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Abstract

Let G = (V(G), E(G)) be a simple graph with vertex set V(G) = {v1,v2, -+ ,vn}
and edge set E(G). The p-Sombor matrix S,(G) of G is the square matrix of order
n whose (i, j)-entry is equal to ((d;)? + (d;)P)» if v; ~ v;, and 0 otherwise, where
d; denotes the degree of vertex v; in G. In this paper, we study the relationship
between p-Sombor index SO,(G) and p-Sombor matrix S,(G) by the k-th spectral
moment N}, and the spectral radius of S,(G). Then we obtain some bounds of p-
Sombor Laplacian eigenvalues, p-Sombor spectral radius, p-Sombor spectral spread,
p-Sombor energy and p-Sombor Estrada index. We also investigate the Nordhaus-
Gaddum-type results for p-Sombor spectral radius and energy. At last, we give the
regression model for boiling point and some other invariants.

1 Introduction

Let G = (V(G), E(G)) be a simple graph with vertex set V(G) = {v1,vs,- -+ ,v,} and
edge set E(G). Let d; be the degree of vertex v; € V(G), ¢ ~ j denote v;v; € E(G). In
this paper, for all notations and terminologies used, but not defined here, we refer to the

textbook [3].
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Based on elementary geometry, a novel vertex-degree-based topological index, the

Sombor index was introduced by Gutman in chemical graph theory, which is defined

so@) = Y ezt Y et
i~vj

viv; €E(G)

as [24]

1§i’:j§n
See [1,5-8,10-13,15,18,21, 22,24, 25,28,30-34, 36, 38,40, 44] for more details.

This form of the Sombor index corresponds to a 2-norm, and it is a natural idea to
define a more general form, i.e., p-norm. With this in mind, Réti, Dosli¢ and Ali [38],
proposed the p-Sombor index (p # 0), which was defined as

1 1
S0(G) = Do (@) +(d)P)r & 30 () + ()7

vv; EE(G) 1<i_"_]'<
VA

It obvious that SO is the first Zagreb index [19], SO, is the Sombor index, SO_; is the
inverse sum indeg index (ISI index) [42].

As we know, the adjacent matrix A(G) = [a;;],xn is defined as

1, wvw; € E(G);
al‘]‘ =
0, otherwise.
The adjacent eigenvalues with non-increasing order are i1 > pio > -+ > fip.
The concept of graph energy was firstly introduced by Gutman [23], which is defined

as
E(G) = |mi-
1=1

Due to the importance of the concept of energy, it is widely studied in computational
chemistry. We can refer to [2,9] for more details about energy.

Let G be a simple graph. We define the p-Sombor matrix as S, = S,(G) = [sfj]nxn

(p #0), where
() + (d)?)r, v, € B(G);

sh =
0, otherwise.
It is obvious that SO,(G) = % > SZ

i=1j=1
Let & > & > -+ > &, be the eigenvalues of S,. We call & > & > -+ > &, the

p-Sombor eigenvalues of G, & the p-Sombor spectral radius of G and & — &, the spectral
spread of S,,.
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The p-Sombor energy S, E and the p-Sombor Estrada index S,EE of G are defined as
S,E=S,E(G) =Y |&], S,EE=S,EE(G)=> e,
i=1 i=1

respectively, and the p-Sombor Laplacian matrix of G is defined as

‘CP(G) = DP(G) - SP(G)v

where D,(G) = Diag(i L En: S, Zn: she).

It is worth noting kt?at thkcz;)—Sombor ,I;latl‘iX (weighted adjacency matrices) behaves
quite different from the traditional adjacency matrix, for example, the p-Sombor spectral
radius has no monotonicity [29]. This is the reason why we propose this class of matrices.

The rest of the paper is organized as follows. In Section 2, we study the relationship
between p-Sombor index SO, (G) and p-Sombor matrix S,(G) by the k-th spectral moment
N}, and the spectral radius of S,(G). In Section 3, we obtain some bounds of p-Sombor
Laplacian eigenvalues. In Section 4, we consider some bounds of p-Sombor spectral radius
and p-Sombor spectral spread. In Section 5, we investigate some bounds of p-Sombor
energy and p-Sombor Estrada index. In Section 6, we study the Nordhaus-Gaddum-type
results for p-Sombor spectral radius and energy. In Section 7, we give the regression
model for boiling point and some other invariants. In Section 8, we conclude this paper

and propose some open problems.

2 Relationship between the p-Sombor matrix S,(G)
and the p-Sombor index SO,(G)

Let G be a simple graph, S, = S,(G), Ni be the k-th spectral moment of S, i.e.,

n

Ni = >2(&)*. Tt is obvious that Ny, = tr((S,)*), thus S,EE(G) = 3 4%,
k=0

i=1
Lemma 2.1 Let G be a graph with |V (G)| =n and S, = S,(G) be the p-Sombor matrix
of G. Then

(1) N(] =n;,
(2) N1 = O,'
(B) Mo=2 5 ((d) +(d))7:

@WNs=2 3 | () +(d))r X (d)P+ (@d)P)7 () + (d)?)7 | ;

inj gk ki
1<ij<n 1<k<n
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#j \ k~ik~g
1<k<n

2 2
<5>N4_i(_z_ ()P + (d; ?) +z( S () + (d)P) ()P + (dh)? )i)

Proof. (1) Ny = ¥2(&)° = .
(2) Ny = tr(S,) = 0.

