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Abstract

The Sombor index of a graph G is defined as

S(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2

where dG(u) denote the degree of the vertex u in G. In this article, we determine the
extremal values of the Sombor index of trees with some given parameters, including
matching number, pendant vertices, diameter, segment number, branching number,
etc. The corresponding extremal trees are characterized completely.

1 Introduction

Let G = (V (G), E(G)) be a connected simple graph with order |V (G)| = n and size

|E(G)| = m. If a connected graph T satisfies that m = n− 1, then the graph T is called

a tree. Let ni(G) be the number of vertices of G with degree i and mi,j(G) the number

of edges of G joining a vertex of degree i and a vertex of degree j. We will also use ni

and mi,j for short when there is no risk of confusion. As usual, we denote the star and

path on n vertices by Sn and Pn, respectively. Let NG(u), or N(u) for short, be the

neighbor set of the vertex u ∈ V (G). For a vertex u ∈ V (G), its degree dG(u) is equal

to the number of vertices in G adjacent to u, that is dG(u) = |NG(u)|. In particular, let

∆(G) = max{dG(v) : v ∈ V (G)}, i.e., the maximum degree of G. For v ∈ V (G), G− v is

the graph obtained from G by deleting v and its incident edges. If X ⊆ E(G), then we

use G − X to denote the graph formed from G by removing the edges in X. Similarly,
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G+X denotes the graph obtained from G by adding all edges in X. If X = {uv}, we will
write G− uv and G+ uv for simple. A vertex having degree one is said to be a pendant

vertex and a vertex with degree greater than two is called a branching vertex. An edge

having a pendant vertex as an endpoint is called a pendant edge. If P = v0v1 . . . vk is

an induced sub-path of length k of G and dG(v0) = 1, dG(v1) = · · · = dG(vk−1) = 2 and

dG(vk) ≥ 3, then we call P a pendant path of G. We denote the set of all pendant vertices

in graph G by PV (G). If a graph G with vertex set V (G) = {dG(v1), dG(v2), . . . , dG(vn)}
and dG(v1) ≥ dG(v2) ≥ · · · ≥ dG(vn), then we call (dG(v1), dG(v2), . . . , dG(vn)) the degree

sequence of G.

In order to predict some important physicochemical and bilogical properties of chem-

ical compounds, hundreds of molecular structure descriptors (topological indices) have

been introduced and studied by scholars from the field of mathematics or chemistry in the

past decades. One of the most famous types is the so-called degree-based topological in-

dices. The first Zagreb index, second Zagreb index, Randić index, Harmonic index, Atom-

Bond-Connectivity index are all belong to this type. Nowadays, finding sharp bounds on

degree-based topological indices for graphs under some given constrains has been one

of the hottest research topics attracting many researches’ attention. For some extremal

results on degree-based topological indices, one may refer to [1–4,6, 8, 12,13,15,16,18].

Motivated by the geometric interpretation of the degree radius, Gutman [11] recently

put forward the Sombor index. The Sombor index of a graph G, denoted by S(G), is

defined as the sum of the weights of (dG(u)
2 + dG(v)

2)1/2 of all edges of G, that is

S(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2.

It was shown that two degree-points have equal degree-radii if and only if they coincide,

that is they share the same degree-coordinates, which is of great values and useful in

chemical applications [11]. After reading the first paper on Sombor index, Deng, Tang and

Wu in [10] found that the Sombor index is useful in predicting physico-chemical properties

with high accuracy compared to some well-established and often used indices. They also

obtain a sharp upper bound for the Sombor index among all molecular trees with fixed

numbers of vertices. Very recently, Cruz, Gutman and Rada [9] obtained the extremal

Sombor indices for chemical graphs, chemical trees and hexagonal systems. Extremal

values on the Sombor index of unicyclic graphs and bicyclic graphs have been studied by

Cruz and Gutman [7]. Wang, Mao, Li and Furtula [17] investigated the mathematical
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relations between the Sombor index and some other well-known degree-based descriptors.

Moreover, some Nordhaus-Gaddum-type results are also obtained in their paper. Along

this line, many extremal problems could be extended to the Sombor index.

The main goal of this paper is to derive some sharp bounds on the Sombor index of

trees having some given parameters.

2 Preliminaries

In this section we give some useful lemmas which will be used frequently in the sequel

section.

Lemma 2.1 Let ϕ(x, y) =
√
x2 + y2 −

√
(x− 1)2 + y2, where x > 1 and y > 0, then the

function ϕ(x, y) is strictly increasing with x and strictly decreasing with y.

Proof. Note that x2[(x − 1)2 + y2] − (x − 1)2(x2 + y2) = y2(2x − 1) > 0 for x > 1 and

y > 0, which means x
√
(x− 1)2 + y2 − (x − 1)

√
x2 + y2 > 0 for x > 1 and y > 0, then

we have

∂ϕ(x, y)

∂x
=

x√
x2 + y2

− x− 1√
(x− 1)2 + y2

=
x
√
(x− 1)2 + y2 − (x− 1)

√
x2 + y2√

(x2 + y2)[(x− 1)2 + y2]
> 0

and

∂ϕ(x, y)

∂y
=

y√
x2 + y2

− y√
(x− 1)2 + y2

< 0

for x > 1 and y > 0. Thus we complete the proof.

. . .
v1 v2 vk

...

v1

v2

vk−1
vk

Figure 1. The path-lifting transformation: G and G′ in Lemma 2.2.

Lemma 2.2 Let G be a graph and P = v1v2 . . . vk an induced sub-path in G, where

dG(v1) ≥ 2 and dG(vk) ≥ 2. G′ = G − {vkw : w ∈ N(vk) \ {vk−1}} + {v1w : w ∈
N(vk) \ {vk−1}}. The process from G to G′ will be called path-lifting transformation, see

Figure 1. Then we have S(G) < S(G′).
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Proof. Let ψ(x, y) =
√
4 + x2 +

√
4 + y2 −

√
4 + (x+ y − 1)2 −

√
5, where x ≥ 2 and

y ≥ 2. Then it is easy to verify that

∂ψ(x, y)

∂x
=

x√
4 + x2

− x+ y − 1√
4 + (x+ y − 1)2

=
x
√

4+(x+y−1)2−(x+y−1)
√
4+x2

√
(4+x2)[

√
4+(x+y−1)2]

< 0

and

∂ψ(x, y)

∂y
=

y√
4 + y2

− x+ y − 1√
4 + (x+ y − 1)2

=
y
√

4+(x+y−1)2−(x+y−1)
√

4+y2√
(4+y2)[

√
4+(x+y−1)2]

< 0,

implying the function ψ(x, y) strictly decreases with x ≥ 2 for fixed y ≥ 2, and strictly

decreases with y ≥ 2 for fixed x ≥ 2. For convenience, we let dG(v1) = x ≥ 2 and

dG(vk) = y ≥ 2 in the following discussion.

Case 1. k > 2.

Then it follows that

S(G)− S(G′) =
√
22 + x2 +

√
22 + y2 +

∑

w∈NG(v1)\{v2}

√
x2 + dG(w)2

+
∑

w∈NG(vk)\{vk−1}

√
y2 + dG(w)2 −

√
12 + 22 −

√
22 + (x+ y − 1)2

−
∑

w∈NG(v1)∪NG(vk)\{v2,vk−1}

√
(x+ y − 1)2 + dG(w)2

<
√
22 + x2 +

√
22 + y2 −

√
12 + 22 −

√
22 + (x+ y − 1)2 = ψ(x, y)

≤ψ(2, 2) =
√
22 + 22 +

√
22 + 22 −

√
12 + 22 −

√
22 + (2 + 2− 1)2

=4
√
2−

√
5−

√
13 ≈ −0.1848 < 0,

implying S(G) < S(G′).

Case 2. k = 2.

Note first that 1 + (x + y − 1)2 − (x2 + y2) = 2(xy − x − y) + 1 > 0 for x ≥ 2 and

y ≥ 2, then we have

S(G)− S(G′) =
√
x2 + y2 +

∑

w∈NG(v1)\{v2}

√
x2 + dG(w)2 +

∑

w∈NG(v2)\{v1}

√
y2 + dG(w)2

−
√
12 + (x+ y − 1)2 −

∑

w∈NG(v1)∪NG(v2)\{v1,v2}

√
(x+ y − 1)2 + dG(w)2

<
√
x2 + y2 −

√
1 + (x+ y − 1)2 < 0,

which means S(G) < S(G′).

Thus, the proof is completed.

Applying the path-lifting transformation, the following result can be obtained imme-

diately.
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Corollary 2.3 Let T be a tree of order n ≥ 3, then 2
√
2(n − 3) + 2

√
5 ≤ S(T ) ≤

(n− 1)
√
n2 − 2n+ 2. The lower bound attains if and only if T ∼= Pn and the upper bound

attains if and only if T ∼= Sn.

Proof. Let T be a tree different form the star Sn, then by finite steps of using the

path-lifting transformation one can arrive the star Sn. Thus by Lemma 2.2 we have

S(T ) ≤ S(Sn) = (n − 1)
√
n2 − 2n+ 2. On the other hand, if T ̸∼= Pn, then after proper

times of applying the path-lifting transformation on Pn one can get the desired tree T .

