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Abstract 

DNA cages are ideally suited to make nanostructures which serve as containers for drug 

delivery. Using fewer strands to assemble DNA cages is of importance to the design of DNA 

molecules with multiple component strands. In this study, we propose a rational assembling 

procedure to design and analyze DNA bipyramids with minimum strands. The results show that 

the odd-half twist has a major impact on assembling strands required to construct DNA cages 

and this method could offer a search of DNA bipyramids with minimum component strands 

faster. This research provides new insights into design and synthesis for DNA bipyramid-like 

cages from mathematical perspective. 

 

1 Introduction 

DNA has long been regarded not only as hereditary materials but also as raw materials for 

applications in nanostructures [1, 2]. Over the past decades, DNA molecules with desired shapes 

have already been designed and synthesized experimentally [3], such as tetrahedra [4-6], 

octahedron [7, 8], truncated octahedra [9, 10], bipyramid [11], prims [12, 13]. These wireframed, cage-

like nanostructures, assembled by multiple DNA single strands, are now considered 
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increasingly important materials for biosensors and drug delivery [14-18]. Meanwhile, it is worth 

noting that some designed DNA molecules with required topological structures play crucial 

roles in overcoming their challenges of structural stability and yield. Also, low cost and simple 

structures require good assembling methods in synthesizing DNA nanostructures. One practical 

solution to reduce the complexity of theses entangled structures is to use component strands as 

few as possible [19-22]. Therefore, it is necessary to clarify the procedure to reduce the number 

of strands assembled in DNA molecules. Bipyramids, more complex than Platonic solids, have 

been synthesized early in 2007 by using six DNA single strands [11] and have been used as a 

new class of SPECT molecular probes [23]. Our study is aiming at an assembling procedure for 

DNA bipyramids with fewest component strands from a theoretical viewpoint. 

To better understand the problem, we need to resort to some basic knowledge of 

mathematics. From a topological perspective, DNA strands could be interpreted as thin lines 

without thickness and each DNA polyhedron is a polyhedral link which turns the DNA single 

strand into the component of the link [24, 25]. Thus, DNA polyhedral link serves as an ideal 

mathematical model to characterize DNA polyhedra structure [26]. Then, a series of studies 

based on this model successfully were carried out to explain some intrinsic properties regarding 

the assembly mechanism of DNA polyhedra [27-32]. Some of these polyhedral links have been 

used as templates to construct 3D molecular objects as well [31, 33, 34]. However, this model pays 

more attention to the relationship between mathematical variables and becomes weak in actual 

use. Using fewer DNA strands to assemble polyhedra is one of the most important practical 

issues, for it could result in the low cost and good stability of production. Recent studies have 

showed that the odd half-twist has a major impact on the reduction the number of required 

strands [35, 36]. Furthermore, the positional distribution of odd-half turn DNA strands is discussed 

to predict and design DNA configurations of less DNA strands at the structural level [21]. Odd-

half turn makes it possible for strands to enter neighbouring face, reducing the number of 

component strands to construct DNA. Thus, it is of importance to clarify how to introduce odd-

half turn and where to place it. This procedure enables us to generate DNA polyhedral links 

easier and faster.  

In the previous study, we have constructed and analysed DNA polyhedra from through 

computation program [37, 38]. Here, we present an assembling procedure for DNA bipyramids 

with minimal component strands based on computer program. This procedure would search for 

all permissible topological structures satisfying DNA constructing rules, and select the ones 

with minimum number of strands. 
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2 Methods 

2.1 Vertex and edge 

From the viewpoint of mathematics, the cage-like DNA architectures actually consist of 

interlocked and interlinked DNA strands. In these structures, three-, four-, and five-arm 

junctions, shown in Figure 1, occur on the vertices of polyhedra, corresponding to degree-three, 

degree-four, and degree-five vertex, respectively. Note that the two strands of DNA are anti-

parallel. 

 

Figure 1. Three basic vertex junctions: (a) degree-three vertex; (b) degree-four vertex; (c) 

degree-five vertex. 

