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Abstract

The atom-bond connectivity and the generalized atom-bond connectivity indices
have shown to be useful in the QSPR/QSAR researches. In particular, the atom-
bond connectivity index has been applied to study the stability of alkanes and the
strain energy of cycloalkanes. In this paper we obtain some bounds on these indices
in terms of graph parameters. To obtain these bounds we use the mathematical
tools from analysis. Some of these bounds for ABCα improve, when α = 1/2,
known results on the ABC index.

1 Introduction

A single number, representing a chemical structure in graph-theoretical terms via the

molecular graph, is called a topological index if it correlates with a molecular property.

Topological indices are used to understand physicochemical properties of chemical

compounds. Topological indices are interesting since they capture some of the properties

of a molecule in a single number. Hundreds of topological indices have been introduced

and studied, starting with the seminal work by Wiener.
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Topological indices based on end-vertex degrees of edges have been used over almost

50 years. Among them, several indices are recognized to be useful tools in chemical

researches. Probably, the best known such descriptors are the Randić connectivity index

(R) and the Zagreb indices.

The atom-bond connectivity index (ABC-index) is a useful topological index employed

in studying the stability of alkanes and the strain energy of cycloalkanes. The atom-bond

connectivity index of a graph G was defined in [8] as

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
,

where uv denotes the edge of the graph G connecting the vertices u and v, and du is the

degree of the vertex u.

The generalized atom-bond connectivity index was defined in [9] as

ABCα(G) =
∑

uv∈E(G)

( du + dv − 2

dudv

)α
.

for any α ∈ R \ {0}. Note that ABC1/2 is the ABC-index and ABC−3 is the augmented

Zagreb index.

There are a lot of papers studying the ABC and ABCα indices (see, e.g., [2, 3, 5,

6, 9, 10, 12–17]). Recently, Estrada [7] referred to the above generalization ABCα as the

generalized ABC index, and provided a probabilistic interpretation that fits very well with

the chemical intuition for understanding the capacity of ABC-like indices to describe the

energetics of alkanes. Chen at el. [3] characterized the graphs having the maximal ABCα

value for α < 0 among all connected graphs with given order and vertex connectivity, edge

connectivity, or matching number. Very recently, we presented some optimization results

for ABCα of the connected graph G [6]. In [16], Tan et al. determine the maximum value

of ABCα together with the corresponding extremal graphs in the class of graphs with n

vertices and maximum degree ∆ for 0 < α ≤ 1
2
. In this paper we obtain new inequalities

for these indices. Some of these inequalities for ABCα improve, when α = 1/2, known

results on the ABC index.

Throughout this work, G = (V (G), E(G)) denotes a (non-oriented) finite simple

(without multiple edges and loops) graph without isolated vertices. We denote by

∆, δ, n,m the maximum degree, the minimum degree and the cardinality of the set of

vertices and edges of G, respectively.
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2 Inequalities involving ABCα

Recall that an isolated edge in a graph G is a connected component of G isomorphic to

a path graph P2.

Theorem 1. Let G be a graph with m edges, maximum degree ∆ and minimum degree

δ, and α > 0. Denote by m2 the cardinality of the set of isolated edges in G.

(1) If δ > 1, then

( 2∆− 2

∆2

)α
m ≤ ABCα(G) ≤

( 2δ − 2

δ2

)α
m.

The equality in each bound is attained if G is a regular graph. If ∆ > 2, then the equality

in the lower bound is attained if and only if G is a regular graph. If δ > 2, then the

equality in the upper bound is attained if and only if G is a regular graph.

(2) If δ = 1, then

( 2∆− 2

∆2

)α
(m−m2) ≤ ABCα(G) ≤

( ∆− 1

∆

)α
(m−m2).

The equality in the lower bound is attained if G is a union of a regular graph and m2

isolated edges; if ∆ > 2, then the equality in this bound is attained if and only if G is

a union of a regular graph and m2 isolated edges. The equality in the upper bound is

attained if and only if G is a union of star graphs S∆+1 and m2 isolated edges.

Proof. It is well-known that

f(x, y) =
x+ y − 2

xy

is a decreasing function in each variable on [2,∞) × [2,∞) and strictly decreasing on

(2,∞)× (2,∞). Hence,
2∆− 2

∆2
≤ f(x, y) ≤ 2δ − 2

δ2
(1)

for every x, y ∈ [δ,∆].

First we assume that δ > 1. Therefore,

2∆− 2

∆2
≤ du + dv − 2

dudv
≤ 2δ − 2

δ2

for every uv ∈ E(G). Furthermore, if ∆ > 2, then the left hand inequality is strict if and

only if (du, dv) 6= (∆,∆); if δ > 2, then the right hand inequality is strict if and only if

(du, dv) 6= (δ, δ). Hence,

( 2∆− 2

∆2

)α
m ≤ ABCα(G) ≤

( 2δ − 2

δ2

)α
m.