Again by Lemma 2.2 we have S(T ) ≥ S(Pn) = 2
√
2(n− 3) + 2

√
5.

3 Main results

In this section, we determine the extremal values of Sombor indices of trees with some

given graphic parameters, such as matching number, pendant vertices, segments, branch-

ing vertices, and so forth.

3.1 The maximum Sombor index of trees with a given matching
number

For an edge subset M ⊆ E(G), if all edges in M have no common endpoints, then we call

M is a matching of graph G. A matching M is a maximum matching if there is no other

matching M ′ of G such that |M ′| > |M |. The number of edges in a maximum matching

of graph G is called the matching number of G, denoted by β(G). A maximum matching

M with |M | = β also said to be a β-matching. If M is a matching, the two ends of each

edge of M are said to be matched under M , and each vertex incident with an edge of

M is said to be an M -saturated. If every vertex of G is M -saturated, then we call M a

perfect matching. Let Tn,β be the set of trees with n vertices and matching number β.

Let T β
n be the tree obtained from the star Sn−β+1 by subdividing β − 1 pendant edges in

Sn−β+1. It is obvious that T
β
n ∈ Tn,β and it has a perfect matching for n = 2β. The two

trees T β
n and T β

2β are illustrated in Figure 2.

Lemma 3.1 [5, 14] (i) If T ∈ T2β,β and β ≥ 2, then T has a pendant vertex whose

unique neighbour is of degree two. (ii) If T ∈ Tn,β and n > 2β, then there is a β-matching

M and a pendant vertex v such that M does not saturate v.
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...
...

...
n− 2β + 1 β − 1 ...

...
β − 1

Figure 2. The trees T β
n (left) and T β

2β (right).

Lemma 3.2 Let T ∈ Tn,β with the maximum Sombor index and M is a β-matching of

T .

(i) If e = uv ∈M , then e is a pendant edge of T .

(ii) If v is not a pendant vertex of T , then v is M-saturated.

Proof. (i) Suppose to the contrary that e = uv ∈M but it is not a pendant edge of T . Let

T ′ = T −{uw : w ∈ NT (u)\{v}}+{vw : w ∈ NT (u)\{v}}. It is clear that T ′ ∈ Tn,β. By

Lemma 2.2 we have S(T ′) > S(T ), a contradiction to the choice of T . (ii) If T ∼= Sn, then

the result follows immediately. If T ̸∼= Sn and v is not a pendant vertex in T , then we can

see that there is a vertex u ∈ NT (v) and u is not a pendant vertex. If v is notM -saturated,

then we have uv ̸∈M . Let T ′′ = T − {uw : w ∈ NT (u) \ {v}}+ {vw : w ∈ NT (u) \ {v}},
and it is easy to see that T ′′ ∈ Tn,β. By Lemma 2.2 we have S(T ′) > S(T ), a contradiction

to the choice of T .

Theorem 3.3 Let T ∈ T2β,β, then S(T ) ≤
√
1 + β2 + (β − 1)(

√
5 +

√
4 + β2) with

equality if and only if T ∼= T β
2β.

Proof. We prove the result by applying induction on β. If β = 1, 2, then we have

T ∼= T 1
2
∼= P2, T ∼= T 2

4
∼= P4. Therefore, the result is true for β = 1 and β = 2. Suppose

that it is true for T ∈ T2k,k, k = 1, 2, . . . , β − 1. We set T ∈ T2β,β such that S(T ) is

maximum. LetM be a perfect matching of T . By Lemma 3.1 (i) there is a pendant vertex

u in T adjacent to a vertex v of degree two. Then, uv ∈ M . Let T ′ = T − u − v, then

T ′ ∈ T2β−2,β−1. By induction hypothesis, we have S(T ′) ≤ S(T β−1
2β−2). Let w ∈ N(v)\{u}.

Assume that dT (w) = x, NT (w) = {w1, w2, . . . , wx−1, v} and dT (wi) = ti, then dT ′(w) =

x − 1 and dT ′(wi) = ti for i = 1, 2, . . . , x − 1. By Lemma 3.2 (i), there exist at least β

pendant vertices in T . Note also that T has a perfect matching. Hence there is at most

one neighbors of w with degree one. Thus, there exist at least β − 1 pendant vertices

not adjacent to w in T , that is, x ≤ 2β − 1 − (β − 1) = β. Moveover, since w is not a
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pendant vertex of T , by Lemma 3.2, there exists some ti = 1. Without loss of generality,

we assume that t1 = 1 and t2, t3, . . . , tx−1 ≥ 2.

S(T ) =S(T ′) +
√
12 + 22 +

√
22 + x2 +

x−1∑

i=1

√
t2i + x2 −

l−1∑

i=1

√
t2i + (x− 1)2

=S(T ′) +
√
5 +

√
4 + x2 +

x−1∑

i=1

[√
t2i + x2 −

√
t2i + (x− 1)2

]

≤S(T β−1
2β−2) +

√
5 +

√
4 + x2 +

√
1 + x2 −

√
1 + (x− 1)2

+ (x− 2)
[√

4 + x2 −
√
4 + (x− 1)2

]

=S(T β−1
2β−2) +

√
5 +

√
4 + x2 + ϕ(x, 1) + (x− 2)ϕ(x, 2)

≤S(T β−1
2β−2) +

√
5 +

√
4 + β2 + ϕ(β, 1) + (β − 2)ϕ(β, 2)

=
√

1 + β2 + (β − 1)(
√
5 +

√
4 + β2).

The equalities above hold simultaneously if and only if T ′ ∼= T β−1
2β−2, t1 = 1 and t2 = t3 =

· · · = tx−1 = 2 and x = β, which means that T ∼= T β
2β. Thus, the proof is completed.

Theorem 3.4 Let T ∈ Tn,β, then S(T ) ≤ (n − 2β + 1)
√

1 + (n− β)2 + (β − 1)
[√

5 +
√
4 + (n− β)2

]
with equality if and only if T ∼= T β

n .

Proof. If n = 2, 3, then T ∼= T 1
2 = P2 and T ∼= T 1

3 = P3, respectively. Thus the result

is true for n = 1, 2. If n = 2β, then the result holds by Theorem 3.3. Next, we suppose

the result holds for all trees in Tt,β with t ≤ n − 1 and t > 2β. Let T be a tree in Tn,β

with maximum Sombor index and M a β-matching of T . By Lemma 3.1 (ii) there exists

a pendant vertex v such that T − v also contains a β-matching. Let w be the unique

neighbor of v, dT (w) = x and NT (w) \ {v} = {w1, w2, . . . , wx−1}. Set T ′ = T − v, then it

is obvious that T ′ ∈ Tn−1,β. Moreover, we have x ≤ n− 1− (β − 1) = n− β since there

are at least β−1 vertices saturated byM in V (T )\{w, v, w1, w2, . . . , wx−1}. Without loss

of generality, we assume that dT (w1) = dT (w2) = · · · = dT (ws) = 1 and dT (wk) ≥ 2 for

s+1 ≤ k ≤ x−1. By Lemma 3.2 we know that every matching edge of T is a pendant edge

and every non-pendant vertex is M -saturated. Hence, the number of pendant vertices of

T is n− β. Thus, s+ 1 ≤ n− β − (β − 1) = n− 2β, i.e., s ≤ n− 2β. By Lemma 2.1 and

induction hypothesis, we have

S(T ) =S(T ′) +
√
12 + x2 +

x−1∑

i=1

[
√
dT (wi)2 + x2 −

√
dT (wi)2 + (x− 1)2]
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=S(T ′) +
√
1 + x2 + s

[√
1 + x2 −

√
1 + (x− 1)2

]
+

x−1∑

i=s+1

ϕ(x, dT (wi))

≤S(T ′) +
√
1 + x2 + s · ϕ(x, 1) +

x−1∑

i=s+1

ϕ(x, 2)

=S(T ′) +
√
1 + x2 + s · ϕ(x, 1) + (x− s− 1)ϕ(x, 2)

≤S(T ′) +
√

1 + (n− β)2 + s · ϕ(n− β, 1) + (n− β − s− 1)ϕ(n− β, 2)

≤S(T β
n−1) +

√
1 + (n− β)2 + s · ϕ(n− β, 1) + (n− β − s− 1)ϕ(n− β, 2)

=S(T β
n−1) +

√
1 + (n− β)2 + (n− β − 1)ϕ(n− β, 2) + s[ϕ(n− β, 1)− ϕ(n− β, 2)]

≤S(T β
n−1) +

√
1 + (n− β)2 + (n− β − 1)ϕ(n− β, 2)

+ (n− 2β)[ϕ(n− β, 1)− ϕ(n− β, 2)]

=(n− 2β + 1)
√
1 + (n− β)2 + (β − 1)

[√
5 +

√
4 + (n− β)2

]
.

The equalities above hold simultaneously if and only if T ′ ∼= T β
n−1, x = n− β, s = n− 2β

and dT (wk) = 2 for n− 2β + 1 ≤ k ≤ n− β − 1, which means T ∼= T β
n .