Besides, twisted DNA strands, which form the edges of polyhedra, include half-twists of 

two types: 2n+1 half-twists and 2n half-twists. 2n+1 half-twists (Figure 2a left) can be 

simplified as odd half-twist (Figure 2a middle), while 2n half-twists (Figure 2b left) can be 

simplified as even half-twist (Figure 2b middle). We can find that the odd half-twist changes 

the direction of strands (Figure 1a right), but the even half-twist doesn’t [24, 39] (Figure 2b right). 

If each edge of a polyhedron is twisted with even half-turns, the number of strands equals its 

face number [27]. On the other hand, with the odd half-twists available, the strand number is 

uncertain and less than the face number [32]. 

 

Figure 2. Two types for twisted DNA strands: (a) 2n+1 half-twists corresponds to the odd half-

twists (turn) and its direction of strands changes; (b) 2n half-twists corresponds to the 

even half-twists and its direction of strands remains. 
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A tetrahedron example is given to specify the two cases of the sole even half-twists and 

the mix of even and odd half-twists. Figure 3a shows a tetrahedron with even half-twists, where 

its faces and strands are equal in number; Figure 3b shows a tetrahedron with mix of the odd 

half-twists and the even half-twists, where the strands are less than faces in number. Intuitively, 

the emergence of the odd half-twists has brought the reduction of strands within the bounds of 

possibility. 

 

Figure 3. Two ways to construct a DNA tetrahedron: (a) a tetrahedron with sole even half-turns 

(4 strands); (b) a tetrahedron with mix of the odd half-twist and the even half-twist (2 

strands). 

2.2 Constructing rule 

R. Twarock et al. utilized bead configurations to construct DNA dodecahedral and 

icosahedral cages with a minimal number of strands [35, 36]. A DNA dodecahedron or 

icosahedron requires at least two circular strands and each face of the polyhedron must have 

even number of crossings. Under this constructing rule, each face of the bipyramid must have 

an even number of half-twists. This ensure that the two oriented strands of each edge are anti-

parallel or oppositely oriented, satisfying structures of the DNA double helix.  

2.3 Generate-and-test paradigm 

In this step, we must search for all possible types for a DNA bipyramid. In other words, 

we need to generate all possible links of a bipyramid, and then test them for DNA strands 

according to DNA constructing rule. This step is referred to as generate-and-test paradigm, 

further performed in 2.5 Program.  
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2.4 Label the diagram 

Bipyramid mainly includes triangular bipyramid and pentangular bipyramid, and Figure 4 

shows both with labels, in which capital letter stands for its face, lowercase letter for its edge. 

Specifically, the lowercase letters are used to tell in detail what type of twisted strands to be 

placed on the edges. 

 

Figure 4. Diagrams with labels: (a) triangular bipyramid; (b) pentangular bipyramid. 

2.5 Program 

The code in Python for triangular bipyramid is as follows, and it is also applied to the 

pentangular bipyramid with only minor modifications. 

number_of_edges = 9 

’’’ 

0, 1, 2, 3, 4, 5, 6, 7, 8 in list correspond to edge a, b, 

c, d, e, f, g, h, i, respectively; 

(0, 3, 4), (2, 3, 5), (0, 1, 2), (4, 6, 7), (5, 7, 8), (1, 

6, 8) correspond to face A, B, C, D, E, F, respectively. 

’’’ 

faces_of_edges = [(0, 3, 4), (2, 3, 5), (0, 1, 2), (4, 6, 

7), (5, 7, 8), (1, 6, 8)]  

max_edge_weight = 2 

’’’ 
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Generate a binary table of 1 and 2, traversing the cases of even and odd for a polyhedron. 

The function of increase adds 1 to the binary table on each call, ensuring that all combinations 

of 1 and 2 can be traversed. 

”’ 

def increase(l): 

    if l[number_of_edges-1] < max_edge_weight: 

        l[number_of_edges-1] = l[number_of_edges-1] + 1 

    else: 

        for i in range(number_of_edges-1, -1, -1): 

            if l[i] < max_edge_weight: 

                break 

            l[i] = 1 

        l[i] = max_edge_weight 

    return l.count(max_edge_weight)  

’’’ 

The function of is_valid tests the cases for DNA strands according to the Bead condition: 

the number of crossings on each face must be even. 

’’’ 

def is_valid(l): 

    for face in faces_of_edges:   

        dna = 0 

        for e in face:      

            dna = dna + l[e] 

        if dna % 2 != 0: 

            return False 

    return True 

‘‘‘ 

Produce the parameters of DNA bipyramid links satisfying the Bead condition. 