149



If ∆ > 2, then the equality in the lower bound is attained if and only if G is a regular

graph. If δ > 2, then the equality in the upper bound is attained if and only if G is a

regular graph.

Also, if G is a regular graph, then the lower and upper bounds are the same, and they

are equal to ABCα(G).

Next we assume that δ = 1. Since ABCα(P2) = 0, it suffices to prove the statement

when G does not have isolated edges, i.e., m2 = 0. Thus, max{du, dv} ≥ 2 for every

uv ∈ E(G). Since f(1, y) ≤ (y − 1)/y is strictly increasing on [2,∞), we have

1

2
≤ f(1, y) ≤ ∆− 1

∆

for every y ∈ [2,∆]. If x, y ∈ [2,∆], then (1) gives

2∆− 2

∆2
≤ f(x, y) ≤ 1

2
.

Hence,
2∆− 2

∆2
≤ du + dv − 2

dudv
≤ ∆− 1

∆

for every uv ∈ E(G). Furthermore, if ∆ > 2, then the left hand inequality is strict if and

only if (du, dv) 6= (∆,∆); the right hand inequality is strict if and only if {du, dv} 6= {1,∆}.
Hence,

( 2∆− 2

∆2

)α
m ≤ ABCα(G) ≤

( ∆− 1

∆

)α
m.

The equality in the lower bound is attained if G is a regular graph. If ∆ > 2, then the

equality in the lower bound is attained if and only if G is a regular graph. The equality

in the upper bound is attained if and only if every edge in E(G) has a vertex of degree

1 and the other vertex with degree ∆, i.e., G is a union of star graphs S∆+1.

Recall that ABCα(G) is not well-defined if α < 0 and G has an isolated edge. The

argument in the proof of Theorem 1 gives directly the following result for α < 0.

Theorem 2. Let G be a graph without isolated edges, with m edges, maximum degree ∆,

minimum degree δ, and α < 0.

(1) If δ > 1, then

( 2δ − 2

δ2

)α
m ≤ ABCα(G) ≤

( 2∆− 2

∆2

)α
m.
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The equality in each bound is attained if G is a regular graph. If δ > 2, then the equality

in the lower bound is attained if and only if G is a regular graph. If ∆ > 2, then the

equality in the upper bound is attained if and only if G is a regular graph.

(2) If δ = 1 and ∆ > 1, then

( ∆− 1

∆

)α
m ≤ ABCα(G) ≤

( 2∆− 2

∆2

)α
m.

The equality in the lower bound is attained if and only if G is a union of star graphs

S∆+1. The equality in the upper bound is attained if G is a regular graph; if ∆ > 2, then

the equality in this bound is attained if and only if G is a regular graph.

Note that if 2m/∆ is an integer, with m,∆ ∈ Z and 2 ≤ ∆ < m, then there exists

a (connected) ∆-regular graph with m edges (see [1, Lemma 2.6]). Also, if m/∆ is an

integer, then there exists a union of star graphs S∆+1 with m edges. Hence, in many

cases Theorems 1 and 2 solve extremal problems, since they provide the extremal graphs

for ABCα with fixed number of edges and maximum or minimum degree.

Corollary 1. Let G be a graph with m edges, maximum degree ∆ and minimum degree

δ. Let m2 be the cardinality of the set of isolated edges in G.

(1) If δ > 1, then

√
2∆− 2

∆
m ≤ ABC(G) ≤

√
2δ − 2

δ
m.

(2) If δ = 1, then

√
2∆− 2

∆
(m−m2) ≤ ABC(G) ≤

√
∆− 1

∆
(m−m2).

Remark 2. (1) In [4, Theorem 6] appears the inequality

ABC(G) ≤ ∆ + δ√
∆δ

m.

Note this inequality is improved by the upper bound in Corollary 1 for every ∆ and δ.

(2) In [4, Theorem 6] appears the inequality

ABC(G) ≥
√

2δ − 2

∆
m,

correcting a typo in [11, Theorem 3.1]. Note that this inequality is improved by the lower

bound in Corollary 1 for every ∆ > δ.
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Recall that a chemical graph is a connected graph with maximum degree at most 4.

Next, we improve some inequalities in Theorems 1 and 2 for chemical graphs. First of

all, we need some technical results.

Lemma 3. Let a1, a2, . . . , an > 0 and c1, c2, . . . , cn ∈ R \ {0}. The function

F (x) = c1a
x
1 + c2a

x
2 + · · ·+ cna

x
n

has at most n− 1 real zeros taking into account their multiplicities.

