/4*a_4^2-1/4*b_8-1/4*c_8+1/2*a_8;

PCICF[2] := 1/8*b_2^4-1/8*a_2^4-3/8*b_4^2-3/8*c_4^2+3/4*a_4^2+1/4*b_8+3/4*c_8-a_8;

PCICF[3] := 1/4*b_2^4-1/2*c_4*a_2^2-1/2*b_2*b_6-1/4*b_4^2+1/2*a_2*a_6+1/2*a_4^2+1/2*b_8-1/2*a_8;

PCICF[4] := 1/8*c_2^4-1/4*c_4*a_2^2-3/8*c_4^2+1/4*a_4^2+1/4*c_8;

PCICF[5] := 1/4*c_2^2*a_1^4-1/2*a_1^2*a_3^2-1/4*a_2^4-1/2*c_4*a_2^2+1/2*a_2*a_6+a_4^2-1/2*a_8;

PCICF[6] := 1/24*c_2^4-1/4*c_4*a_2^2-1/6*c_2*c_6-1/8*c_4^2+1/2*a_2*a_6+1/4*a_4^2+1/4*c_8-1/2*a_8;

PCICF[7] := 1/4*b_1^2*b_3^2-1/4*a_1^2*a_3^2-1/4*b_2*b_6-1/4*c_2*c_6-1/4*b_4^2+1/2*a_2*a_6+1/4*a_4^2+1/4*b_8

→֒ +1/4*c_8-1/2*a_8;

PCICF[8] := 1/4*b_4^2-1/4*a_4^2-1/4*b_8-1/4*c_8+1/2*a_8;

PCICF[9] := 1/4*c_4^2-1/4*a_4^2-1/2*c_8+1/2*a_8;

PCICF[10] := 0;

PCICF[11] := 1/4*b_4^2-1/4*a_4^2-1/4*b_8-1/4*c_8+1/2*a_8;

PCICF[12] := 1/4*c_4^2-1/4*a_4^2-1/2*c_8+1/2*a_8;

PCICF[13] := 1/4*a_2^4-3/4*a_4^2+1/2*a_8;

PCICF[14] := 1/2*c_4*a_2^2-1/2*a_4^2;

PCICF[15] := 1/4*c_4^2-1/4*a_4^2-1/2*c_8+1/2*a_8;

PCICF[16] := 1/2*c_4*a_2^2-a_2*a_6-1/2*a_4^2+a_8;

PCICF[17] := 1/2*b_2*b_6-1/2*a_2*a_6-1/2*b_8+1/2*a_8;

PCICF[18] := 1/2*a_1^2*a_3^2-1/2*a_2*a_6-1/2*a_4^2+1/2*a_8;

PCICF[19] := 1/2*c_2*c_6-1/2*a_2*a_6-1/2*c_8+1/2*a_8;

PCICF[20] := 0;

PCICF[21] := 1/2*a_4^2-1/2*a_8;

PCICF[22] := 1/2*c_8-1/2*a_8;

PCICF[23] := 0;

PCICF[24] := 1/2*c_8-1/2*a_8;

PCICF[25] := 0;

PCICF[26] := 1/2*a_4^2-1/2*a_8;

PCICF[27] := 1/4*b_4^2-1/4*a_4^2-1/4*b_8-1/4*c_8+1/2*a_8;

PCICF[28] := a_2*a_6-a_8;

PCICF[29] := 0;

PCICF[30] := 1/2*b_8-1/2*a_8;

PCICF[31] := 1/2*c_8-1/2*a_8;

PCICF[32] := 1/2*a_4^2-1/2*a_8;

PCICF[33] := a_8;

A := Indeterminate(Rationals, "A"); B := Indeterminate(Rationals, "B");

C := Indeterminate(Rationals, "C"); D := Indeterminate(Rationals, "D");

V := Indeterminate(Rationals, "V"); W := Indeterminate(Rationals, "W");

p := Indeterminate(Rationals, "p"); P := Indeterminate(Rationals, "P");

q := Indeterminate(Rationals, "q"); Q := Indeterminate(Rationals, "Q");

aa_1 := A + B + C + D + V + W;

aa_2 := A^2 + B^2 + C^2 + D^2 + V^2 + W^2;

aa_3 := A^3 + B^3 + C^3 + D^3 + V^3 + W^3;

aa_4 := A^4 + B^4 + C^4 + D^4 + V^4 + W^4;

aa_5 := A^5 + B^5 + C^5 + D^5 + V^5 + W^5;
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aa_6 := A^6 + B^6 + C^6 + D^6 + V^6 + W^6;