(3) For any 1 <, <n and i # j, we have

((Sp)Z)ij :Z(Sp)ik(sp)kj = Z ‘(Sp)ik(sp)kj
= D (@) ) (e ()7

krvi kg

1<k<n

For any 1 < i < n, we have

J=1 i~j i~j
1<j<n 1<j<n
Thus
n
2 z
Ny = = E E p =2 g p,
i=1 j
1</<n 1<z /<n

(4) For any 1 < i < n, we have

Z(Z (((d’)p*(m‘l’ > <<dz>p+<dk>’f>r<<dk>ﬂ+<d]>ff>”))
i=1 irj jrok, ki
1<j<n 1<k<n
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(5) Since tr ((Sp)4) = 1|(S,)* ||%, where || (S,)? || is the Frobenius norm of (S,)?, thus

= 2:: (((5;9)2)1;])2 + g (((SP)Z)U)Q

2

No=tr ((8,)1) = > ((65)°),,)

ST S @@ | 0SS (@ (@) () (d))7
i=1 i i . i#j kgkk; LJ
[ |

In the following, we obtain some bounds of the p-Sombor spectral moment.

Theorem 2.2 Let G be a graph with |E(G)| = m and the mazimum (resp. minimum)
degree A (resp. §), SO,(G) be the p-Sombor index of G, Ny be the 2-th p-Sombor spectral

moment. Then

1 1
\/51\@ +2882m(m — 1) < SO,(G) < \/§N2 + 28 A2m(m — 1),
with equality if and only if G is a regular graph.

Proof. By Lemma 2.1, we have

s |-

=S+ )+ DD () (d))? () + ()

inj inoj kel
ViV FVRY
1 1 1
=5Nz + E ((di)” + (d;)")7 ((dn)” + (di)")
invg, kel
ViV FVRVL

1
§§N2 + 2%A2m(m —1).

Thus, SO,(G) < \/%Ng + Q%Azm(m — 1), with equality if and only if G is a regular

graph. Similarly, we have SO,(G) > \/%Ng + 2%62m(m — 1), with equality if and only if
G is a regular graph. |

Theorem 2.3 Let G be a graph with the mazimum (resp. minimum) degree A (resp. &
), SO,(G) be the p-Sombor index of G, No be the 2-th p-Sombor spectral moment. Then

N,
2UHIA ~

N.
20+3)5

with equality if and only if G is a reqular graph.
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Proof. By Lemma 2.1, we have

Ny =tr(S,)P =23 ((d ")
i~j
205N (dy)? )7 = 2042)550,(G).

invj

Thus, SO,(G) < (L'i, with equality if and only if G is a regular graph.

Similarly, SO,(G) > %, with equality if and only if G is a regular graph. |
Let N(u) be the set of neighbors of vertex u in G, tyax = axc' |N(u) N (v)| and
weEE!
tmin

— min |N N(@)|.
wrgg(la)l (u) N (v)]

Theorem 2.4 Let G be a graph with tmax, tmin > 1, SOL(G) be the p-Sombor index of G,
N3 be the 3-th p-Sombor spectral moment. Then

N: N.
— 2 <80 L, (G) < . —
2(1+;)A2tmax 2(1+ )62tlllln

with equality if and only if G is a regular graph and tyax = tmin-
Proof. By Lemma 2.1, we have
Ny =tr((S)) =2 D [ ([ + (@))r D () + (d))? ((d)? + (dy)")?

inj ki ke~
1<ij<n 1<k<n

22005 37| (@ + @) Y

i ket kg
1<i,j<n 1<k<n
22<1+%)52tmin Z ((dz)p'i_(dJ)p)%
1<55%n
_o(1+2)¢2,
=20+3)524,1,50,(G).

Thus, SO,(G) < ﬁ, with equality if and only if G is a regular graph and any two
2P 8%t min
adjacent vertices have the same number of common neighbours, then G is a regular graph

and tmax = tmin. Similarly, we also have SO,(G) > N

> , with equality if and only
21+ 2) A2y

if G is a regular graph and tax = tmin. | |

Theorem 2.5 Let G be a graph with |V(G)| = n, |E(G)| = m, the mazimum (resp.
minimum) degree A (resp. 0), Mi(G) be the first Zagreb index of G, Ny be the 4-th
p-Sombor spectral moment. Then
Ny — 20 A (My(G) — 2 Ny — 2054(M; (G) — 2
4 ’ (31() m)<SO,,(G) 4 v ( 1() m)‘
o1+ A4 54
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with left equality iff G =2 Ka a, with right equality iff G is a §-reqular graph without Cy.

Proof. Let |Ps| be the numbers of path with length 2 in G. Then
A= @ =Y -1 a=lume) -m
: - 2 2 L~ v 2 L 2 ’
1<i<n 1<i<n 1<i<n
thus

> 1| =2p| = My(G) - 2m.

1<ij<n | k~ijk~g

i#j 1<k<n
Recalling that
9 2
- 2 1 1
Ne=3_ | 20 @y +@y)r | +30| X0 (@) + (@) () +(@d))r |
=1\ i~ i)\ heidj
1<j<n 1<k<n
then we have
2
" 2
Y (@) + ()"
i=1 i
1<j<n

i=1 invj
1<j<n

< 20+DAYS0,(G).

Similarly, we have

ST @y + @i | =20706'50,(G).

