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Abstract

The augmented Zagreb index (AZI) has attracted more and more attentions in
the past years. Some significant mathematical properties of AZI were obtained.
In particular, Lin et al. [MATCH Commun. Math. Comput. Chem. 83 (2020)
167] recently claimed a complete solution to the problem of characterizing n-vertex
tree(s) with maximal AZI. In this note we correct some errors in the paper.

1 Introduction

Let G = (V,E) be a connected simple graphs, where V = {v0, v1, . . . , vn−1} and n ≥ 3.

di = d(vi) will denote the degree of vertex vi. The augmented Zagreb index (AZI)

of G is defined [1] as AZI(G) =
∑

vivj∈E [didj/(di + dj − 2)]3. This index was shown

to have the best predicting ability for a variety of physicochemical properties among

several tested vertex-degree-based topological indices (see [2, 3]). Hence, this molecular
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descriptor has attracted more and more attentions in the past years. Some significant

mathematical properties of AZI were obtained. Most known results can be found in

the review article [4]. For latest developments after the publication of [4] see [5–7]. In

particular, Lin et al. [8] claimed a complete solution to the problem of characterizing n-

vertex tree(s) with maximal AZI, an open problem proposed by Furtula et al. [1]. That

is, the following result was proven in [8].

Theorem 1.1 . If n ≥ 19, then the balanced double star BDn is the unique n-vertex

tree with maximal AZI.

However, there are some errors in the Case 2 of the proof of Theorem 1.1 in [8]. Since

the problem is so elementary, the errors are worth to be corrected.

2 Preliminaries

To point out and correct the errors in [8], we have to introduce more notations and results.

Let h(x, y) = [xy/(x+y−2)]3 for x, y ≥ 1 with x+y ≥ 3, l(x, y) = h(x, y)−h(x−1, y)

for x ≥ 2 and y ≥ 1 with x+ y ≥ 4, and f(x) = (x− 2)l(x, 1)+ h(x, 1) = (x− 1)h(x, 1)−
(x− 2)h(x− 1, 1) for x ≥ 3.

Lemma 2.1 [9].

(1) h(x, 1) strictly decreases with x ≥ 2.

(2) h(x, 2) = 8.

(3) If y ≥ 3 is fixed, then h(x, y) strictly increases with x ≥ 2.

Lemma 2.2 [10]. For x ≥ 2 and y ≥ 1,

(1) l(x, 1) (< 0) strictly increases with x ≥ 3.

(2) l(x, 2) = 0 for x ≥ 3.

(3) If y ≥ 3 is fixed, then l(x, y) (> 0) strictly increases with 2 ≤ x ≤ y − 1, and

strictly decreases with x ≥ y.

Lemma 2.3 [10]. If y > x ≥ 2, then l(x, y) > l(y, x). Hence h(x + 1, y − 1) > h(x, y) if

y ≥ x+ 2 ≥ 3.

Lemma 2.4 [10]. Let x ≥ 3. Then f(x) strictly increases with x, and −1.25 ≤ f(x) < 1.

Besides the above known results, the following two new results are needed.

Lemma 2.5. If y ≥ 7, then l(y + 1, y + 1) > l(y − 3, y + 1) > l(y − 5, y + 1).

Proof. From Lemma 2.2 (3) it suffices to show l(y + 1, y + 1) > l(y − 3, y + 1). Let

g(x, y) = [(y − x+ 1)/(2y − x)]3, x ≤ y. Then gx
′(x, y) = 3(1− y)(y − x+ 1)2/(2y − x)4,
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and gx
′′(x, y) = 6(x − 2)(y − 1)(y − x + 1)/(2y − x)5. Hence gx

′(x, y) strictly decreases

with x ≤ 2 and strictly increases with 2 < x ≤ y, and we have

l(y + 1, y + 1)− l(y − 3, y + 1)

= h(y + 1, y + 1)− h(y, y + 1)− [h(y − 3, y + 1)− h(y − 4, y + 1)]