aa_7 := A^7 + B^7 + C^7 + D^7 + V^7 + W^7;

aa_8 := A^8 + B^8 + C^8 + D^8 + V^8 + W^8;

bb_1 := A + B + C + D + V + W + p + q + P + Q;

bb_2 := A^2 + B^2 + C^2 + D^2 + V^2 + W^2 + p^2 + q^2 + P^2 + Q^2;

bb_3 := A^3 + B^3 + C^3 + D^3 + V^3 + W^3 + p^3 + q^3 + P^3 + Q^3;

bb_4 := A^4 + B^4 + C^4 + D^4 + V^4 + W^4 + p^4 + q^4 + P^4 + Q^4;

bb_5 := A^5 + B^5 + C^5 + D^5 + V^5 + W^5 + p^5 + q^5 + P^5 + Q^5;

bb_6 := A^6 + B^6 + C^6 + D^6 + V^6 + W^6 + p^6 + q^6 + P^6 + Q^6;

bb_7 := A^7 + B^7 + C^7 + D^7 + V^7 + W^7 + p^7 + q^7 + P^7 + Q^7;

bb_8 := A^8 + B^8 + C^8 + D^8 + V^8 + W^8 + p^8 + q^8 + P^8 + Q^8;

cc_2 := A^2 + B^2 + C^2 + D^2 + V^2 + W^2 + 2*p*P + 2*q*Q;

cc_4 := A^4 + B^4 + C^4 + D^4 + V^4 + W^4 + 2*p^2*P^2 + 2*q^2*Q^2;

cc_6 := A^6 + B^6 + C^6 + D^6 + V^6 + W^6 + 2*p^3*P^3 + 2*q^3*Q^3;

cc_8 := A^8 + B^8 + C^8 + D^8 + V^8 + W^8 + 2*p^4*P^4 + 2*q^4*Q^4;

f_1 := Value(PCICF[1],

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8,

b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_2 := Value(PCICF[2],

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8,

b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_3 := Value(PCICF[3],

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8,

b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_4 := Value(PCICF[4],

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8,

b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_5 := Value(PCICF[5],

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8,

b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_6 := Value(PCICF[6],

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8,

b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_7 := Value(PCICF[7],

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8,

b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_8 := Value(PCICF[8],

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8,

b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_9 := Value(PCICF[9],

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8,

b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_10 := 0;;

f_11 := Value(PCICF[11],
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[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8,

b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_12 := Value(PCICF[12],

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8,

b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

(omitted)

f_29 := 0;;

f_30 := Value(PCICF[30],

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8,

b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_31 := Value(PCICF[31],

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8,

b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_32 := Value(PCICF[32],

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8,

b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

f_33 := Value(PCICF[33],

[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8,

b_1, b_2, b_3, b_4, b_5, b_6, b_7, b_8, c_2, c_4, c_6, c_8],

[aa_1, aa_2, aa_3, aa_4, aa_5, aa_6, aa_7, aa_8,

bb_1, bb_2, bb_3, bb_4, bb_5, bb_6, bb_7, bb_8, cc_2, cc_4, cc_6, cc_8]);;

list_partitions :=[];

calcCoeffGencube := function(list_partitions)

local list_ligand_L, l_pp;

list_ligand_L := [A,B,C,D,V,W,p,P,q,Q];

l_pp := list_partitions;

Print("$", l_pp, "$ \n & ",
calcCoeffGen(f_1, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_2, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_3, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_4, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_5, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_6, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_7, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_8, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_9, list_ligand_L, list_partitions), " & ",

0, "\n & ",

calcCoeffGen(f_11, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_12, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_13, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_14, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_15, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_16, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_17, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_18, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_19, list_ligand_L, list_partitions), " & ",

0, "\n & ",

calcCoeffGen(f_21, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_22, list_ligand_L, list_partitions), " & ",

0, " & ",

calcCoeffGen(f_24, list_ligand_L, list_partitions), " & ",

0, " & ",

calcCoeffGen(f_26, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_27, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_28, list_ligand_L, list_partitions), " & ",
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0, " & ",

calcCoeffGen(f_30, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_31, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_32, list_ligand_L, list_partitions), " & ",

calcCoeffGen(f_33, list_ligand_L, list_partitions), " \\\\ \n");

end;

calcCoeffGencube([8,0,0,0,0,0,0,0,0,0]);

calcCoeffGencube([7,1,0,0,0,0,0,0,0,0]);

calcCoeffGencube([6,2,0,0,0,0,0,0,0,0]);