M denotes the number of edges with even half-twists, while N denotes the number of 

edges with odd half-twists. 

’’’ 

def pd(): 

    es = [1] * number_of_edges   #produce list es with its 

elements are 1 
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    c2 = 0 

    while c2 < number_of_edges: 

        c2 = increase(es) 

        if is_valid(es):   

            

print(','.join(["{}={}".format('abcdefghiMN'[k],x) for k,x in 

enumerate(es+[c2,number_of_edges-c2])])) 

pd() 

3 Results and Discussion 

3.1 Triangular bipyramid 

The program above obtains all possible cases for constructing the DNA triangular 

bipyramids. 16 projections of triangular bipyramids could be drawn according to these basic 

parameters. So, how many strands to construct the triangular bipyramids in each case would be 

clear. Adding attribute name: strands and organizing the data, Table 1 shows the parameters for 

constructing the DNA triangular bipyramids. The value of a – i taking 1 means putting the odd 

half-twist on this edge, while 2 means the even half-twist. Odd denotes the number of edges 

with even half-twists, while even denotes the number of edges with odd half-twists.  

Table 1. The parameters for constructing the DNA triangular bipyramids 

No. a b c d e f g h i odd even strand 

1 1 2 1 1 2 2 1 1 1 6 3 2 

2 1 1 2 1 2 1 1 1 2 6 3 2 

3 1 2 1 2 1 1 1 2 1 6 3 2 

4 2 1 1 1 1 2 2 1 1 6 3 2 

5 1 1 2 1 2 1 2 2 1 5 4 2 

6 1 2 1 2 1 1 2 1 2 5 4 2 

7 1 1 2 2 1 2 2 1 1 5 4 2 

8 2 1 1 1 1 2 1 2 2 5 4 2 

9 2 2 2 1 1 1 1 2 1 5 4 2 

10 2 1 1 2 2 1 1 1 2 5 4 2 

11 1 1 2 2 1 2 1 2 2 4 5 4 

12 2 2 2 1 1 1 2 1 2 4 5 4 

13 2 1 1 2 2 1 2 2 1 4 5 4 

14 1 2 1 1 2 2 2 2 2 3 6 4 

15 2 2 2 2 2 2 1 1 1 3 6 4 

16 2 2 2 2 2 2 2 2 2 0 9 6 
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There are still some equivalent ones, ambient isotopic in topology, in all 16 types derived 

from the program. To put it simply, isotopic links can be obtained from each other by applying 

symmetry operations. By means of mathematical or computer method, these isotopic links 

could be removed or filtered out [37, 38, 40]. After removing the isotopic links, 6 unique types of 

DNA triangular bipyramids remain, showed in Table 2, and 16 triangular bipyramids are 

classified into six groups:{{1}, {2, 15}, {3, 5, 10}, {4, 6, 8, 9, 11, 13}, {7, 12, 14}, {16}}[38].  

Table 2. The parameters for 6 unique DNA triangular bipyramids 

No. odd even strand 

1 6 3 2 

2 6 3 2 

3 5 4 2 

4 3 6 4 

5 4 5 4 

6 0 9 6 

Intuitively, with the increase of edges with odd half-twists, the number of strands to 

construct triangular bipyramid decreases. Figure 5 shows the correlation between strands and 

edges with odd half-twists for the DNA triangular bipyramids (two data points overlap each 

other). Note that No. 1 and No. 2, in Table 2, are distinct types although they have the same 

parameters, and they cover up each other due to the same parameters in Table 2.  

 
Figure 5. The correlation between the number of strands and the number of edges with odd 

half-twists for the DNA triangular bipyramids. 

As we can see, the triangular bipyramids with minimum strands may be the one with 

maximum odd half-twists. Therefore, we select No.1 and No. 2 as the optimal types for the 

DNA triangular bipyramids. According to their parameters the program works out, we could 

draw up the two projections of the triangular bipyramids with minimum strands, shown in 

Figure 6.  
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Figure 6. DNA triangular bipyramids with two strands. 