1<j<n
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On the other hand, we have

2
DU DD @)+ dep)r () + (d)P)r
7\
oy v s
ij \ k~ik~g ki kg
1<k<n 1<k<n
=2 AT Y 1| ING) N N ()|
1<k<n
sy | T
ij \ ki kg
1<k<n
= 20 A*(My(G) — 2m).
We also have
2

STUSS (o + @r)r (dy)? + (di)?)»
i#j \ k~ik~g
1<k<n

>0ty [ Y1 Y1

i#j ki kg kevi,kegj
1<k<n 1<k<n

D! IR AR
i#j | ki~
1<k<n

22| Y
i#5 \ krid
1<k<n

= 208" (My(G) — 2m).

In summary, we have

— 25 AS(M, _ — 25 4(M _
oI+ A4 o(1+3) 54

In the following, we consider the sufficient and necessary conditions of the equalities

hold.
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For the lower bound, the equality holds if and only if d; = A for all 1 < i < n and
IN(u;) YN (uj)| = A, thus G = Ka a.

For the upper bound, the equality holds if and only if d; = 0 for all 1 < i < n and
|N(u;) "N (uj)| =1 or 0, thus G is a d-regular graph without Cj. |

In the following, we obtain more bounds about p-Sombor index. From the definition

of p-Sombor index, we immediately have

Lemma 2.6 Let G be a connected graph with |V (G)| =n. Then
S0O,(G) < 25~ Yn(n—1)2,

with equality if and only if G = K.

Theorem 2.7 Let G be a graph with |V (G)| =n. Then

né?
2 IA( —1)
the left equality holds if G = K, the right equality holds if G is a regular graph.

Proof. Let e = (1,1,---,1)T € R", & be the p-Sombor spectral radius of G. Then

XT8,X _eTS,e  2S0,(G)
_ > e _ P
G r)I(l%( XTX — eTe n

thus SO,(G) < %t If G is a k-regular graph, then S,(G) = Z%kA(G)7 thus & = 21]7k,u1 =
20k2, and SO,(G) = (52)(2rk) = "L,
On the other hand, we have

then by Theorem 2.3, we have

n& 2 2 (+y
=g+ <51+Zg Zg N, < 2"ASO,(G).
Thus, we have SO,(G) > #ﬁ). If G = K, then S,(G) = 2%(71, — 1)A(G), thus
A n—1
& =27(n— D =27 (n— 1), and SO,(G) = (") (20 (n— 1)) = 1

&
20+ A(n-1)

Theorem 2.8 Let G be a graph with |E(G)| = m, o be the variance of ((d;)? + (d;)? )%

appearing in SO,(G). Then
1
S0,(G) = ”§mN2 — m202.
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Proof. By the definition of variance and No =2 >~ ((d;)? + (dj)p)%7 we have

inj
1<i,j<n
2
1 2 1 2
P Y@@ - | Y () + @)
1 SZi,NJ']S n 1 S71NJ]S n
Ny (SO,(0))
2m m?2

Thus, we have SO,(G) = y/3mNs — m202. |

The ISI index was defined as IST(G) = Z;(G) ddf(; . We can obtain the relationship
Vv EE
between the p-Sombor index SO,(G) and ISI index ISI(G).

Theorem 2.9 Let G be a simple graph. Then
50,(G) > 25 VISI(G),
with equality if and only if G is a regular graph.

Proof. Recalling the Cauchy-Schwarz inequality,
n n N N
1D aibil < (3 (@)?)r (b)),
i=1 i=1 i=1
where % + % = 1 and with equality if and only if a; = A\b; for any i, A is a constant.
1 N1 N1 1 141y did,
Then d;+d; < 2979 ((d;)P+(d;)P) 7, thus ((d;)P+(d;)P)r > 20 (di+d;) = 2<p+1>m-

% > 2(%H)%. So SO,(G) > 2(%H)[SI(G), with equality if and only if d; = d; for

every v;v; € E(G), i.e., G is a regular graph. |

3 Bounds of p-Sombor Laplacian eigenvalues

Suppose the distinct eigenvalues of £,(G) are ny > 1y > -+ > 1y and their multiplic-
ities are m(m), m(n2), - -+ ,m(ns), respectively. In other words, the spectrum of L,(G)
is

( m T2 T s )
m(m) m(nz) -+ mns)

In this section, we consider the relationship between p-Sombor Laplacian eigenvalues

and p-Sombor index of G.

Similar to the properties of Laplacian matrix, we also have

Lemma 3.1 For the matriz L,(G), we have ns = 0 and m(ns) = 1.
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Since p-Sombor Laplacian matrix £,(G) is also a non-negative symmetric and irre-

ducible matrix, similarly with the results of [17,37], we also have

Lemma 3.2 Let G be a simple graph with |V(T)| = n, L,(G) be the p-Sombor Lapla-
cian matriz of graph G, the distinct eigenvalues of L,(G) be m > na > -+ > 1,
e=(1,1,---,1)T € R*. Then

Sf; (wi—w;j)?

o lw = (w1, ws, - ,wy) € R*,w # ae,Ya € R};

vv €E(G)

(1) m = 2nmax{
2, EV(G) v;EV(Q)

Szp] (wi—w;)?
vivj EB(G)

(2) N1 = Qnmin{m\w = (w1, ws, -+ ,wy) € R",w # ae,Ya € R}.

v €V(G) v;EV(G)

The second smallest Laplacian eigenvalue of a graph is called as the algebraic con-
nectivity [16], which can be used to analyze the stability and synchronizability of the
network. In the following, we will obtain some bounds of the second smallest p-Sombor

Laplacian eigenvalue of graphs.