3.2 The maximum Sombor index of trees with given number of
pendant vertices

Let Hn,p be the set of trees with n vertices in which there are p pendant vertices. Let

Yn,p be the broom graph, i.e., the tree obtained from the star Sp by replacing one of its

pendant edges by a path of length n− p. The following result shows that the boom Yn,p

is the unique tree in Hn,p with the maximum Sombor index.

Theorem 3.5 Let T be a tree in Hn,p, then S(T ) ≤ (p−1)
√
1 + p2+

√
4 + p2+2

√
2(n−

p− 1) +
√
5 with equality if and only if T ∼= Yn,p.

Proof. If p = 2 or p = n− 1, then T ∼= Pn = Yn,2 or T ∼= Sn = Yn,n−1. Thus, the result is

true for p = 2 and n − 1. Now, we assume that 3 ≤ p ≤ n − 2 and the result holds for

the trees in Hn′,p′ , where n
′ ≤ n − 1 and p′ ≤ p − 1. Let T ∈ Hn,p and v ∈ PV (T ). If

u is the neighbor of v and NT (u) = {v, u1, u2, . . . , ut−1}, then dT (u) = t ≤ p and there is

at least one vertex in NT (u) with degree greater than two. Without loss of generality, we

assume that dT (u1) ≥ 2 and dT (ui) ≥ 1, i = 1, 2, . . . , t− 1. Now, we set T ′ = T − v.

If dT (u) = 2, then dT ′(u) = 1 and T ′ ∈ Hn−1,p. By induction hypothesis, we get

S(T ′) ≤ S(Yn−1,p) = (p− 1)
√
1 + p2 +

√
4 + p2 + 2

√
2(n− p− 2) +

√
5. Thus, we have

S(T ) =S(T ′) +
√
5 +

√
dT (u1)2 + 22 −

√
dT (u1)2 + 12
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≤(p− 1)
√

1 + p2 +
√
4 + p2 + 2

√
2(n− p− 2) +

√
5 + 2

√
2−

√
5

=(p− 1)
√

1 + p2 +
√
4 + p2 + 2

√
2(n− p− 1) +

√
5.

The equality holds if and only if T ′ = Yn,p−1 and dT (u1) = 2, which implies that T ∼= Yn,p.

If dT (u) ≥ 3, then dT ′(u) ≥ 2 and T ′ ∈ Hn−1,p−1. By induction hypothesis, we have

S(T ) =S(T ′) +
√
t2 + 12 +

l−1∑

i=1

√
t2 + dT (ui)2 −

t−1∑

i=1

√
(t− 1)2 + dT (ui)2

≤S(Yn−1,p−1) +
√
t2 + 12 +

t−1∑

i=1

[√
t2 + dT (ui)2 −

√
(t− 1)2 + dT (ui)2

]

≤S(Yn−1,p−1) +
√
t2 + 12 + (t− 2)(

√
t2 + 1−

√
(t− 1)2 + 1)

+
√
t2 + 4−

√
(t− 1)2 + 4

=S(Yn−1,p−1) +
√
t2 + 1 + (t− 2)ϕ(t, 1) + ϕ(t, 2)

≤S(Yn−1,p−1) +
√
p2 + 1 + (p− 2)ϕ(p, 1) + ϕ(p, 2) since t ≤ p

=(p− 1)
√

1 + p2 +
√
4 + p2 + 2

√
2(n− p− 1) +

√
5.

The equalities above hold simultaneously if and only if T ′ ∼= Yn−1,p−1, dT (u1) = dT (u2) =

· · · = dT (ut−1) = 1 and t = p. Thus, we get T ∼= Yn,p, completing the proof.

3.3 The maximum Sombor index of trees with a given biparti-
tion

If G is a bipartite graph with n vertices and its vertices can be partitioned into two parts

Vp and Vq such that |Vp| = p, |Vq| = q and there are no edges joining pairs of vertices

belong to the same part of its partition, then we say that G possesses a (p, q)-partition.

Let Bp,q be the set of trees with n vertices and a (p, q)-partition.

Let Hℓ(s, t) be the tree of order n obtained from a path Pℓ = v1v2 . . . vℓ by attaching

s and t pendant vertices to each terminal vertices of Pℓ respectively, where s+ t = n− ℓ,

s ≥ t ≥ 1 and ℓ ≥ 2. Hℓ(s, t) is, sometimes, also called double broom graph. If ℓ = 2,

then we call H2(s, t) as a double star, and denote it by Ss,t.

Lemma 3.6 S(Hℓ(n− ℓ− 1, 1)) > S(Hℓ(n− ℓ− 2, 2)) > · · · > S(Hℓ(⌈n−ℓ
2
⌉, ⌊n−ℓ

2
⌋)).

Proof. Let T = Hℓ(s, t). it is suffices to show that S(Hℓ(s, t)) > S(Hℓ(s − 1, t + 1)) for

s ≥ t+2. For convenience, let T ′ = Hℓ(s− 1, t+1). Then, dT (v1) = s+1, dT (vℓ) = t+1,

dT ′(v1) = s and dT ′(vℓ) = t+ 2.
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If ℓ = 2, then by the definition of Sombor index we have

S(T )− S(T ′) =s
√
12 + (s+ 1)2 +

√
(s+ 1)2 + (t+ 1)2 + t

√
12 + (t+ 1)2

− (s− 1)
√
12 + s2 −

√
s2 + (t+ 2)2 − (t+ 1)

√
12 + (t+ 2)2

=(s− 1)ϕ(s+ 1, 1) +
√
(s+ 1)2 + (t+ 1)2 −

√
s2 + (t+ 2)2

− t · ϕ(t+ 2, 1) +
√
12 + (s+ 1)2 −

√
12 + (t+ 2)2

>(s− 1)ϕ(s+ 1, 1)− t · ϕ(t+ 2, 1)

>[ϕ(s+ 1, 1)− ϕ(t+ 2, 1)]t > 0.

If ℓ ≥ 3, then

S(T )− S(T ′) =s
√
12 + (s+ 1)2 +

√
(s+ 1)2 + 22 +

√
(t+ 1)2 + 22 + t

√
12 + (t+ 1)2

− (s− 1)
√
12 + s2 −

√
s2 + 22 −

√
22 + (t+ 2)2 − (t+ 1)

√
12 + (t+ 2)2

=(s− 1)ϕ(s+ 1, 1) +
√
(s+ 1)2 + 22 +

√
(t+ 1)2 + 22 −

√
s2 + 22

−
√
22 + (t+ 2)2 − t · ϕ(t+ 2, 1) +

√
12 + (s+ 1)2 −

√
12 + (t+ 2)2

>(s− 1)ϕ(s+ 1, 1)− t · ϕ(t+ 2, 1) + ϕ(s+ 1, 2)− ϕ(t+ 2, 2)

>[ϕ(s+ 1, 1)− ϕ(t+ 2, 1)]t− ϕ(t+ 2, 2) + ϕ(s+ 1, 2) > 0.

Thus, we get the desired result, completing the proof.

Theorem 3.7 Let T be a tree in Bp,q, then S(T ) ≤
√
p2 + q2 + (p − 1)

√
1 + p2 + (q −

1)
√

1 + q2, with equality if and only if T ∼= Sp,q.

Proof. If p = 1, then the unique tree in Bp,q is S1,n−1. If p = 2, then B2,n−2 = {S2,n−2} ∪
{H3(s, t) : s+ t = n− 3 and s ≥ t ≥ 1}. By and Lemmas 2.2 and 3.6 we have

S(T2,n−2) > S(H3(n− 4, 1)) > S(H3(n− 5, 2)) > · · · > S(H3(⌈n−3
2
⌉, ⌊n−3

2
⌋)).

Therefore, our result holds for p = 1, 2.

Next, we assume that p ≥ 3 and the result holds for all p′ satisfying that p′ ≤ p − 1.

Note that Vp ∩ PV (T ) ̸= ∅, we assume that v ∈ Vp ∩ PV (T ), NT (v) = {u} and NT (u) =

{v, u1, u2, . . . , ux−1}. It is clear that NT (u) ⊆ Vp, then dT (u) = x ≤ p. Since T ̸∼= Sn,

there exists at least one neighbour of u with degree greater than two. Without loss

of generality, we assume that dT (ui) ≥ t, i = 2, 3, . . . , x − 1. Let T ′ = T − v, then

T ′ ∈ Bp−1,q. By induction hypothesis, we have S(T ′) ≥ S(Tp−1,q) =
√
(p− 1)2 + q2 +

(p− 2)
√
1 + (p− 1)2 + (q − 1)

√
1 + q2. Thus, we have
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S(T )− S(T ′) =
√
x2 + 12 +

x−1∑

i=1

[√
dT (ui)2 + x2 −

√
dT (ui)2 + (x− 1)2

]

=
√
x2 + 12 + (x− 2)[

√
1 + x2 −

√
1 + (x− 1)2]

+
√
dT (u1)2 + x2 −

√
dT (u1)2 + (x− 1)2

=
√
x2 + 12 + (x− 2)ϕ(x, 1) + ϕ(x, dT (u1))

≤
√
p2 + 12 + (p− 2)ϕ(x, 1) + ϕ(x, dT (u1))

≤
√
p2 + 12 + (p− 2)ϕ(p, 1) + ϕ(p, dT (u1)).