calcCoeffGencube([6,1,1,0,0,0,0,0,0,0]);

calcCoeffGencube([5,3,0,0,0,0,0,0,0,0]);

calcCoeffGencube([5,2,1,0,0,0,0,0,0,0]);

calcCoeffGencube([5,1,1,1,0,0,0,0,0,0]);

calcCoeffGencube([4,4,0,0,0,0,0,0,0,0]);

calcCoeffGencube([4,3,1,0,0,0,0,0,0,0]);

calcCoeffGencube([4,2,2,0,0,0,0,0,0,0]);

calcCoeffGencube([4,2,1,1,0,0,0,0,0,0]);

calcCoeffGencube([4,1,1,1,1,0,0,0,0,0]);

calcCoeffGencube([3,3,2,0,0,0,0,0,0,0]);

calcCoeffGencube([3,3,1,1,0,0,0,0,0,0]);

calcCoeffGencube([3,2,2,1,0,0,0,0,0,0]);

calcCoeffGencube([3,2,1,1,1,0,0,0,0,0]);

calcCoeffGencube([2,2,2,2,0,0,0,0,0,0]);

calcCoeffGencube([2,2,2,1,1,0,0,0,0,0]);

calcCoeffGencube([2,2,1,1,1,1,0,0,0,0]);

(omitted)

calcCoeffGencube([1,1,1,1,1,1,1,1,0,0]);

calcCoeffGencube([1,1,1,1,1,0,1,1,1,0]);

calcCoeffGencube([1,1,1,1,0,0,1,1,1,1]);



269

Appendix B

#Read("c:/fujita000/fujita2021/cubaneType/gap/PCICF-OI-cube.gap");

LogTo("c:/fujita000/fujita2021/cubaneType/gap/PCICF-OI-cubelog.txt");

#cf. S. Fujita, MATCH Commun. Math. Comput. Chem. 82 (2019) 327-373

Read("c:/fujita000/fujita2021/cubaneType/gap/CICFgenCC.gapfunc");

#Loading of CICFgenCC.gapfunc

Read("c:/fujita000/fujita2021/cubaneType/gap/USCICF.gapfunc");

#Loading of USCICF.gapfunc

b_1 := Indeterminate(Rationals, "b_1");; b_2 := Indeterminate(Rationals, "b_2");;

b_3 := Indeterminate(Rationals, "b_3");; b_4 := Indeterminate(Rationals, "b_4");;

b_5 := Indeterminate(Rationals, "b_5");; b_6 := Indeterminate(Rationals, "b_6");;

b_7 := Indeterminate(Rationals, "b_7");; b_8 := Indeterminate(Rationals, "b_8");;

a_1 := Indeterminate(Rationals, "a_1");; a_2 := Indeterminate(Rationals, "a_2");;

a_3 := Indeterminate(Rationals, "a_3");; a_4 := Indeterminate(Rationals, "a_4");;

a_5 := Indeterminate(Rationals, "a_5");; a_6 := Indeterminate(Rationals, "a_6");;

a_7 := Indeterminate(Rationals, "a_7");; a_8 := Indeterminate(Rationals, "a_8");;

c_2 := Indeterminate(Rationals, "c_2");; c_4 := Indeterminate(Rationals, "c_4");;

c_6 := Indeterminate(Rationals, "c_6");; c_8 := Indeterminate(Rationals, "c_8");;

O_cube := Group([ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6) ]);;

CICF_O_cube := CalcConjClassCICF(O_cube, 8, 8);

Display(CICF_O_cube);

Display("###############################--03");

OI_cube := Group([(1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), (9,10)]);;

Size(OI_cube);

CICF_OI_cube := CalcConjClassCICF(OI_cube, 8, 10);

Display("CICF_OI_cube=" );

Display(CICF_OI_cube);

CICF_I_IV := 2*CICF_OI_cube-CICF_O_cube;

Display("CICF_I_IV :=");

Display(CICF_I_IV);

CICF_II_III_V := CICF_O_cube-CICF_OI_cube;

Display("CICF_II_III_V :=");

Display(CICF_II_III_V);

#tom_OI_cube := TableOfMarks(OI_cube);

#Display(tom_OI_cube);

#

#gen := [];;

#for i in [1..33] do

#gen[i] := RepresentativeTom(tom_OI_cube,i);

#Display(gen[i]);