Theorem 3.3 Let G be a connected graph with |V (T)| = n, L,(G) andm > 12 > -+ > 14
be defined as before.
(1) %5051 < SO(G) = 5 35 m(ni)m; < "5t
1

— 2

(2) If G = (X1,X5) isa bip?wtz’te graph and | X,| = ny, | Xa| = na, n = ny + ng, then
7L1IL2,,]871 S SOP(G) S anL2T]1~

n n

Proof. (1) By the definition of p-Sombor index SO,(G) and p-Sombor Laplacian matrix

£,(G), wehave SO,(G) =1 5 X st = Mr(£,(G) = 1 S mn)

v, €V(G) v;eV(G) i=1

By Lemma 3.1, n; = 0 and m(ns) = 1. Thus ”;1775,1 < %

: n—1

m(n)m < "5

M=

i=1
(2) Suppose that w = (wy,ws, -+ ,w,) € R", where w; = 1if v; € Xy, w; = =1 ifv; €

sfj (wi—wj)?

v;v; €E(G)
X,. By Lemma 3.2, we have n; > 2”{ZJZ—W} = EZE(G) sy (wi—w;)? =
2 EV(G) v, EV(G) Vi)
e Y st = 7 -S0,(G). So SOL(G) < M. Similarly, we have SO,(G) >
v, €EE(G
”l"znsf. “

n

Lemma 3.4 Let G be a graph with |V(G)| = n and |E(G)| = m, the mazimum degree
A. Then
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Proof. By Holder inequality, we have

B
Q=

inj invg
1<ij<n 1<i f<n 1<ij<n

1,1 _
where 5 + 7= 1. Then

P
STo@)yr+ )| < YD (@) + (dy)) [ me
1 Slizjg n 1 Slizjg n
§2mA”m§

=2(Am)".

Thus SO,(G) < 25 Am.
On the other hand, we have

1<i,j<n 1<1]<n
Z p+1
§nAp+1mfz.
1941 41
Thus SO,(G) < nrA"em 7. |

By Theorem 3.3 and Lemma 3.4, we have

Corollary 3.5 Let G be a graph with |V(G)| = n and |E(G)| = m, the mazimum (resp.
minimum) degree A (resp. §). Then

(1) i N < min{2(1+%)Am, 2niA1+%ml_i};

(2) 7{;;1,1 < min{2(1+%)%, %TL%A1+%7TI/17%}.

By Theorem 2.3 and Theorem 3.3, we have

Corollary 3.6 Let G be a graph with |V(G)| = n and |E(G)| = m, the mazimum (resp.

minimum) degree A (resp. 6). Then ny > ﬁAA(/;"kD and np_1 < 2%51(\:71>.

4 Bounds of p-Sombor spectral radius and p-Sombor
spectral spread

In the following, we obtain the relationship between the p-Sombor spectral radius &;

and the adjacent spectral radius p.
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Theorem 4.1 Let G be a graph with |V(G)| = n, the mazimum (resp. minimum) degree
A (resp. 0), & be the p-Sombor spectral radius of G, p1 be the adjacent spectral radius of
G. Then

2%5/11 <& < 2%A#17

with equality if and only if G is a reqular graph.

Proof. (1) Let X = (z1, 22, -+ ,x,) be a unit eigenvector of A = A(G) corresponding to
t1. Then

3

N

>XTS, X =2 Z ((di)? + (dj)p)% T > 204§ Z T
1<57<n 10
1, 1
=20 §(XTAX) = 276y,
with equality if and only if G is a regular graph.
(2) Let Y = (y1, 42, - - ,¥n) be a unit eigenvector of S,(G) corresponding to &;. Then
6=YT8Y =2 3 () + (d))ryy; < 20798 3wy,
1<5n 1<5n

=2 A(YTAY) < 25 Ay,
with equality if and only if G is a regular graph. |

Theorem 4.2 Let G be a graph with |V(G)| = n, |E(G)| = m, the mazimum (resp.
minimum) degree A (resp. &) and average degree d, M,(G) be the first Zagreb index of
G, R(G) be the Randic index of G. Then

(1) 2”%%6 <4 < 2%(2m —-n+ 1)%A, with left equality if and only if G is a regular
graph, with right equality if and only if G = K,,.

(2) 2%(M‘,,—EG))§6 <& < Q%AZ, with equality if and only if G is a regular graph.

(3) & > 2%55, with equality if and only if G is a d regular graph.

(4) & > Z%QR(G), with equality if and only if G is a reqular graph.

m

Proof. (1) Since % <y < V2m —n + 1, with left equality iff G is a regular graph, with
right equality if and only if G = K, [26]. Combining with Theorem 4.1, we have the
conclusion.

(2) Since (M‘T(G))% < pp < A, with left equality if and only if G is a regular or
semiregular graph, with right equality if and only if G is a regular graph [45]. Combining

with Theorem 4.1, we have the conclusion.
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(3) Since p; > d = 2, with equality if and only if G is a d-regular graph [20].

n
Combining with Theorem 4.1, we have the conclusion.

R(G) , with equality if and only if G is a regular graph [20]. Combining

(4) Since 3 >
with Theorem 4.1, we have the conclusion. [ |
Similar to the adjacent matrix or other non-negative matrices [14], for p-Sombor ma-

trix, we also have the following similar result.
Lemma 4.3 Let d be the diameter of G. If S,(G) has k distinct eigenvalues, then k >
d+1.
Proof. Let &, &, - -+, & be the k distinct eigenvalues of S,(G). Since S,(G) is a symmetric
matrix, the minimal polynomial is

f@)=(@=&)(z—&) (= &) = 2" + ad" ! +ad" -+ apaz + ay,
and there exists ¢ such that

(Sfo)k_H + al(sp)k+t_1 + GQ(Sp)k+t_2 et akfl(Sp)t_l + ak(sp)t =0,

where a; (1 <4 < k) are real numbers.