Moreover, combining with
p−1∑
i=1

d(ui)+dT (v) = p+ q−1 yields that dT (u1) = q. Therefore,

S(T ) ≤S(T ′) +
√
p2 + 12 + (p− 2)ϕ(p, 1) + ϕ(p, q)

≤
√
(p− 1)2 + q2 + (p− 2)

√
1 + (p− 1)2 + (q − 1)

√
1 + q2

+
√
p2 + 1 + (p− 2)ϕ(p, 1) + ϕ(p, q)

=
√
p2 + q2 + (p− 1)

√
1 + p2 + (q − 1)

√
1 + q2.

The equalities above hold simultaneously if and only if T ′ ∼= Sp−1,q, x = p, dT (u1) = q

and dT (u2) = dT (u3) = · · · = dT (up−1) = 1, which imply that T ∼= Sp,q.

3.4 The maximum and second maximum Sombor indices
of trees with a given diameter

Let Dn,d be the set of trees with order n and diameter d. We give the maximum and

second maximum Sombor indices of trees among Dn,d in this subsection. A tree is said

to be a caterpillar if we delete all pendant vertices makes it a path. Let Ct0,t1,...,td be a

caterpillar obtained from the path P = v0v1v2 · · · vd by attaching ti edges to the vertex vi,

i = 0, 1, 2, . . . , d − 1, d. Clearly, T = Ct0,t1,...,td belongs to Dn,d if and only if t0 = td = 0,

and the caterpillar T = Ct0,t1,...,td has n = d+ 1 +
∑d

i=0 ti vertices.

. . . . . .

. . .
n− d− 1

v0 v1 vi−1 vi vi+1 vd−1vd

Figure 3. The tree T i
d(n− d− 1).
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Let T i
n,d denote the tree obtained from the path P = v0v1 . . . vd by attaching n− d− 1

edges to the vertex vi, see Figure 3.

Theorem 3.8 Let T be a tree in Dn,d\{T 1
n,d}, then

S(T ) ≤ 2[
√
5 + (d− 4)

√
2 +

√
4 + (n− d+ 1)2] + (n− d− 1)

√
1 + (n− d+ 1)2

with equality if and only if T ∼= T i
n,d, i = 2, 3, . . . , ⌈d

2
⌉.

Proof. Let T ∈ Dn,d\{T 1
n,d} be the tree with maximum Sombor index and P = v0v1 . . . vd

a diametrical path of T . We first show that T is a caterpillar. Suppose that T is not a

caterpillar, then there exists a non-pendant edge uvi, where u ∈ V (T )\{v0, v1, . . . , vd}.
Using the path-lifting transformation on the edge uvi, then by Lemma 2.2 we get a new

tree T ′ ∈ Dn,d such that S(T ′) > S(T ). A contradiction to the choice of T . Thus, the

tree T can be denoted by C0,t1,...,td−1,0 and dT (vi) = di, i = 0, 1, . . . , d. Without loss of

generality, we always assume that di ≥ dj and i < j. There are three special trees which

will be used in the following proof, see Figure 4, where 3 ≤ i ≤ d − 2 for T2. In the

following we assume that T ̸∼= T i
n,d, then exist two vertex vi and vj such that dT (vi) ≥ 3

and dT (vj) ≥ 3. We consider the following two possible cases.

Case 1. vivj ∈ E(P ), i.e., j = i+ 1.

We denoteNT (vi) = {u1, u2, . . . , udi−2, vi−1, vj}, NT (vj) = {w1, w2, . . . , wdj−2, vi, vj+1},
dT (vi−1) = x and dT (vj+1) = y in this case.

If T ∼= T1, then

S(T1)− S(T i
n,d) =(n− d− 1)[

√
12 + (n− d)2 −

√
12 + (n− d+ 1)2] +

√
32 + (n− d)2

−
√
22 + (n− d+ 1)2 +

√
32 + 12 −

√
22 + 12

− (
√
(n− d+ 1)2 + 22 −

√
32 + 22)

<
√
32 + 12 −

√
22 + 12 − (

√
(n− d+ 1)2 + 22 −

√
32 + 22)

≤
√
32 + 12 −

√
22 + 12 − (

√
42 + 22 −

√
32 + 22) by n− d ≥ 3

=ϕ(3, 1)− ϕ(4, 2) = −2
√
5 +

√
10 +

√
13− 3 ≈ −0.704307 < 0.

A contradiction to the choice of T . Thus, T ̸∼= T1.

Let T ′ = T − vjw1 + viw1. Then, T
′ ∈ Dn,d\{T 1

n,d}, dT ′(vi) = di + 1, dT ′ = dj − 1 and

S(T ′)− S(T ) =
√
x2 + (di + 1)2 + (di − 1)

√
12 + (di + 1)2 + (dj − 3)

√
12 + (dj − 1)2
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+
√
y2 + (dj − 1)2 −

√
x2 + d2i − (di − 2)

√
12 + d2i

− (dj − 2)
√

12 + d2j −
√
y2 + d2j

=ϕ(di + 1, x)− ϕ(dj, y) + (di − 2)ϕ(di + 1, 1)− (dj − 3)ϕ(dj, 1)

+
√
12 + (di + 1)2 −

√
12 + d2j

≥ϕ(di + 1, x)− ϕ(dj, y) + (di − 2)ϕ(di + 1, 1)− (dj − 3)ϕ(dj, 1)

+
√
12 + (dj + 1)2 −

√
12 + d2j

=ϕ(di + 1, x)− ϕ(dj, y) + (di − 2)ϕ(di + 1, 1)− (dj − 3)ϕ(dj, 1)

+ϕ(dj + 1, 1) > ϕ(di + 1, x)− ϕ(dj, y) + (dj − 3)[ϕ(di + 1, 1)− ϕ(dj, 1)]

+ϕ(dj + 1, 1) > ϕ(dj + 1, 1)− ϕ(dj, y) ≥ ϕ(dj + 1, 1)− ϕ(dj, 1) > 0.

We get a contradiction that S(T ′) > S(T ).

Case 2. vivj ̸∈ E(P ), i.e., j ≥ i+ 2.

We denote NT (vi) = {u1, u2, . . . , udi−2, vi−1, vi+1}, NT (vj) = {w1, . . . , wdj−2, vj−1,

vj+1}, dT (vi−1) = x and dT (vj+1) = y in this case.

If T ∼= T2 or T ∼= T3, then we can get that

S(T2)− S(T i
n,d) =(n− d− 1)[

√
12 + (n− d)2 −

√
12 + (n− d+ 1)2]

+
√

22 + (n− d)2 −
√
22 + (n− d+ 1)2 +

√
32 + 12 −

√
22 + 12

− (
√
(n− d+ 1)2 + 22 −

√
32 + 22)

<
√
32 + 12 −

√
22 + 12 − (

√
(n− d+ 1)2 + 22 −

√
32 + 22)

≤
√
32 + 12 −

√
22 + 12 − (

√
42 + 22 −

√
32 + 22) since n− d ≥ 3

=ϕ(3, 1)− ϕ(4, 2) = −2
√
5 +

√
10 +

√
13− 3 ≈ −0.704307 < 0

and

S(T3)− S(T i
n,d) =(n− d− 1)[

√
12 + (n− d)2 −

√
12 + (n− d+ 1)2]

+
√
22 + (n− d)2 −

√
22 + (n− d+ 1)2

+ 2(
√
32 + 12 −

√
22 + 12)− (

√
(n− d+ 1)2 + 22 −

√
32 + 22)

<2(
√
32 + 12 −

√
22 + 12)− (

√
(n− d+ 1)2 + 22 −

√
32 + 22)

<2(
√
32 + 12 −

√
22 + 12)− 2(

√
42 + 22 −

√
32 + 22) by n− d ≥ 3

=2ϕ(3, 1)− 2ϕ(4, 2) = −4
√
5 + 2

√
10 + 2

√
13− 6 ≈ −1.40861 < 0.

A contradiction to the choice of T . Thus, T ̸∼= T2 and T ̸∼= T3.
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Let T ′′ = T − vjw1 + viw1. Then, T
′′ ∈ Dn,d\{T 1

n,d}, dT ′′(vi) = di +1, dT ′′(vj) = dj − 1

and

S(T ′′)− S(T ) =
√
x2 + (di + 1)2 + (di − 1)

√
12 + (di + 1)2 + (dj − 3)

√
12 + (dj − 1)2

+
√
y2 + (dj − 1)2 +

√
22 + (di + 1)2 +

√
22 + (dj − 1)2

−
√
x2 + d2i − (di − 2)

√
12 + d2i − (dj − 2)

√
12 + d2j

−
√
y2 + d2j −

√
22 + d2i −

√
22 + d2j

=ϕ(di + 1, x)− ϕ(dj, y) + (di − 2)ϕ(di + 1, 1)− (dj − 3)ϕ(dj, 1)

+ ϕ(di + 1, 2)− ϕ(dj, 2) +
√
12 + (di + 1)2 −

√
12 + d2j

>ϕ(di + 1, x)− ϕ(dj, y) + (di − 2)ϕ(di + 1, 1)− (dj − 3)ϕ(dj, 1)

+
√
12 + (dj + 1)2 −

√
12 + d2j

=ϕ(di + 1, x)− ϕ(dj, y) + (di − 2)ϕ(di + 1, 1)− (dj − 3)ϕ(dj, 1)

+ϕ(dj + 1, 1) > ϕ(di + 1, x)− ϕ(dj, y) + (dj − 3)[ϕ(di + 1, 1)− ϕ(dj, 1)]

+ϕ(dj + 1, 1) > ϕ(dj + 1, 1)− ϕ(dj, y) ≥ ϕ(dj + 1, 1)− ϕ(dj, 1) > 0.