 

3.2 Pentangular bipyramid 

We also obtain the DNA pentangular bipyramid with minimum strands by using the same 

method. With the increase of structure complexity, the number of isotopic links of the 

pentangular bipyramid increases. Though, this does not conflict with the search for DNA 

pentangular bipyramid with minimum strands. After removing the isotopic links from 64 

pentangular bipyramids, Table 3 shows the parameters for 12 unique DNA pentangular 

bipyramids. 

Table 3. The parameters for 12 unique DNA pentangular bipyramids 

No odd even strand 

1 9 6  2 

2 10 5  2 

3 10 5 2 

4 10 5 4 

5 7 8 4 

6 8 7 4 

7 7 8 4 

8 6 9 6 

9 9 6 6 

10 5 10 6 

11 4 11 8 

12 0 15 10 

Figure 7 shows the correlation between strands and edges with odd half-twists for the DNA 

pentangular bipyramids. Similarly, some distinct types having the same parameters may cover 

up each other, such as No.2 and No. 3. Generally, the number of strands is negatively correlated 

to the number of edges with odd half-twists, just as the fitted linear regression line in Figure 7 

shows.  
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Figure 7. The correlation between the number of strands and the number of edges with odd 

half-twists for the DNA pentangular bipyramids. 

As we see, the pentangular bipyramids with minimum strands may be the one with 

maximum odd half-twists. So, we select No. 2 and No. 3 as the optimal types for the DNA 

pentangular bipyramids. According to their parameters the program works out, we could draw 

up the projections of the pentangular bipyramids with two strands, shown in Figure 8. 

 

Figure 8. DNA pentangular bipyramids with two strands. 

4 Discussion 

Some general results about bipyramids can be obtained. It can be shown that no bipyramid 

can be constructed with a single DNA strand. A single DNA strand would correspond to an 

antiparallel strong trace. There is a theorem [41, 42] (Theorem 4.1 in [41] Theorem 2.4 in [42]) 

which says: 
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A graph G admits an antiparallel strong trace strong trace if and only if 

G has a spanning tree T such that each connectedcomponent of G - E(T) 

has an even number of edges.  

Let G be the skeleton of the triangular bipyramid (3-bipyramid). Since |V (G)| = 5 and 

|E(G)| = 9, the spanning tree T has 4 edges, and the co-tree has 5 edges. It is clear that all 

connected components of the co-tree can not have an even number of edges. Therefore a single 

strand design does not exist. This can be generalised to an arbitrarily large bipyramid.  

It is  easy to show that arbitrarily large (2k+1)-bipyramid can be made of two DNA strands. 

Let 1, 2, 3,…, 2k + 1 be vertices of a cycle C. To obtain the bipyramid add vertices a and b and 

connected them to each vertex of the cycle C. Let the edges incident to a and b have odd half-

twists and all the other edges have even half-twists. Then this results in a valid DNA design 

that is composed of two strands.  

It is not hard to obtain numerical results for a few larger bipyramids (7-bipyramid, 9-

bipyramid) and plot the correlation between the number of strands and the number of odd half-

twists. Perhaps this would lead to new interesting conjectures. 

5 Conclusions 

In this study, we theoretically propose an assembling strategy for DNA bipyramids with 

minimum strands based on a computer program. With two of three types of 3-, 4- and 5-degree 

vertexes, the triangular and pentangular bipyramids own more complex structure than Platonic 

solids. The result shows that the proposed assembling procedure could effectively search for 

DNA bipyramids with minimum strands. Meanwhile, the statistic analysis proves that the 

number of DNA strands is negatively correlated to the number of edges with odd half-twists. 

Although this strategy is theoretical, the techniques for designing and synthesizing cage-like 

structures are sophisticated. This theoretical study would enhance and help the design and 

synthesize of cages with complex pyramid-like structures. 

Acknowledgements: This work is supported by the National Natural Science Foundation of 

China (No. 32060234), Gansu Provincial First-Class Discipline Program of Northwest Minzu 

University (No. 11080305), and Program for Innovative Research Team of State Ethnic Affairs 

Commission (SEAC) ([2018] 98). The authors are very thankful to the anonymous referees for 

their useful comments and suggestions, which helped us to improve this paper. 

 

189



 

References 

[1] N. C. Seeman, DNA in a material world, Nature 421 (2003) 427–431. 

[2] M. R. Jones, N. C. Seeman, C. A. Mirkin, Programmable materials and the nature of the 

DNA bond, Science 347 (2015) #1260901. 