Let a( ) (resp, (st )(t)) be the entries in the i-th row and j-th column of AY(G) (resp,
(8,)'(@)). 1t is obvious that (s};)® = 0 if and only if a(t) =0.

Suppose that £ < d, then there exist vertices v; and v; such that a(t) =0foranyt <d
dnda #0. Thus (7)) = 0 for any ¢ < d and (s};)¥ # 0.

On the other hand, let ¢t = d—k, since (s J) @1 = (s U)(dﬂ) == (sP-)(d’k) =0, and
(Sp)* 4 ar (Sp) 7 4 ap(S,) M2 4 4 a1 (Sp)' ™ + ak(S,)" = 0, we have (sf)@ =0,
which is a contradiction. Thus & > d + 1. | |

Theorem 4.4 Let G be a graph with |V(G)| = n. Then

(TL — 1)N2

& <

with equality if and only if G = nK; or G = K,,.

B

Proof. Since (Z &) < (n—=1D(X &), and 3 & = 23 ((d)P + (d;)?) = Na, then
i=2 i=2 i=1 inj
& </ M , with equality if and only if & = &3 =--- = &,.
If & = & = -+ = &, then by Lemma 4.3, we have the diameter d < 1, thus

G 2 nkKyor G2 K, If G nKp then § = 0 = \/M, if G &2 K, then

& =25(n—1)2 =/l n
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Lemma 4.5 Let a(> 0), p(> 1) be constants and f(z) = a? + (a — x)?. Then f(x) is

monotonically decreasing when x < §, and f(x) is monotonically increasing when x> §.

Proof. Tt is easy that f'(z) = paP~! — p(a — z)P~! = p(aP~! — (a — z)P7 ).
If # < §, we have f'(x) < 0; if x > §, we have f'(x) > 0. Thus the conclusion holds.

2
|

PP

v u v

G G

Figure 1. Transformation of Theorem 4.6.

Theorem 4.6 Let G be a connected graph, e = wv be a cut (not pendent) edge of G.
Suppose that X is the unit eigenvector of G corresponding to the p-Sombor spectral radius
&, de, X = X, and x, is the component of X about the vertex u. Let G' = G —
{vz]z € Ng(v) \ {u}} + {uz|z € Ng(v) \ {u}} (see Figure 1), & be the p-Sombor spectral
radius of G'. If x, > x,, then & > &;.

Proof. By the Raleigh Quotient and Lemma 4.5, we have
& -6 >XTS,(GNX - XTS,(G)X
=2 37 () (@t dy = 1P)7 = () + (d)) Pl

teNG (u)\{v}

12 ST () + (du+dy = 1)) 7, — (d) + (o))

2€NG(v)\{u}
+2((17 + (dy + dy — VP)5 — ((du)? + (d)?) ]y
>2 0 3" [((do) + (du dy = D)7 — () + (du)) 7]z,
teNG(u)\{v}

+2 3 (@) + (dut dy = 17)F — () + (o)) ]
2ENg(v)\{u}

217 4 (dy + dy — 1)P)7 — ((du)? + (d)?) ]z, > 0.

|
By Theorem 4.6, we can obtain the sharp upper bounds of the p-Sombor spectral

radius of trees immediately.
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Theorem 4.7 Let T be a tree with |V(T)| = n, &(T') be the p-Sombor spectral radius of
T. Then & (T) < & (K1), with equality if and only if T = Ky ,,_1.

Results of Theorem 4.1, Theorem 4.6 and Theorem 4.7 extend the results of [30]. In

the following, we consider the bounds of p-Sombor spectral spread of G.

Theorem 4.8 Let G be a connected graph with |[V(T)| =n, & > & > -+ > &, be the
eigenvalues of S,(G). Then

G-6<2 | 3 ((d)+(d))7 = V2N,

vv; €EE(G)

Proof. We know that No = tr((S,)?) = &+ &+ -+ & =2 > ((d)P+ (dj)p)%~

viv; EE(G)
Thus €2 < Ny — &2, with equality iff & = & = - = &, = 0and & = —&. So
gnz—'\/Nz—g]Q‘ T}1US£1—§HS§1+'\/N2—§12S\/2N2. .

5 Bounds of p-Sombor energy and p-Sombor Estrada
index

Let G be a simple graph, & (i = 1,2,--- ,n) be the eigenvalues of p-Sombor matrix
Sp(G)and &§ > & > -+ > &, S,E = S,E(G) = > |&] be the p-Sombor energy of G and
i=1

n

S,EE = S,EE(G) = Y €% be the p-Sombor Estrada index of G.

=1
The following bounds of p-Sombor energy are similar to the (reduced) Sombor energy

of Theorem 5.4 of [33], we omit the proof.