We get a contradiction that S(T ′′) > S(T ).

Therefore, from the discussion above we conclude that T is a caterpillar with only

one vertex vi on the diametrical path such that dT (vi) ≥ 3. Note that T ̸∼= T 1
n,d, then

T ∼= T i
n,d, i = 2, 3, . . . , ⌈d

2
⌉.

n− d− 2

v0 v1 v2
. . .

. . .

vd
. . . . . .

. . .

v0 v1 vi vd−1 vd

n− d− 2

. . .

. . .

v0 v1 vd−1 vd

n− d− 2

T1 T2 T3

Figure 4. The trees T1, T2 and T3 in the proof of Theorem 3.8.

Theorem 3.9 Let T be a tree in Dn,d, then

S(T ) ≤ (n− d)
√
(n− d+ 1)2 + 1 +

√
(n− d+ 1)2 + 4 + 2(d− 3)

√
2 +

√
5,

with equality if and only if T ∼= T 1
n,d.

Proof. For i = 2, 3, . . . , ⌈d
2
⌉, by direct calculation, we have

S(T 1
n,n−d−1)− S(T i

n,n−d−1) = ϕ(2, 2)− ϕ(2, n− d+ 1) > 0.
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Thus, the result follows immediately by Theorem 3.8.

Theorems 3.8 and 3.9 show that among all trees of order n with diameter d the tree T 1
n,d

possesses the maximum Sombor index and the trees which attain the second maximum

Sombor index belong to {T i
n,d : i = 2, 3, . . . , ⌈d

2
⌉}.

3.5 The minimum and maximum Sombor index of trees with
given number of segments

A segment of a tree is a path-subtree whose terminal vertices are branching or pendant

vertices. The so-called starlike tree is a tree contains exactly one vertex of degree greater

than two. Let Fn,k be the set of trees of order n with exactly k segments. Then it is easy

to see that the path Pn is the unique graph in Fn,1 and the set Fn,2 = ∅. Thus, we only

need to consider Fn,k for 3 ≤ k ≤ n− 2 in this subsection.

Lemma 3.10 If T is a tree in Fn,k with minimal Sombor index, then T must be a chem-

ical tree, i.e., the tree does not contain a vertex of degree greater than four.

Proof. Suppose to the contrary that there is a vertex v with dT (v) ≥ 5. Let P =

v0v1 . . . vlvl+1 be a longest path in T containing v = vi. Then one can pick two vertices u

and w such that u,w ∈ NT (v) \ V (P ).

Case 1. i = l or i = 1.

Then the vertices in NT (v)\{v2} or NT (v)\{vl−1} are all pendant vertices in this case.

We only consider the case of i = 1 and the the case of i = l can be proved analogously.

Let T ′ = T − {vu, vw}+ {v0u, v0w}. It is obvious that T ′ also belongs to Fn,k. One can

see that dT ′(v) = dT (v)−2, dT ′(v0) = 3 and the degrees of the rest vertices are unchanged.

Thus we have

S(T )− S(T ′) =(dT (v1)− 1)
√
dT (v1)2 + 12 +

√
dT (v1)2 + dT (v2)2

− (dT (v1)− 4)
√

(dT (v1)− 2)2 + 12 −
√
(dT (v1)− 2)2 + dT (v2)2

−
√
dT (v1)2 + 32 −

√
12 + 33 −

√
12 + 33

>3
√
dT (v1)2 + 12 −

√
dT (v1)2 + 32 − 2

√
10

≥3
√
52 + 12 −

√
52 + 32 − 2

√
10 since dT (v1) = dT (v) ≥ 5

≈3.1416 > 0,

a contradiction.
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Case 2. 2 ≤ i ≤ l − 1.

By previous case it holds that dT (v1) ≤ 4 and dT (vl) ≤ 4. Without loss of generality,

we suppose that dT (vi) = max{dT (w) : w ∈ V (T )} ≥ 5. Let T ′ = T − {viu, viw} +

{vl+1u, vl+1w}. Since for any vertex z ∈ N(vi) \ {u,w} we have dT (vi) ≥ dT (z), then it

is easy to verify that
√
dT (vi)2 + dT (z)2 −

√
(dT (vi)− 2)2 + dT (z)2 = ϕ(dT (vi), dT (z)) +

ϕ(dT (vi)− 1, dT (z)) ≥ ϕ(5, 5) + ϕ(4, 5) and
√
dT (vl)2 + 12 −

√
32 + dT (vl)2 ≥

√
42 + 12 −

√
32 + 42. So, we have

S(T )− S(T ′) =
√
dT (vi)2 + dT (u)2 +

√
dT (vi)2 + dT (w)2

+
∑

z∈N(vi)\{u,w}

√
dT (vi)2 + dT (z)2

+
√
dT (vl)2 + 12 −

√
32 + dT (u)2

−
√

32 + dT (w)2 −
∑

z∈N(vi)\{u,w}

√
(dT (vi)− 2)2 + dT (z)2 −

√
32 + dT (vl)2

>
∑

z∈N(vi)\{u,w}

[√
dT (vi)2 + dT (z)2 −

√
(dT (vi)− 2)2 + dT (z)2

]

+
√
dT (vl)2 + 12 −

√
32 + dT (vl)2 > 3[ϕ(5, 5) + ϕ(4, 5)] +

√
42 + 12

−
√
32 + 42 = 15

√
2− 3

√
34 +

√
17− 5 ≈ 2.8435 > 0.

Thus, a contradiction to the choice of T . The proof is completed.

Lemma 3.11 If T is a tree in Fn,k with minimal Sombor index, then T contain at most

one vertex of degree four.

Proof. From Lemma 3.10 we know that ∆(T ) ≤ 4. Now, we suppose to the contrary that

there are at least two vertices vi and vj having degree four in T and let P = v0v1 . . . vlvl+1

be a longest path in T containing vi and vj. Then one can pick two vertices u and w such

that {u,w} ̸⊆ V (P ) and {uvi, wvj} ⊆ E(T ). Let T ′ = T − {uvi, wvj} + {uvl+1, wvl+1}.
Then we can see that T ′ also belongs to Fn,k. Now, we consider the following four cases

respectively.

Case 1. l = j and vivj ̸∈ E(T ).

S(T )− S(T ′) =
√
42 + dT (u)2 +

√
42 + dT (w)2 +

∑

y∈N(vi)\{u}

√
42 + dT (y)2

+
∑

z∈N(vj)\{w,vl+1}

√
42 + dT (z)2 +

√
42 + 12 −

√
32 + dT (u)2

−
√

32 − dT (w)2 −
∑

y∈N(vi)\{u}

√
32 + dT (y)2
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−
∑

z∈N(vj)\{w,vl+1}

√
32 + dT (z)2 −

√
32 + 32

>
∑

y∈N(vi)\{u}

(√
42 + dT (y)2 −

√
32 + dT (y)2

)
+
√
42 + 12 −

√
32 + 32

+
∑

z∈N(vj)\{w,vl+1}

(√
42 + dT (z)2 −

√
32 + dT (z)2

)

≥3ϕ(4, 4) + 2ϕ(4, 4) +
√
42 + 12 −

√
32 + 32

=5(4
√
2− 5) +

√
17− 3

√
2 ≈ 3.1647 > 0,

a contradiction.

Case 2. l ̸= j and vivj ̸∈ E(T ).

S(T )− S(T ′) =
√

42 + dT (u)2 +
√

42 + dT (w)2 +
∑

y∈N(vi)\{u}

√
42 + dT (y)2

+
∑

z∈N(vj)\{w}

√
42 + dT (z)2 +

√
dT (vl)2 + 12 −

√
32 + dT (u)2

−
√
32 − dT (w)2 −

∑

y∈N(vi)\{u}

√
32 + dT (y)2

−
∑

z∈N(vj)\{w}

√
32 + dT (z)2 −

√
dT (vl)2 + 32

>
∑

y∈N(vi)\{u}

(√
42 + dT (y)2 −

√
32 + dT (y)2

)
+
√
dT (vl)2 + 12

−
√
dT (vl)2 + 32 +

∑

z∈N(vj)\{w}

(√
42 + dT (z)2 −

√
32 + dT (z)2

)

≥3ϕ(4, 4) + 2ϕ(4, 4) +
√
22 + 12 −

√
22 + 32

=5(4
√
2− 5) +

√
5−

√
13 ≈ 1.9148 > 0,

a contradiction.

Case 3. l ̸= j and vivj ∈ E(T ).