=
[(y + 1)(y + 1)]3

(2y)3
− [y(y + 1)]3

(2y − 1)3
−

{
[(y − 3)(y + 1)]3

(2y − 4)3
− [(y − 4)(y + 1)]3

(2y − 5)3

}

= (y + 1)3 {g(0, y)− g(1, y)− [g(4, y)− g(5, y)]}

= (y + 1)3 [g′x(ξ2, y)− g′x(ξ1, y)]

> (y + 1)3 [g′x(4, y)− g′x(0, y)]

= 3(y + 1)3(y − 1)

[
(y + 1)2

(2y)4
− (y − 3)2

(2y − 4)4

]
,

where 0 < ξ1 < 1 and 4 < ξ2 < 5. It is easily seen that

(y + 1)2

(2y)4
− (y − 3)2

(2y − 4)4
> 0 ⇔ y + 1

(2y)2
>

y − 3

(2y − 4)2

⇔ (y + 1)(2y − 4)2 > (y − 3)(2y)2

⇔ 16 > 0,

and the conclusion holds. �
Analogously, we have the following result.

Lemma 2.6. If y ≥ 7, then l(y + 1, y) > l(y − 5, y).

Proof. Let g(x, y) = [(y − x+ 1)/(2y − x− 1)]3, x ≤ y. Then gx
′(x, y) = 3(2 − y)(y −

x + 1)2/(2y − x − 1)4, and gx
′′(x, y) = 6(x − 3)(y − 2)(y − x + 1)/(2y − x − 1)5. Hence

gx
′(x, y) strictly decreases with x ≤ 3 and strictly increases with 3 < x ≤ y, and we have

l(y + 1, y)− l(y − 5, y)

= h(y + 1, y)− h(y, y)− [h(y − 5, y)− h(y − 6, y)]

=
[y(y + 1)]3

(2y − 1)3
− [yy]3

(2y − 2)3
−
{
[y(y − 5)]3

(2y − 7)3
− [y(y − 6)]3

(2y − 8)3

}

= y3 {g(0, y)− g(1, y)− [g(6, y)− g(7, y)]}

= y3 [g′x(ξ2, y)− g′x(ξ1, y)]

> y3 [g′x(6, y)− g′x(0, y)]

= 3y3(y − 2)

[
(y + 1)2

(2y − 1)4
− (y − 5)2

(2y − 7)4

]
> 0,

where 0 < ξ1 < 1 and 6 < ξ2 < 7. �
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Remark. The best possible of Lemma 2.6 may be l(y + 1, y) > l(y − 4, y) for y ≥ 6.

However, the proof may be difficult, and the same technique used above is not applicable.

3 Correction to the errors

For convenience, let T be an n-vertex (n ≥ 19) tree with maximal AZI. It is known [10]

that AZI(T ) ≥ AZI(BDn) > n3/64 + n+ 3. Let π = (z = d0, y = d1, . . . , x = dt, 1
n−t−1)

be the non-increasing degree sequence of T . The known results of π can be summarized

as the following lemma.

Lemma 3.1 [8, 10]. 1 ≤ t ≤ z = d0 ≥ 10, d1 = d2 = · · · = dt−1 = y ≥ z − 1 ≥ 9, and

3 ≤ x = dt ≤ y.

When Lin et al. [8] proved Theorem 1.1, in the Case 2 (t ≥ 2) it was assumed that

h(x−2, y+2) > h(x, y) in the Subcase 2.1 and h(x−2, y+1) > h(x−1, y) in the Subcase

2.2. However, they are wrong according to Lemma 2.3. Here we give the correction to

the errors.

Correct proof of the Case 2 in the proof of Theorem 1.1 in [8]. Since the

conclusion holds for n ≤ 64 from the computer search results in [10], we assume n ≥ 65.

Case 1. x ≤ y − 5. Let u be a child (a leaf) of vt, and T1 = T − vtu + v1u. Then from

Lemmas 2.2 (3) and 2.4 - 2.6 we have

AZI(T1)− AZI(T ) = h(y + 1, z) + h(x− 1, z) + (x− 2)h(x− 1, 1) + yh(y + 1, 1)

− [h(y, z) + h(x, z) + (x− 1)h(x, 1) + (y − 1)h(y, 1)]

= l(y + 1, z)− l(x, z)− f(x) + f(y + 1)

> l(y + 1, z)− l(y − 5, z) > 0.