Theorem 5.1 Let G be a simple graph with |V(T)| = n, the eigenvalues of S,(G) are

L >26>---2>&,. Then

(1) V2N; < $,E(G) < VN,
(2) $,E(G) 2 \fn(n = D% + Na, where D = |jupia - pa] = |det(S,(G))]
(3) S,B(C) > Milalel

(4) $,B(C) 2 §/AnNs = ([&a] = e

(5) (@) = \/na = 3] (1 = L1316 - &)

Theorem 5.2 Let G be a simple graph with |V(G)| =n, |E(G)| =m > 1. Then

(IV2)?*

> .
SE(G) 2 |45
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Proof. By Hélder inequality, we have 3. |&]2 = z 1E13061Y: < (21D |&1h)s.
=1 =1 i=1

2
3

Since S,E(G) = 32 |6, 3262 = Ny, and 32 €4 = Ny We get, Ny < (S,E(G))3 ()3,
i=1 =1 i=1

and then S,E(G) > ,/%. |

Theorem 5.3 Let G be a simple graph with |V (G)| =n, |E(G)|=m > 1. Then

S,E(G) >

Proof. By Holder inequality, we have z &2 = z FHER RO HON R
i=1 i=1

Since S,E(G) = z|gz| 252 Ny, and zg? Ny. We get, Ny < (S,E(G))2(Ns)z,

and then S,E(G) > (NQ)Q. |
Compare the results of Theorems 5.2 and 5.3, we find that (1) if NJ > 1, then

VN2 Ny
the bound of Theorem 5.2 is better; (2) if 5

< 1, then the bound of Theorem 5.3 is

better; (3) if \/NL =1, then the bound of Theorems 5.2 and 5.3 are the same.
Similar to the proof of Theorems 8, 15, 16, 24 and Corollary 12 of [9], we have the

following results, we omit the proof.

Theorem 5.4 Let G be a simple graph with |V(G)| = n. Then
(1) S,EE(G) — S,E(G) <n—1+ VM — /Ny — /2Ny, with equality if and only if
G 2nk,.
2) S,EE(G) + S,E(G) < n — 1+ e%F@  with equality if and only if G = nkK.
3) S,E(G) < \/@, with equality if and only if G = nkKj.
4)SEE(G n—1+ N2+1N5 N4——N?——N‘1+e:II
) S,BE(G \/ )? + nNy + InNs + LnNj.

(
(
( ) <
(5 )=
Similar to the proof of Theorems 10, 11 of [39], we have the following results, we also

omit the proof.

Theorem 5.5 Let G be a simple graph with |V(G)| = n, ny,ng,n— be the number of
positive, zero, negative p-Sombor eigenvalues, respectively. Then
(1) 2e—=1)SE(G)+n—ny < S,EE(G) <n—1+ 25 , with both sides equality
if and only if G = nkK;.
SpE(G) =261 _SpE©)

(2) S,EE(G) > €5 +mng+ (ny —1)e ™0 +e - n_.
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In the following, we consider the bound of energy of subdivision graph of a k-regular
graph, where the subdivision graph S(G) is the graph obtained from G by adding one

vertex for every edge of G.

Theorem 5.6 Let G be a k-regular graph with |V(G)| = n, |E(G)| = m, S(G) be the
subdivision graph of G. Then

S,B(S(G)) < 2vV2y/mn (2 + k)7

Proof. Let Q(G) be the incident matrix of graph G. Then the p-Sombor matrix S,(S(G))

can be written as

5,(8(G)) = ( O (& E)Q(G) ) .

(2 +k7)7Q7(G) OLynxrm
S S >y > > are the ei alues of t atrix ((Onxn Q@A) y 4y
uppose 1y = 1 =2 -+ 2 Np4m are the eigenvalues ot the matrix (Q"'(G) - )" hen we
n+m
know that > |n;| < 2v2y/mmn. Thus S,E(S(G)) < 2v/2/mn(2P + k”)xi m
i=1

6 Nordhaus-Gaddum-type results for p-Sombor
spectral radius and energy

Lemma 6.1 [27] Let A = (a;;), B = (bij) be symmetric, non-negative matrices of order

n. If A> B, i.e., a;j > b;j for alli,j, then puy(A) > i (B).

Lemma 6.2 [{1] Let G be a connected graph with |V(G)| = n. Then G has one positive

eigenvalue in its adjacent spectrum if and only if G is a complete multipartite graph.

Lemma 6.3 [{/ Let G be a graph with |V(G)| = n, |E(G)| = m, the mazimum (resp.
minimum) degree A (resp. § > 1). Then iy < v/2m —d(n — 1) + (6 — 1)A.

Lemma 6.4 Let G be a graph with |V(G)| = n, |E(G)| = m and the minimum degree §.

Then
Q(H%)(Sm
—

1=

with equality if and only if G is a reqular graph.

Proof. Suppose that X = (z1,%2,--- ,2,)7 be a unit vector. Then & > XTS X =
1 1 ) m
2 () +(dy)P)p iy > 20906 30 iy, Lot X = (Jm, 2=, -+, 2=)7, then & > 2l

g inj
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Theorem 6.5 Let G be a graph with |V(G)| = n, |E(G)| = m, the mazimum (resp.

minimum) degree A (resp. § > 1). Then

& <2 A2m—d(n—1)+ (0 — DA,
with equality if and only if G is a reqular graph.

Proof. By Lemmas 6.1 and 6.3, we have

€< (AP + APy < 25A2m —o(n— 1) + (06 — DA

with equality if and only if G is a regular graph.

Theorem 6.6 Let G be a graph with |V(G)| = n, |E(G)| = m. Then
20+3)5
SpE(G) > =
n

with equality if and only if G = nK;y or G is a reqular complete multipartite graph.

Proof. By Lemmas 6.2 and 6.4, we have

(2+3)
Zl&l—z L

i=1,§,>0

with equality if and only if G = nK; or G is a regular complete multipartite graph.