#od;

gen := [];;

gen[1] := [ ];; #1

gen[2] := [ (1,3)(2,4)(5,7)(6,8) ];; #2

gen[3] := [ (1,7)(2,6)(3,5)(4,8) ];; #3

gen[4] := [ ( 9,10) ];; #4

gen[5] := [ ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,10) ];; #5

gen[6] := [ ( 1, 7)( 2, 6)( 3, 5)( 4, 8)( 9,10) ];; #6

gen[7] := [ (2,5,4)(3,6,8) ];; #7

gen[8] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8) ];; #8

gen[9] := [ ( 9,10), (1,3)(2,4)(5,7)(6,8) ];; #9

gen[10] := [ ( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,10), (1,3)(2,4)(5,7)(6,8) ];; #10

gen[11] := [ ( 1, 2, 3, 4)( 5, 6, 7, 8)( 9,10), (1,3)(2,4)(5,7)(6,8) ];; #11

gen[12] := [ ( 1, 7)( 2, 6)( 3, 5)( 4, 8)( 9,10), (1,3)(2,4)(5,7)(6,8) ];; #12

gen[13] := [ (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8) ];; #13

gen[14] := [ (1,7)(2,6)(3,5)(4,8), (1,3)(2,4)(5,7)(6,8) ];; #14

gen[15] := [ ( 9,10), (1,7)(2,6)(3,5)(4,8) ];; #15

gen[16] := [ ( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,10), (1,7)(2,6)(3,5)(4,8) ];; #16

gen[17] := [ ( 9,10), (2,5,4)(3,6,8) ];; #17

gen[18] := [ (1,7)(2,6)(3,5)(4,8), (2,5,4)(3,6,8) ];; #18

gen[19] := [ ( 1, 7)( 2, 6)( 3, 5)( 4, 8)( 9,10), (2,5,4)(3,6,8) ];; #19

gen[20] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (1,2,3,4)(5,6,7,8) ];; #20
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gen[21] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), ( 1, 2, 3, 4)( 5, 6, 7, 8)( 9,10) ];; #21

gen[22] := [ ( 9,10), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8) ];; #22

gen[23] := [ ( 9,10), (1,7)(2,6)(3,5)(4,8), (1,3)(2,4)(5,7)(6,8) ];; #23

gen[24] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), ( 9,10) ];; #24

gen[25] := [ ( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,10), (1,7)(2,6)(3,5)(4,8), (1,3)(2,4)(5,7)(6,8) ];; #25

gen[26] := [ ( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,10), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8) ];; #26

gen[27] := [ ( 9,10), (1,7)(2,6)(3,5)(4,8), (2,5,4)(3,6,8) ];; #27

gen[28] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8) ];; #28

gen[29] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), ( 9,10), (1,2,3,4)(5,6,7,8) ];; #29

gen[30] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8), (1,2,3,4)(5,6,7,8) ];; #30

gen[31] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8), ( 9,10) ];; #31

gen[32] := [ (1,8)(2,7)(3,6)(4,5), (1,3)(2,4)(5,7)(6,8), (2,5,4)(3,6,8),

( 1, 2, 3, 4)( 5, 6, 7, 8)( 9,10) ];; #32

gen[33] := [ (1,2,3,4)(5,6,7,8), (2,4,5)(3,8,6), ( 9,10) ];; #33

#mark table sorted for USCI table

MarkTableOI_cube := MarkTableforUSCI(OI_cube,O_cube,33,gen,8,10);;

Display(MarkTableOI_cube);

USCITableOI_cube := constructUSCITable(OI_cube,O_cube,33,gen,8,10);

Display("##USCI-CF table (USCITableOI_cube) :");

Display(USCITableOI_cube);

#Matrix form of mark table

Matrix_tomOI_cube := MatTom(MarkTableOI_cube);

Display(Matrix_tomOI_cube);

Display("#Fixed point vector for cube");

FPVcube := calculateFPvector(OI_cube,O_cube,33,gen,8,10);;

Display(FPVcube);

Display("#Multiplicity of Orbits");

orbit_OI_cube := FPVcube * Inverse(Matrix_tomOI_cube);;

Display(orbit_OI_cube);

Display("#SCI-CF for cube");

l_SCICF_OI_cube := constructSCICF(OI_cube,O_cube,Matrix_tomOI_cube,USCITableOI_cube,FPVcube);;

Display(l_SCICF_OI_cube);

Display("#list of PCI-CFs for cube");

l_PCICF_OI_cube := l_SCICF_OI_cube * Inverse(Matrix_tomOI_cube);;

Display(l_PCICF_OI_cube);

Display("#PCI-CFs for subgroups");

for i in [1..33] do

Print("PCICF_OI_cube[", i, "] := ", l_PCICF_OI_cube[i], "\n");

od;

LogTo();