Proof. Without loss of generality we can assume that ai 6= aj for every i 6= j. Let us

prove it by induction on n. The result is true for n = 1. Assume that the result holds for

n− 1 and let us prove it for n. By dividing by ax1 , it suffices to show that the function

f(x) = c1 + c2A
x
2 + · · ·+ cnA

x
n,

with A2, . . . , An ∈ R+ \ {1} (since ai 6= aj for every i 6= j), has at most n − 1 real zeros

taking into account their multiplicities.

Let x1, . . . , xk be the real zeros of f , where x1, . . . , xr (0 ≤ r ≤ k) have multiplicities

n1, . . . , nr > 1, respectively, and xr+1, . . . , xk have multiplicity 1. Thus, f has exactly

k − r + n1 + · · ·+ nr real zeros taking into account their multiplicities.

Thus, x1, . . . , xr are real zeros of f ′ with multiplicities n1− 1, . . . , nr− 1, respectively.

Also, Rolle’s theorem gives that f ′ has at least k − 1 additional real zeros.

Since

f ′(x) = c2A
x
2 logA2 + · · ·+ cnA

x
n logAn,

and cj logAj 6= 0, the induction hypothesis gives that f ′ has at most n − 2 real zeros

taking into account their multiplicities. Hence,

k − 1 + n1 − 1 + · · ·+ nr − 1 = k − 1− r + n1 + · · ·+ nr ≤ n− 2,

and f has exactly k − r + n1 + · · · + nr ≤ n − 1 real zeros taking into account their

multiplicities.

Lemma 4. Let 0 < a1 < a2 ≤ a3 < a4, c1, c2, c3, c4 > 0 with c1 + c4 = c2 + c3, and the

function

H(x) = c1a
x
1 + c4a

x
4 − c2a

x
2 − c3a

x
3 .
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(1) If c1 log a1 +c4 log a4 > c2 log a2 +c3 log a3, then there exists a unique negative zero

x0 of H, and H(x) > 0 if and only if x ∈ (−∞, x0) ∪ (0,∞).

(2) If c1 log a1 + c4 log a4 < c2 log a2 + c3 log a3, then there exists a unique positive zero

x0 of H, and H(x) > 0 if and only if x ∈ (−∞, 0) ∪ (x0,∞).

Proof. Since

H ′(x) = c1a
x
1 log a1 + c4a

x
4 log a4 − c2a

x
2 log a2 − c3a

x
3 log a3,

if c1 log a1 + c4 log a4 > c2 log a2 + c3 log a3, then H ′(0) > 0. Since H(0) = 0 by c1 + c4 =

c2 + c3, there exists ε > 0 with H < 0 on (−ε, 0). Since 0 < a1 < a2 ≤ a3 < a4, we

have H(x) > 0 when |x| >> 1. Lemma 3 gives that H has at most 3 real zeros taking

into account their multiplicities. Since H changes it sign at 0 and at a negative point,

and H(x) > 0 when |x| >> 1, it has at most 2 different real zeros. Thus, there exists a

unique negative zero x0 of H, and H(x) > 0 if and only if x ∈ (−∞, x0) ∪ (0,∞).

If c1 log a1 + c4 log a4 < c2 log a2 + c3 log a3, then a similar argument gives the result.

Lemma 4 has the following consequence.

Corollary 5. Let 0 < a1 < a2 < a3, c1, c3 > 0 and the function

H(x) = c1a
x
1 + c3a

x
3 − (c1 + c3)ax2 .

(1) If c1 log a1 + c3 log a3 > (c1 + c3) log a2, then there exists a unique negative zero x0

of H, and H(x) > 0 if and only if x ∈ (−∞, x0) ∪ (0,∞).

(2) If c1 log a1 + c3 log a3 < (c1 + c3) log a2, then there exists a unique positive zero x0

of H, and H(x) > 0 if and only if x ∈ (−∞, 0) ∪ (x0,∞).

The argument in the proof of Lemma 4 also gives the following result.

Lemma 6. Let 0 < a1 < a2 < a3, 0 < a1 < b < a3, c1, c2, c3 > 0 and the function

H(x) = c1a
x
1 + c2a

x
2 + c3a

x
3 − (c1 + c2 + c3)bx.

(1) If c1 log a1 + c2 log a2 + c3 log a3 > (c1 + c2 + c3) log b, then there exists a unique

negative zero x0 of H, and H(x) > 0 if and only if x ∈ (−∞, x0) ∪ (0,∞).