S(T )− S(T ′) =
√
42 + dT (u)2 +

√
42 + dT (w)2 +

√
42 + 42 +

∑

y∈N(vi)\{u,vj}

√
42 + dT (y)2

+
∑

z∈N(vj)\{w,vi}

√
42 + dT (z)2 +

√
dT (vl)2 + 12 −

√
32 + dT (u)2

−
√
32 − dT (w)2 −

∑

y∈N(vi)\{u,vj}

√
32 + dT (y)2

−
∑

z∈N(vj)\{w,vi}

√
32 + dT (z)2 −

√
dT (vl)2 + 32 −

√
32 + 32

>
∑

y∈N(vi)\{u,vj}

(√
42 + dT (y)2 −

√
32 + dT (y)2

)
+
√
dT (vl)2 + 12
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−
√
dT (vl)2 + 32 +

∑

z∈N(vj)\{w,vi}

(√
42 + dT (z)2 −

√
32 + dT (z)2

)

≥2ϕ(4, 4) + 2ϕ(4, 4) +
√
22 + 12 −

√
22 + 32

=16
√
2 +

√
5−

√
13 > 0,

a contradiction.

Case 4. l = j and vivj ∈ E(T ). Let NT (vi) = {u, vj, vi−1, z} and note that, in this

case, the vertex vj has three pendant vertices as neighbors. Thus we have

S(T )− S(T ′) =
√
42 + dT (u)2 +

√
42 + dT (z)2 +

√
42 + dT (vi−1)2 +

√
42 + 42

+ 3
√
12 + 42 −

√
32 + dT (u)2 −

√
32 + dT (z)2

−
√
32 + dT (vi−1)2 − 2

√
32 + 32 − 2

√
12 + 32

>
√
42 + 42 + 3

√
12 + 42 − 2

√
32 + 32 − 2

√
12 + 32

=3
√
17− 2

√
2− 2

√
10 ≈ 3.2163 > 0,

a contradiction.

Therefore, combining the four cases above we can conclude that the tree with minimal

Sombor index contains at most one vertex of degree four.

Using a similar method previously used by Borovićanin (see Lemma 2.3 in [4] for

detail), we can obtain that

Lemma 3.12 Let T be a tree in Fn,k with minimal Sombor index. If n4 = 0, then

n1 = n3 + 2 and k is odd. If n4 = 1, then n1 = n3 + 4 and k is even. Moreover, if n4 = 0

then n1 = k+3
2
, n2 = n − k − 1 and n3 = k−1

2
; if n4 = 1 then n1 = k+4

2
, n2 = n − k − 1

and n3 =
k−4
2
.

Lemma 3.13 (i) Let P = v1v2 . . . ut be a segment of a tree T ∈ Fn,k such that dT (v1) =

3, dT (vt) = 3 or dT (vt) = 4, where t ≥ 3. Let u1 be a pendant vertex of T and u2 the

unique neighbor of u1, satisfying dT (u2) = 2 or dT (u2) = 3 (here, u2 may coincide

with v1). T
′ = T − v1v2 − vt−1vt + vt−1u1 + v1vt. Then we have S(T ) > S(T ′).

(ii) Let v1, v2, u1, u2 be the vertices of a tree in Fn,k such that v1v2, u1u2 ∈ E(T ),

dT (v1) = dT (v2) = 3, dT (u1) = 4 and dT (u2) = 2 or dT (u2) = 1. Let T ′ be ob-

tained form T by deleting edges v1v2, u1u2 and then adding edges v1u2, u1v2, i.e.

T ′ = T − v1v2 − u1u2 + v1u2 + u1v2. Then we have S(T ) > S(T ′).
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(iii) Let v1, v2, v3, u1, u2 be the vertices of a tree T in Fn,k such that v1v2, v2v3, u1u2 ∈
E(T ), dT (v1) = dT (v2) = 2, dT (v3) = 3, dT (u1) = 1, dT (u2) = 3 or dT (u2) = 4. Let

T ′ = T − v1v2 − v2v3 + u1v2 + v1v3. Then we have S(T ) > S(T ′).

Proof. (i) If dT (vt) = 3 and dT (u2) = 2, then it holds that

S(T )− S(T ′) =
√
22 + 32 +

√
22 + 32 −

√
32 + 32 −

√
22 + 22 ≈ 0.140035 > 0.

If dT (vt) = 3 and dT (u2) = 3, then it holds that

S(T )− S(T ′) =
√
22 + 32 +

√
12 + 32 −

√
32 + 32 −

√
12 + 22 ≈ 0.28912 > 0.

If dT (vt) = 4 and dT (u2) = 2, then it holds that

S(T )− S(T ′) =
√
22 + 32 +

√
42 + 22 −

√
22 + 22 −

√
32 + 42 ≈ 0.24926 > 0.

If dT (vt) = 4 and dT (u2) = 3, then it holds that

S(T )− S(T ′) =
√
12 + 32 +

√
42 + 22 −

√
12 + 22 −

√
32 + 42 ≈ 0.39846 > 0.

(ii) If dT (v1) = dT (v2) = 3, dT (u1) = 4 and dT (u2) = 2, then

S(T )− S(T ′) =
√
32 + 32 +

√
42 + 22 −

√
32 + 22 −

√
32 + 42 ≈ 0.109225 > 0.

If dT (v1) = dT (v2) = 3, dT (u1) = 4 and dT (u2) = 1, then

S(T )− S(T ′) =
√
32 + 32 +

√
42 + 12 −

√
32 + 12 −

√
32 + 42 ≈ 0.203469 > 0.

(iii) If dT (v1) = dT (v2) = 2, dT (u1) = 1 and dT (v3) = dT (u2) = 3, then

S(T )− S(T ′) =
√
12 + 32 +

√
22 + 22 −

√
22 + 32 −

√
12 + 22 ≈ 0.149086 > 0.

If dT (v1) = dT (v2) = 2, dT (u1) = 1, dT (v3) = 3 and dT (u2) = 4, then

S(T )− S(T ′) =
√
12 + 42 +

√
22 + 22 −

√
22 + 42 −

√
12 + 22 ≈ 0.243329 > 0.

Thus, we are done.

Let π1 = (3, 3, . . . , 3︸ ︷︷ ︸
k−1
2

, 2, 2, . . . , 2︸ ︷︷ ︸
n−k−1

, 1, 1, . . . , 1︸ ︷︷ ︸
k+3
2

) and π2 = (4, 3, 3, . . . , 3︸ ︷︷ ︸
k−4
2

, 2, 2, . . . , 2︸ ︷︷ ︸
n−k−1

,

1, 1, . . . , 1︸ ︷︷ ︸
k+4
2

). Now let us define some families of trees which will be used later. Let F1
n,k

denote the set of trees with degree sequence π1 and m3,3 =
k−3
2
, m2,3 =

k+3
2
, m1,2 =

k+3
2
,
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m2,2 = 2n−3k−5
2

for 3 ≤ k ≤ 2n−5
3

and k is odd. Let F2
n,k be the set of trees with degree

sequence π1 and m3,3 = k−3
2
, m2,3 = n − k − 1, m1,2 = n − k − 1, m1,3 = 3k−2n+5

2
for

2n−5
3

< k ≤ n− 2 and k is odd. Let F3
n,k be the set of trees with degree sequence π2 and

m1,2 = k+4
2
, m2,2 = n − 3k

2
− 3, m2,3 = k − 4, m2,4 = 12−k

2
, m3,4 = k−4

2
for 4 ≤ k ≤ 10

and k is even. Let F4
n,k be the set of trees with degree sequence π2 and m1,2 = k+4

2
,

m2,2 = n− 3
2
k−3, m2,3 =

k+4
2
, m3,3 =

k−12
2

, m3,4 = 4 for 12 ≤ k ≤ 2n−6
3

and k is even. Let

F5
n,k be the set of trees with degree sequence π2 and m1,2 = n− k− 1, m1,3 =

3
2
k− n+ 3,

m2,3 = n− k − 1, m3,3 =
k−12
2

, m3,4 = 4 for k > 2n−6
3

and k is even.

Theorem 3.14 Let T be a tree in Fn,k.

(i) If 3 ≤ k ≤ 2n−5
3

and k is odd, then S(T ) ≥ 3(k−3)
√
2+(k+3)(

√
13+

√
5)

2
+ (2n− 3k− 5)

√
2

with equality if and only if T ∈ F1
n,k.

(ii) If 2n−5
3

< k ≤ n − 2 and k is odd, then S(T ) ≥ 3(k−3)
√
2+(3k−2n+5)

√
10

2
+ (n − k −

1)(
√
13 +

√
5) with equality if and only if T ∈ F2

n,k.

(iii) If 4 ≤ k ≤ 10 and k is even, then S(T ) ≥ (28−k)
√
5+2

√
13+5k−20

2
+ (2n − 3k − 6)

√
2

with equality if and only if T ∈ F3
n,k.

(iv) If 12 ≤ k ≤ 2n−6
3

and k is even, then S(T ) ≥ (
√
5+

√
13)(k+4)+3

√
2(k−12)

2
+
√
2(2n− 3k−

6) + 20 with equality if and only if T ∈ F4
n,k.