Theorem 6.7 Let G be a graph with |V(G)| = n, |E(G)| = m, the mazimum (resp.

minimum) degree A (resp. 6 > 1). Then

S,E(G) < a+ \/(n —1) (2<1+%>mA2 - a2>7

(14 1)6m
wherea:max{u A\/Z(pr )m}

S+5)
Proof. By Lemma 6.4, we have & > ZH+‘§’”. By Cauchy-Schwartz inequality, we have

dlal <\ |(n—1) (Zsz »:1)
=2

On the other hand, 252 tr(S2) = 2> ((di)? + (dj)p)% < 2(1+%)A2m, then

i=1 invj

Z\a|<\/ 1 (20 ma - g7).
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Thus 5,8(6) = 3 l6] < &+ (0 - 1) (20 P - ).
i=1

Let f(a) = a+ \/(n -1 (2(1+%>mA2 - a2>, by calculating, we have max{f(a)}

f (Aa /2“*%)%), for a € R.

(+Lysm
Thus S, E(G) < f(a), where a = max #, Ay/ Z(H%)%}, a is the spectral radius
of graph with |V (G)| = n, |[E(G)| = m, the maximum (resp. minimum) degree A (resp.
§>1). n

Theorem 6.8 Let G be a graph with |V(G)| = n, |E(G)| = m, the mazimum (resp.

minimum) degree A (resp. 6). Then

2(1+%)

G+&6 = (md+(n=1-2)(() -m)),

n

with equality if G is a regular graph.

Proof. Suppose that X = (21,23, ,2,)T be a unit vector. Then

XS, +S)X =XTS, X + XIS, X
1 — —— L
=2 3 (P +@P)yrwa+2 Y (@) + (&) ey

viv;€E(G) v;v; €EE(G)
>20+3)5 Z x;x; + 2(1+%)(n —-1-A) Z ;x5
viv;€E(G) viv;€E(G)
_ (1 1 1\T
LCtX_(ﬁ*W7 7%) . Then

= 14 nn—-1-A7A)
XT(SP+SP)X 22(1+P)7 Z 1 +2(1+I))T Z 1

vv; EE(G) viv; EE(G)
2(1+%)
= (mé+m—1-2)((3)—m)).
Thus, & +522(%%)(m6+(n—1—A)((g)—m)). |

Theorem 6.9 Let G be a connected graph with |V(G)| =n, |E(G)| = m.
(1) fA(G)=n—10rd(G) =n—1, then

€+ & <2 AC)VRIEC)] - 8(C(IV(C)I — 1 — A(Gh)) — A(CY)
+2r(n—1)V2m—n+1,
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where C} is the connected component of G and £,(C) = &(G).
(2) fA(G) <n—2and 6(G) <n—2, then

§+E& <27 (n—1- 5)\/2(3) —2m—(§+1)(n—1) + (A +1)

+25A\/2m —d(n— 1)+ (6 — 1)A.

Proof. (1) Let A(G) =n —1, §(G) > 1. Then G is not a connected graph. By Lemma
6.5, we have & < 2%(n —Dy2m—-o0(n-1)+0@0-1)n-1)= 2%(71 —1Dv2m —n+1.

Let Cy,Cy,- -+, C; be the connected component of G and &;(Cy) > &(Cy) > -+ >
&(Cy). Then &(G) = &/(Cy) and A(Cy) < A(G) <n —2. Thus

& = &(C1) < 20 ACHVRIE(C)] = 8(C) (IV(C1[ = 1 = A(Ch)) = A(Ch).

(2) In this case, G and G are all connected graphs. By Lemma 6.5, we have

&4 < Q%A\/Qm —0(n—1)+ (0 — 1A,

>

<2 \/2(3) —2m —3(n— 1) + (5 1)

N

:2%(71/ —-1- 6)\/2(;) —2m—(0+1)(n—1)+5(A+1).
The proof is completed. |

Theorem 6.10 Let G be a connected graph with |V(G)| = n, |E(G)| = m, C1,Cs,--- ,C,
be the connected component of G and £,(Cy) > &,(Cy) > -+ > &(Cy). Then

SpE<G>+spE<G)>2<2+><m5 Z‘E A4 i)|1A<cz-)>>7

V(G

with equality if and only if G is a reqular complete multipartite graph.

Proof. By Lemma 6.4, £ > 2 5om , with equality iff G is a regular graph.

S,E(G) + S,E(G Z\a|+2|&

2251+2251(C)
i=1
eenymd ot [E(C)](V(C)] = 1 = A(C)
ST V(C] |

i=1

By Lemma 6.2 and Lemma 6.4, we have equality holds if and only if G is a regular

complete multipartite graph. |
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7 Regression model for boiling point and some other
invariants

In this section, we first investigate the relationship between boiling points (BP) of
benzenoid hydrocarbons and Sombor spectral radius, Sombor energy. Then we consider
the relationship between AcenFac (resp. Entropy, SNar, HNar) of octane isomers and
Sombor spectral radius, Sombor energy. The 21 benzenoid hydrocarbons and 18 octane
isomers are shown in Figure 2 and Figure 3. The experimental values of boiling points
of benzenoid hydrocarbons of Table 1 are taken from [35]. The experimental values of
AcenFac (resp. Entropy, SNar, HNar) of octane isomers of Table 2 are taken from [35]
and [15]. With the data of Table 1, scatter plots between BP and Sombor spectral radius,
Sombor energy are shown in Figure 4. We get the mathematical relationship-related
coefficient (R) between boiling points and Sombor energy (resp. Sombor spectral radius)

is about 0.9950 (resp. 0.8936), and
BP = 4.658 x SE(G) +31.24, BP = 134.6 x £,(G) — 844,

where SE(G), & (G) are the Sombor energy, Sombor spectral radius of G, respectively.
On the other hand, with the data of Table 2, scatter plots between AcenFac (resp.
Entropy, SNar, HNar) of octane isomers and Sombor spectral radius, Sombor energy are

shown in Figure 5 and 6. And
AcenFac = —0.02465 x & (G) + 0.5263, Entropy = —2.978 x & (G) + 128.4,

SNar = —0.2231 x & (G) + 5.256, HNar = —0.05843 x & (G) + 1.86,
AcenFac = —0.021 x SE(G) +0.9109, Entropy = —2.565 x SE(G) + 175.7,
SNar = —0.19 x SE(G) +8.735, HNar = —0.04981 x SE(G) + 2.772.