Case 2. x ≥ y − 4. From Lemma 3.1 we have 2n − 2 ≥ z + (t − 1)y + x + n − t − 1 ≥
(t+1)y+n−t−5, which yields y ≤ (n+t+3)/(t+1) and n ≥ y(t+1)−t−3 ≥ 8t+6 > 6t+6.

From Lemmas 2.1 and 3.1 we have

AZI(T ) < (t− 1)h(y, y + 1) + h(x, y + 1) + (n− t− 1)h(x, 1)

≤ th(y, y + 1) + (n− 3)h(y − 4, 1)

≤ th

(
n+ t+ 3

t+ 1
,
n+ 2t+ 4

t+ 1

)
+ (n− 3)h(1, 5)

≤ t

8(t+ 1)3

[
(n+ t+ 3)(n+ 2t+ 4)

n+ 0.5t+ 2.5

]3
+

125

64
(n− 3)
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<
t

8

(
n+ 4t+ 4

t+ 1

)3

+ 2n , η(t).

It is easily seen that

η′(t) =
1

8

(
n+ 4t+ 4

t+ 1

)3

− 3tn

8

(n+ 4t+ 4)2

(t+ 1)4

=
(n+ 4t+ 4)2

8(t+ 1)4
[
(1− 2t)n+ 4(t+ 1)2

]

<
(n+ 4t+ 4)2

8(t+ 1)4
[
(1− 2t)(6t+ 6) + 4(t+ 1)2

]

=
(n+ 4t+ 4)2

8(t+ 1)4
[(t+ 1)(−8t+ 10)] < 0.

That is, η(t) strictly decreases with t ≥ 2, and AZI(T ) < η(2) = (n + 12)3/108 + 2n.

Thus from n ≥ 65 it holds that

AZI(T ) < AZI(BDn) ⇐
n3

64
+ n+ 3 ≥ (n+ 12)3

108
+ 2n > 0

⇐ n3

64
+ 3 ≥ (n+ 12)3

108
+ 1.01n

⇔ n ≥ 64.9626.

The proof is thus completed. �

References

[1] B. Furtula, A. Graovac, D. Vukičević, Augmented Zagreb index, J. Math. Chem. 48
(2010) 370-380.

[2] I. Gutman, J. Tošović, Testing the quality of molecular structure descriptors. Vertex-
degree-based topological indices, J. Serb. Chem. Soc. 78 (2013) 805-810.

[3] I. Gutman, Degree-based topological indices, Croat. Chem. Acta 86 (2013) 351-361.

[4] A. Ali, B. Furtula, I. Gutman, D. Vukičević, Augmented Zagreb index: Extremal
results and bounds, MATCH Commun. Math. Comput. Chem. 85 (2021) 211-244.

[5] F. Li, Q. Ye, H. Broersma, R. Ye, Sharp upper bounds for augmented Zagreb index of
graphs with fixed parameters, MATCH Commun. Math. Comput. Chem. 85 (2021)
257-274.

[6] A. Ali, A note on minimal augmented Zagreb index of tricyclic graphs of fixed order,
MATCH Commun. Math. Comput. Chem. 85 (2021) 247-256.

175



[7] T. Alraqad, A. Ali, H. Saber, Solution of an open problem concerning the augmented
Zagreb index and chromatic number of graphs, MATCH Commun. Math. Comput.
Chem. 86 (2021) 39–48.

[8] W. Lin, D. Dimitrov, R. Škrekovski, Complete characterization of trees with maxi-
mal augmented Zagreb index, MATCH Commun. Math. Comput. Chem. 83 (2020)
167–178.

[9] Y. Huang, B. Liu, L. Gan, Augmented Zagreb index of connected graphs, MATCH
Commun. Math. Comput. Chem. 67 (2012) 483–494.

[10] W. Lin, A. Ali, H. Huang, Z. Wu, J. Chen, On the trees with maximal augmented
Zagreb index, IEEE Access 6 (2018) 69335–69341.

176