[3] N. C. Seeman, Nanomaterials based on DNA, Annu. Rev. Biochem. 79 (2010) 65–87. 

[4] R. P. Goodman, R. M. Berry, A. J. Turberfield, The single-step synthesis of a DNA 

tetrahedron, Chem. Commun. 10 (2004) 1372–1373. 

[5] Z. Li, B. Wei, J. Nangreave, C. Lin, Y. Liu, Y. Mi, H. Yan, A replicable tetrahedral 

nanostructure self-assembled from a single DNA strand, J. Am. Chem. Soc. 131 (2009) 

13093–13098. 

[6] J. P. Sadowski, C. R. Calvert, D. Y. Zhang, N. A. Pierce, P. Yin, Developmental self-

assembly of a DNA tetrahedron, ACS Nano 8 (2014) 3251–3259.  

[7] W. M. Shih, J. D. Quispe, G. F. Joyce, A 1.7-kilobase single–stranded DNA that folds into 

a nanoscale octahedron, Nature 427 (2004) 618–621. 

[8] Y. He, M. Su, P. Fang, C. Zhang, A. E. Ribbe, W. Jiang, C. Mao, On the chirality of self-

assembled DNA octahedra, Angew. Chem. Int. 49 (2010) 748–751. 

[9] C. L. P. Oliveira, S. Juul, H. L. Jøgensen, B. Knudsen, D. Tordrup, F. Oteri, M. Falconi, J. 

Koch, A. Desideri, J. S. Pedersen, F. F. Andersen, B. R. Knudsen, Structure of nanoscale 

truncated octahedral DNA cages: Variation of single stranded linker regions and influence 

on assembly yields, ACS Nano. 4 (2010) 1367–1376. 

[10] F. Iacovelli, M. Falconi, B. R. Knudsen, A. Desideri, Comparative simulative analysis of 

single and double stranded truncated octahedral DNA nanocages, RSC Adv. 6 (2016) 

35160–35166. 

[11] C. M. Erben, R. P. Goodman, A. J. Turberfield, A self-assembled DNA bipyramid, J. Am. 

Chem. Soc. 129 (2007) 6992–6993. 

[12] X. He, L. Dong, W. Wang, N. Lin, Y. Mi, Folding single-stranded DNA to form the 

smallest 3D DNA triangular prism, Chem. Commun. 49 (2013) 2906–2908. 

[13] Z. Nie, X. Li, Y. Li, C. Tian, P. Wang, C. Mao, Self-assembly of DNA nanoprisms with 

only two component strands, Chem. Commun. 49 (2013) 2807–2809. 

[14] N. Xie, S. Liu, X. Yang, X. He, J. Huang, K. Wang, DNA tetrahedron nanostructures for 

biological applications: biosensors and drug delivery, Analyst 142 (2017) 3322–3332. 

[15] Y. Hu, Z. Chen, H. Zhang, M. Li, Z. Hou, X. Luo, X. Xue, Development of DNA 

tetrahedron-based drug delivery system, Drug Delivery 24 (2017) 1295–1301. 

190



 

[16] Q. Hu, H. Li, L. Wang, H. Gu, C. Fan, DNA nanotechnology-enabled drug delivery 

systems, Chem. Rev. 119 (2019) 6459–6506. 

[17] A. Tay, N. Melosh, Nanostructured materials for intracellular cargo delivery, Acc. Chem. 

Res. 52 (2019) 2462–2471. 

[18] J. Liu, L. Song, S. Liu, Q. Jiang, Q. Liu, N. Li, Z. G. Wang, B. Ding, A DNA-based 

nanocarrier for efficient gene delivery and combined cancer therapy, Nano Lett. 18 (2018) 

3328–3334. 

[19] H. Liu, Y. Chen, Y. He, A. E. Ribbe, C. Mao, Approaching the limit: can one DNA 

oligonucleotide assemble into large nanostructures? Angew. Chem. Int. Ed. 45 (2006) 

1942–1945.  

[20] C. Tian, C. Zhang, X. Li, C. Hao, S. Ye, C. Mao, Approaching the limit: can one DNA 

strand assemble into defined nanostructures? Langmuir 30 (2014) 5859–5862. 