(v) If 2n−6
3

< k ≤ n− 2 and k is even, then S(T ) ≥ (
√
5 +

√
13)(n− k − 1) +

√
10
2
(3k −

2n+ 6) + 3
√
2

2
(k − 12) + 20 with equality if and only if T ∈ F5

n,k.

Proof. Let T be a tree in Fn,k with minimal Sombor index. From Lemmas 3.10–3.12, we

get that the degree sequence of T is π1 for odd k, and π2 for even k. If 3 ≤ k ≤ 2n−5
3

and

k is odd, then it can be verified that m3,3 =
k−3
2
, m2,3 =

k+3
2
, m1,2 =

k+3
2
, m2,2 =

2n−3k−5
2

by Lemma 3.13. Thus we get the desired result (i). By a similar discussion (ii)–(v) can

be proved, we omit them here.

In the following, we are going to determine the maximum Sombor index among all the

tree of order n with given number of segments.

Theorem 3.15 Let T be a tree in Fn,k, we have S(T ) ≤ (k − 1)
√
1 + k2 +

√
4 + k2 +

√
5 + 2

√
2(n− k − 2) with equality if and only if T ∼= Yn,k.
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Proof. We can first claim that the tree T which maximizes the Sombor index must be a

starlike tree. Otherwise, there is a non-pendant path segment in T . By the path-lifting

transform one can get a tree T ′ such that T ′ ∈ Fn,k and S(T ′) > S(T ), a contradiction.

Now, suppose that T ̸∼= Yn,k, then there are at least two pendant paths P = v1v2 . . . vsw

and P ′ = u1u2 . . . utw, where w is the unique branching vertex in T , such that s ≥ t ≥ 2.

Let T ′′ = T − ut−1ut + ut−1v1. We have

S(T ′′)− S(T ) =
√
12 + k2 + 2

√
2−

√
22 + k2 −

√
5 = 2

√
2−

√
5− 3√

1 + k2 +
√
4 + k2

≥2
√
2−

√
5− 3√

1 + 32 +
√
4 + 32

≈ 0.149086 > 0,

a contradiction. Thus we conclude that the maximal tree in Fn,k is isomorphic to the

broom Yn,k.

It is well-known the fact that the number of vertices of degree two in a tree T is equal

to |V (T )| − k − 1, where k denote the number of segments in T . Thus Theorems 3.14

and 3.15 also determine the the minimum and maximum Sombor index of trees of order

n with given number of vertices of degree two.

3.6 The minimum and maximum Sombor indices of trees with
given number of branching vertices

Let Kn,b be the set of trees of orders n with b branching vertices, where 1 ≤ b ≤ n−2
2
. We

determine, in this subsection, the minimum and maximum Sombor indices in Kn,b.

Lemma 3.16 If T is a tree which minimizes the Sombor index in Kn,b, then T can not

contain a branching vertex of degree greater than three.

Proof. Suppose to the contrary that the tree T contains a branching vertex of degree

greater than three, and let u be such a vertex whose degree is maximum, i.e, dT (u) =

∆(T ) ≥ 4. Assume that P = v0v1 . . . vi−1u(= vi)vi+1 . . . vl+1 is a longest path containing

u in T . Let dT (u) = x, NT (u) = {vi−1, vi+1, u1, u2, . . . , ux−2}, dT (uj) = dj and dT (vi) = ki,

i = 0, 1, . . . , l + 1, j = 1, 2, . . . , x − 2. Denote by w1 ∈ V (T ) \ V (P ) a pendant vertex

connected to u via u1, i.e., there is a path w1w2, . . . , wru in T , where r ≥ 1 and u1 may

coincide with some wi, i = 1, 2, . . . , r. Let T ′ = T − uu2 + w1u2.

If w1 ̸= u1, then

S(T ′)− S(T ) =
√

(x− 1)2 + k2i−1 +
√
(x− 1)2 + k2i+1 +

x−2∑

j=1,j ̸=2

√
(x− 1)2 + d2j
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+
√

22 + dT (u2)2 +
√
22 + dT (w2)2 −

√
x2 + k2i−1

−
√
x2 + k2i+1 −

x−2∑

j=1

√
x2 + d2j −

√
12 + dT (w2)2

=ϕ(2, dT (w2))− ϕ(x, ki−1)− ϕ(x, ki+1)−
x−2∑

j=1,j ̸=2

ϕ(x, dj)

+
√

22 + dT (u2)2 −
√
x2 + dT (u2)2

<ϕ(2, dT (w2)) +
√
22 + dT (u2)2 −

√
x2 + dT (u2)2

<ϕ(2, 2) +
√
22 + dT (u2)2 −

√
x2 + dT (u2)2

≤ϕ(2, 2) +
√
22 + x2 −

√
x2 + x2 since dT (u2) ≤ x

≤ϕ(2, 2) +
√
22 + 42 −

√
42 + 42 by x ≥ 4

=
√
5− 2

√
2 < 0,

a contradiction to the choice of T .

If u1 = w1, then

S(T ′)− S(T ) =
√
(x− 1)2 + k2i−1 +

√
(x− 1)2 + k2i+1 +

x−2∑

j=3

√
(x− 1)2 + d2j

+
√
22 + dT (u2)2 +

√
22 + (x− 1)2 −

√
x2 + k2i−1

−
√
x2 + k2i+1 −

x−2∑

j=2

√
x2 + d2j −

√
12 + x2

=
√
22 + (x− 1)2 −

√
12 + x2 − ϕ(x, ki−1)− ϕ(x, ki+1)−

x−2∑

j=3

ϕ(x, dj)

+
√
22 + dT (u2)2 −

√
x2 + dT (u2)2

<
√
22 + x2 −

√
12 + x2 +

√
22 + dT (u2)2 −

√
x2 + dT (u2)2

≤ϕ(2, x) +
√
22 + x2 −

√
x2 + x2

≤ϕ(2, 4) +
√
22 + 42 −

√
42 + 42

=4
√
5−

√
17− 4

√
2 < 0,

a contradiction to the choice of T . Thus, we complete the proof.

Lemma 3.17 If T is a tree which minimizes the Sombor index in Kn,b, then the degree

sequence of T is (3, 3, . . . , 3︸ ︷︷ ︸
b

, 2, 2, . . . , 2︸ ︷︷ ︸
n−2b−2

, 1, 1, . . . , 1︸ ︷︷ ︸
b+2

).

Proof. Let ni be the number of vertices of degree i in T . In view of Lemma 3.16 we

have that there exist only vertices of degree one, two or three in T . By the Handshaking
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Lemma we have n1 + 2n2 + 3n3 = 2|E(T )| = 2(|V (T )| − 1) = 2(n1 + n2 + n3)− 2, which

leads n1 = n3 + 2. Since n3 = b we attain the desired result that the degree sequence of

T is (3, 3, . . . , 3︸ ︷︷ ︸
b

, 2, 2, . . . , 2︸ ︷︷ ︸
n−2b−2

, 1, 1, . . . , 1︸ ︷︷ ︸
b+2

).

Let T 1
n,b be the set of trees with degree sequence (3, 3, . . . , 3︸ ︷︷ ︸

b

, 2, 2, . . . , 2︸ ︷︷ ︸
n−2b−2

, 1, 1, . . . , 1︸ ︷︷ ︸
b+2

) and

each tree in T 1
n,b satisfies thatm1,2 = b+2,m2,2 = n−3b−4,m2,3 = b+2 andm3,3 = b−1 for

b ≤ n−3
3
. Let T 2

n,b be the set of trees with degree sequence (3, 3, . . . , 3︸ ︷︷ ︸
b

, 2, 2, . . . , 2︸ ︷︷ ︸
n−2b−2

, 1, 1, . . . , 1︸ ︷︷ ︸
b+2

)

and each tree in T 2
n,b satisfies that m1,2 = n− 2b− 2, m1,3 = 3b− n+4, m2,3 = n− 2b− 2

and m3,3 = b− 1 for b > n−3
3
.

Theorem 3.18 Let T be a tree in Kn,b.

(i) If 1 ≤ b ≤ n−3
3
, then S(T ) ≥ 3

√
2(b− 1)+ (b+2)(

√
13+

√
5)+2

√
2(n− 3b− 4) with

equality if and only if T ∈ T 1
n,b.

(ii) If n−3
3
< b ≤ n−2

2
, then S(T ) ≥ 3

√
2(b−1)+(n−2b−2)(

√
13+

√
5)+

√
10(3b−n+4)

with equality if and only if T ∈ T 2
n,b.

Proof. The result follows by Lemma 3.13, Lemma 3.16 and Lemma 3.17 and some basic

computations.

In the following, we proceed to determine the maximum Sombor index among all the

trees of order n with given number of branching vertices.

Lemma 3.19 If T is a tree which maximizes the Sombor index in Kn,b, then T contains

only pendant vertices and branching vertices.

Proof. Suppose to the contrary that there exists at least one vertex of degree two in T .

Then there must exist a branching vertex w which adjacent to a vertex u of degree two.