From [43], we know that the correction coefficient (R) between boiling ponits of ben-
zenoid hydrocarbons and eccentricity spectral radius is 0.7167, we compare the correction
coefficient of Sombor spectral radius, Sombor energy with other spectral radius, energy,
we find the Sombor energy (resp. Sombor spectral radius) is also a better predictor. The
boiling points and Sombor energy is highly correlated since the correction coefficient (R)
between boiling ponits of benzenoid hydrocarbons of Sombor energy is 0.9950. This points

to the applicability of Sombor energy in QSPR analysis.
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Figure 2. 21 benzenoid hydrocarbons.
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Figure 3. 18 octane isomers.
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Figure 4. Scatter plot between BP of benzenoid hydrocarbons and & (G) (resp.
SE(G)).
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Table 1. Experimental values of BP and Sombor spectral redius (£;(G)), Sombor
energy (SE(G)) of 21 benzenoid hydrocarbons

No. | BP(°C)  &(G)  SE(G) | No. | BP(°C)  &(G)  SE@G)
1 218 8.1882 44.1700 12 542 10.6216  112.3270
2 338 9.1702 646146 | 13 535 10.0690  106.5480
3 340 8.8%66  64.5134 | 14 536 9.6476  106.5630
1 31 9.6008 855238 | 15 531 9.6571  106.5576
5 125 94256 85.5510 | 16 519 98174  106.4584
6 129 90568 855604 | 17 500 10.8507 125.8866
7 140 01885  85.3488 | 18 502 105141  119.8038
8 196 10.1336  98.8062 | 19 506 103127 119.6088
9 103 10.3400 98.9208 | 20 501 103144 119.7024
10 | 497 102712 98.6830 | 21 505 105782 119.6306
11 547 104807 112.0996

‘Somborspectal adivs

Sombor spectalradies

Figure 5. Scatter plot between AcenFac (resp. Entropy, SNar, HNar) of octane

isomers and & (G).




Table 2. Experimental values of AcenFac (resp. Entropy, SNar, HNar), & (G) and
SE(G) of 18 octane isomers

No. | AcenFac  Entropy SNar HNar  &(G) SE(G)
1 0.397898 111.67 4.159 1.6 5.2207  24.9204
2 0.377916 109.84 3.871 1.5 6.1862  25.4234
3 0.371002 111.26 3.871 1.5 6.4763  26.4694
4 0.371504 109.32 3.871 1.5 6.5533  25.2388
5 0.362472 109.43 3.871 1.5 6.7397  26.1798
6 0.339426 103.42 3.466 1.391 8.5905  27.8990
7 0.348247 108.02 3.584 1.412 7.3547  26.8572
8 0.344223 106.98 3.584 1.412 6.9600  26.7522
9 0.356830 105.72 3.584 1.412 6.4167  25.9628
10 0.322596 104.74 3.466 1.391 8.8227  27.8358
11 0.340345 106.59 3.584 1.412 7.4854  27.9238
12 0.332433 106.06 3.584 1.412 7.5110  26.5894
13 0.306899 101.48 3.466 1.391 8.9972  28.9882
14 0.300816 101.31 3.178 1.315 9.2535  29.3306
15 0.305370 104.09 3.178 1.315 8.7704  27.9486
16 0.293177 102.06 3.178 1.315 9.3598  29.4626
17 0.317422 102.39 3.296 1.333 7.9257  28.3642
18 0.255294 93.06 2.773 1.231 10.5096  30.7246

" sonboreveryy ) ’ Somborenergy

Figure 6. Scatter plot between AcenFac (resp. Entropy, SNar, HNar) of octane
isomers and SE(G).
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8 Concluding Remarks

In this paper, we consider the properties of p-Sombor matrix. When p = 2 (resp.
p =1, p= —1), we can obtain most results of Sombor matrix (resp. first Zagreb ma-
trix, ISI matrix). We determine the relationship between p-Sombor index SO,(G) and
p-Sombor matrix S,(G) by the k-th spectral moment N and spectral radius of S,(G).
Then we obtain some bounds of p-Sombor Laplacian eigenvalues, p-Sombor spectral ra-
dius, spectral spread, p-Sombor energy and p-Sombor Estrada index. We also study the
Nordhaus-Gaddum-type results for p-Sombor spectral radius and energy. At last, we give
the regression model for boiling point and some other invariants. We obtain the maximum
trees for the p-Sombor spectral radius. The extremal unicyclic and bicyclic graphs for the
p-Sombor spectral radius is also an interesting problem. Thus, we propose the following

problems.
Problem 8.1 Determine more properties of p-Sombor matriz.

Problem 8.2 What is the structure of the first three minimum (resp. mazimum) trees,

unicyclic and bicyclic graphs for the Sombor spectral radius?

We intend to do exactly the above challenging problems in the near future.
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