[21] J. Duan, L. Cui, Y. Wang, H. Zheng, An approach to generate DNA polyhedral links of 

one/two strands, J. Mol. Graph. Model. 97 (2020) 107565. 

[22] J. Duan, L. Cui, Y. Wang, Rational design of DNA platonic polyhedra with the minimal 

components number from topological perspective, Biochem. Bioph. Res. Commun. 523 

(2020) 627–631. 

[23] J. Li, D. Jiang, B. Bao, Y. He, L. Liu, X. Wang, Radiolabeling of DNA bipyramid and 

preliminary biological evaluation in mice, Bioconjugate Chem. 27 (2016) 905–910. 

[24] W. Qiu, X. Zhai, Y. Qiu, Architecture of Platonic and Archimedean polyhedral links, Sci. 

China Ser. B Chem. 51 (2008) 13–18. 

[25] G. Hu, X. Zhai, D. Lu, W. Qiu, The architecture of Platonic polyhedral links, J. Math. 

Chem. 46 (2009) 592–603. 

[26] W. Qiu, Z. Wang, G. Hu, The Chemistry and Mathematics of DNA Polyhedra, Nova Sci., 

New York, 2010. 

[27] G. Hu, W. Qiu, A. Ceulemans, A new Euler’s formula for DNA polyhedra, PLoS One 6 

(2011) #e26308. 

[28] T. Deng, M. Yu, G. Hu, W. Qiu, The architecture and growth of extended Platonic 

polyhedra, MATCH Commun. Math. Comput. Chem. 67 (2012) 713–730. 

[29] T. Deng, W. Qiu, The architecture of extended Platonic polyhedral links, MATCH 

Commun. Math. Comput. Chem.70 (2013) 347–364.  

[30] J. Duan, G. Hu, and W. Qiu, Topological aspect of DNA cages: Genus, MATCH Commun. 

Math. Comput. Chem. 72 (2014) 475–488. 

191



 

[31] J. Duan, W. Li, X. Li, G. Hu, W. Qiu, Molecular design of DNA polyhedra based on genus, 

J. Math. Chem. 52 (2014) 2380–2394. 

[32] T. Deng, J. Duan, W. Li, W. Qiu, A new Euler formula and its characterization of DNA 

polyhedra, MATCH Commun. Math. Comput. Chem. 75 (2016) 387–402.  

[33] L. Guo, H. Bai, J. Hao, S. Liu, A topological approach to assembling strands-based DNA 

triangular prisms, MATCH Commun. Math. Comput. Chem. 82 (2019) 219–253. 

[34] T. Sawada, A. Saito, K. Tamiya, K. Shimokawa, Y. Hisada and M. Fujita, Metalepeptide 

rings form highly entangled topologically inequivalent frameworks with the same ring-

and crossing-numbers, Nat. Commun. 10 (2019) 921. 

[35] N. Jonoska, R. Twarock, Blueprints for dodecahedral DNA cages, J. Phys. Math. Theor. 

41 (2008) #304043. 

[36] N. E. Grayson, A. Taormina, R. Twarock, DNA duplex cage structures with icosahedral 

symmetry, Theor. Comput. Sci. 410 (2009) 1440–1447. 

[37] T. Deng, Configuration of DNA polyhedra of truncated tetrahedron, cuboctahedron, 

truncated octahedron, J. Theor. Biol. 472 (2019) 4–10.  

[38] T. Deng, Construction and analysis of double helix for triangular bipyramid and 

pentangular bipyramid, Comput. Math. Method. M. 2020 (2020) #5609593.  

[39] W. Qiu, X. Zhai, Molecular design of Goldberg polyhedral links, J. Mol. Struct. 

(Theochem) 756 (2005) 163–166. 

[40] S. Liu, L. Guo, H. Bai, J. Hao, A topological approach to assembling strands-based DNA 

tetrahedra, MATCH Commun. Math. Comput. Chem. 81 (2019) 209–244. 

[41] G. Fijavž, T. Pisanski, J. Rus, Strong traces model of self-assembly polypeptide structure, 

MATCH Commun. Math. Comput. Chem. 71 (2014) 199–212. 

[42] J. Rus, Antiparallel d-stable traces and a stronger version of ore problem, J. Math. Biol. 75 

(2017) 109–127. 

192