Let NT (u) = {v, w} and T ′ = T − uv + vw. Obviously, T ′ ∈ Kn,b. Let dT (w) = s + 1,

NT (w) = {u,w1, w2, . . . , ws}, dT (wi) = pi for i = 1, 2, . . . , s, and dT (v) = t. It holds that

S(T ′)− S(T ) =
s∑

i=1

√
(dT (w) + 1)2 + dT (wi)2 +

√
12 + (dT (w) + 1)2

+
√
(dT (w) + 1)2 + dT (v)2 −

s∑

i=1

√
dT (w)2 − dT (wi)2

−
√
22 + dT (w)2 −

√
22 + dT (v)2

=
s∑

i=1

√
(s+ 1)2 + p2i +

√
12 + (s+ 1)2 +

√
(s+ 1)2 + t2
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−
s∑

i=1

√
s2 + p2i −

√
22 + s2 −

√
22 + t2

>
√
12 + (s+ 1)2 −

√
22 + s2 +

√
(s+ 1)2 + t2 −

√
22 + t2 > 0,

a contradiction. Thus the proof is completed.

Lemma 3.20 If T is a tree which maximizes the Sombor index, then T contains at most

one vertex greater than three.

Proof. Suppose to the contrary that there are two vertices u and v with dT (v) = t ≥
dT (u) = l ≥ 4, and let N(u) = {u1, u2, . . . , ul}, N(v) = {v1, v2, . . . , vt}, d(ui) = xi, d(vi) =

yi, and u1 locate in the path connecting u to v (u1 may coincide with v). Then dT (u1) ≥ 2

and dT (ui) = xi ≥ 1 for i = 2, 3, . . . , l. Let φ(x, y) =
√
(x+ l − 3)2 + y2 −

√
x2 + y2.

Then by calculating the derivative of the function one can see that φ(x, y) is strictly

decreasing with y for fixed x. From the inequality of arithmetic and geometric means
√
xy ≤ x+y

2
≤

√
x2+y2

2
one can get that

√
(t+ l − 3)2 + t2 ≥ 2t+l−3√

2
, which will be useful

in the following proof. We can construct a new tree T ′ = T − {uui : 4 ≤ i ≤ l} + {vui :
4 ≤ i ≤ l} such that T ′ ∈ Kn,b.

Case 1. uv ̸∈ E(T ).

Let
√
2
2
(l + 1)(l − 3)− 2

√
l2 + 1−

√
l2 + 4 + 2

√
10 +

√
13, then for x ≥ 4 we have

h′1(x) =
√
2(x− 1)− 2x

2
√
x2+1

− x
2
√
x2+4

>
√
2(x− 1)− 3x

2
√
x2+1

> 3
√
2− 3

2
> 0,

which means h1(x) is strictly increasing with x ≥ 4. Then we have

S(T ′)− S(T ) =
3∑

i=1

√
32 + x2i +

l∑

i=4

√
(t+ l − 3)2 + x2i +

t∑

i=1

√
(t+ l − 3)2 + y2i

−
l∑

i=1

√
l2 + x2i −

t∑

i=1

√
t2 + y2i =

l∑

i=4

φ(t, xi) +
t∑

i=1

φ(t, yi)−
3∑

i=1

φ(3, xi)

>
l∑

i=4

φ(t, t) +
t∑

i=1

φ(t, t)− φ(3, 2)− 2φ(3, 1)

=(t+ l − 3)
√
(t+ l − 3)2 + t2 − (l − 3)

√
l2 + t2 −

√
2t2 − φ(3, 2)

−2φ(3, 1) ≥ (t+l−3)(2t+l−3)√
2

− (l − 3)
√
l2 + t2 −

√
2t2 − φ(3, 2)− 2φ(3, 1)

=(l − 3)(
√
2t2 −

√
l2 + t2) +

√
2(t+l−3)(l−3)

2
− φ(3, 2)− 2φ(3, 1)

≥
√
2(t+l−3)(l−3)

2
− φ(3, 2)− 2φ(3, 1) ≥

√
2(4+l−3)(l−3)

2
− φ(3, 2)− 2φ(3, 1)

=
√
2
2
(l + 1)(l − 3)− 2

√
l2 + 1−

√
l2 + 4 + 2

√
10 +

√
13 = h1(l)
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≥h1(4) = 5
√
2

2
− 2

√
5 + 2

√
10 +

√
13− 2

√
17 ≈ 0.747293 > 0,

a contradiction.

Case 2. uv ∈ E(T ).

Without loss of generality we set u1 = v and v1 = u. Let h2(x) =
√
2
2
x(x − 3) −

2
√
x2 + 1 + 2

√
10. It is easy to verify that h2(x) is strictly increasing with x ≥ 4. Then

S(T ′)− S(T ) =
3∑

i=2

√
32 + x2i +

√
32 + (t+ l − 3)2 +

l∑

i=4

√
(t+ l − 3)2 + x2i

+
t∑

i=2

√
(t+ l − 3)2 + y2i −

l∑

i=2

√
l2 + x2i −

t∑

i=2

√
t2 + y2i −

√
t2 + l2

>
l∑

i=4

φ(t, xi) +
t∑

i=2

φ(t, yi)−
3∑

i=2

φ(3, xi)

>
l∑

i=4

φ(t, t) +
t∑

i=2

φ(t, t)− 2φ(3, 1)

=(t+ l − 4)
√
(t+ l − 3)2 + t2 − (l − 3)

√
l2 + t2 −

√
2t(t− 1)− 2φ(3, 1)

≥ (t+l−4)(2t+l−3)√
2

− (l − 3)
√
l2 + t2 −

√
2t(t− 1)− 2φ(3, 1)

=(l − 3)(
√
2t−

√
l2 + t2) +

√
2(t+l−4)(l−3)

2
− 2φ(3, 1)

≥
√
2(t+l−4)(l−3)

2
− 2φ(3, 1) ≥

√
2(4+l−4)(l−3)

2
− 2φ(3, 1)

=
√
2
2
l(l − 3)− 2

√
l2 + 1 + 2

√
10 = h2(l)

≥h2(4) = 2
√
2− 2

√
17 + 2

√
10 ≈ 0.906771 > 0,

a contradiction to the maximality of T in Kn,b.

Therefore, we complete the proof.

Lemma 3.21 If T is a tree in Kn,b with the maximum Sombor index, thenm3,n−2b+1(T ) =

1 for 1 ≤ b ≤ n−3
2
.

Proof. Form Lemma 3.19 and Lemma 3.20 we have that the degree sequence of T is

(n−2b+1, 3, 3, . . . , 3︸ ︷︷ ︸
b−1

, 1, 1, . . . , 1︸ ︷︷ ︸
n−b

). Let u be the maximum degree vertex of T , i.e. ∆(T ) =

dT (u) = n − 2b + 1 ≥ 4. Suppose to the contrary that m3,n−2b+1 ≥ 2, then there are at

least two branching vertices adjacent to u. As a matter of fact, one can always choose two

branching vertices w and v which satisfy that dT (w) = dT (v) = 3, where w has a pendant

vertices w1 as neighbor and uv ∈ E(T ). Let T ′ = T − uv−ww1 + uw1 +wu. It is easy to

47



see that the degree sequences of T and T ′ are the same, implying that the obtained tree

T ′ also belongs to Kn,b. We have

S(T ′)− S(T ) =
√
(n− 2b+ 1)2 + 12 +

√
32 + 32 −

√
(n− 2b+ 1)2 + 32 −

√
32 + 12

≥
√
42 + 12 +

√
32 + 32 −

√
42 + 32 −

√
32 + 12

=
√
17 + 3

√
2− 5−

√
10 ≈ 0.2035 > 0,

a contradiction to our choice of T . Thus, we complete the proof.

Let T 3
n,b be the set of trees in Kn,b with degree sequence (n−2b+1, 3, 3, . . . , 3︸ ︷︷ ︸

b−1

, 1, 1, . . . , 1︸ ︷︷ ︸
n−b

)

and satisfying that m1,3 = b, m3,3 = b− 2, m1,n−2b+1 = n− 2b and m3,n−2b+1 = 1.

Theorem 3.22 Let T be a tree of order n and having b branching vertices, where 1 ≤ b ≤
n−2
2
, then S(T ) ≤ 3(b− 2)

√
2+ b

√
10+ (n− 2b)

√
1 + (n− 2b+ 1)2+

√
9 + (n− 2b+ 1)2,

the equation holds if and only if T ∈ T 3
n,b.

Proof. Let T be a tree in Kn,b with the maximum Sombor index. According to Lemma 3.19

and Lemma 3.20 we have that the degree sequence of T is (n−2b+1, 3, 3, . . . , 3︸ ︷︷ ︸
b−1

, 1, 1, . . . , 1︸ ︷︷ ︸
n−b

).

For b = n−2
2
, the result follows immediately. Furthermore, for 1 ≤ b ≤ n−3

2
, by Lemma

3.21 we can claim that T ∈ T 3
n,b. It is easy to get that the Sombor index of trees in T 3

n,b

is 3(b− 2)
√
2 + b

√
10 + (n− 2b)

√
1 + (n− 2b+ 1)2 +

√
9 + (n− 2b+ 1)2. Therefore, we

complete the proof.
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