(2) If c1 log a1 + c2 log a2 + c3 log a3 < (c1 + c2 + c3) log b, then there exists a unique

positive zero x0 of H, and H(x) > 0 if and only if x ∈ (−∞, 0) ∪ (x0,∞).
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Lemma 7. Let 0 < a1 < a2 < a3, 0 < b1 < b2, c1, c2, c3, k1, k2 > 0, with c1 + c2 + c3 =

k1 + k2, b1 < a1 and b2 < a3, and the function

H(x) = c1a
x
1 + c2a

x
2 + c3a

x
3 − k1b

x
1 − k2b

x
2 .

If c1 log a1 + c2 log a2 + c3 log a3 < k1 log b1 + k2 log b2, then there exist a unique negative

zero x1 of H and a unique positive zero x2 of H, and H(x) > 0 if and only if x ∈
(x1, 0) ∪ (x2,∞).

Proof. Since

H ′(x) = c1a
x
1 log a1 + c2a

x
2 log a2 + c3a

x
3 log a3 − k1b

x
1 log b1 − k2b

x
2 log b2,

and c1 log a1 + c2 log a2 + c3 log a3 < k1 log b1 + k2 log b2, we have H ′(0) < 0. Since

c1 + c2 + c3 = k1 +k2 gives H(0) = 0, there exists ε > 0 with H > 0 on (−ε, 0) and H < 0

on (0, ε). Since b1 < a1 and b2 < a3, we have H(x) < 0 when x << −1 and H(x) > 0

when x >> 1. Hence, H has a negative zero and a positive zero. Lemma 3 gives that H

has at most 4 real zeros taking into account their multiplicities. Hence, H has exactly 3

different real zeros x1 < 0 < x2.

Given integer numbers a, b, k, we write a ≡ b (mod k) if a− b is an integer multiple of

k. In this case, a and b are said to be congruent modulo k.

If m ≥ 6 is an integer with m ≡ 1 (mod 3), then we denote by Am the set of graphs

with m edges such that a vertex has degree 2 and the other vertices have degree 3. Since

m−1 is an integer multiple of 3 (grater than 3), there exists a 3-regular graph with m−1

edges (see, e.g., [1]); if we replace any fixed edge of this graph by a path P3, then we

obtain a graph in Am (and so, Am 6= ∅). Obviously, any graph in Am can be obtained in

this way from a 3-regular graph with m− 1 edges.

If m ≥ 6 is an integer with m ≡ 2 (mod 3), then we denote by Bm the set of graphs

with m edges such that two adjacent vertices have degree 2 and the other vertices have

degree 3. Since m− 2 is an integer multiple of 3 (grater than 3), there exists a 3-regular

graph with m − 2 edges (see, e.g., [1]); if we replace any fixed edge of this graph by a

path P4, then we obtain a graph in Bm. Any graph in Bm can be obtained in this way

from a 3-regular graph with m− 2 edges.

If m ≥ 6 is an integer with m ≡ 2 (mod 3), then we denote by Cm the set of graphs

with m edges such that a vertex has degree 1 and the other vertices have degree 3. Since
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m− 1 ≡ 1 (mod 3), there exists a graph in Am−1; if we add a pendant edge to its single

vertex with degree 2, then we obtain a graph in Cm. Any graph in Cm can be obtained in

this way from a graph in Am−1.

Theorem 3. Let G be a connected graph with m ≥ 6 edges and maximum degree 3, and

α ∈ R.

(1) Assume that m ≡ 0 (mod 3). Then

m
4α

9α
≤ ABCα(G), if α > 0,

m
4α

9α
≥ ABCα(G), if α < 0.

The equality in each bound is attained if and only if G is a 3-regular graph.

(2) Assume that m ≡ 1 (mod 3). Then

(m− 2)
4α

9α
+ 2

1

2α
≤ ABCα(G), if α > 0,

(m− 2)
4α

9α
+ 2

1

2α
≥ ABCα(G), if α < 0.

The equality in each bound is attained if and only if G is a graph in Am.

(3) Assume that m ≡ 2 (mod 3). Then

(m− 3)
4α

9α
+ 3

1

2α
≤ ABCα(G), if α > 0,

(m− 3)
4α

9α
+ 3

1

2α
≥ ABCα(G), if −1 ≤ α < 0,

(m− 1)
4α

9α
+

2α

3α
≥ ABCα(G), if α ≤ −1.

If α > −1, then the equality is attained if and only if G ∈ Bm. If α < −1, then the

equality is attained if and only if G ∈ Cm.

Proof. Item (1) is a direct consequence of Theorems 1 and 2.

Assume now that m ≡ 1 (mod 3), and so, 2m ≡ 2 (mod 3). If a 3-regular graph has n

vertices and m edges, then handshaking lemma gives 3n = 2m, a contradiction. Hence,

there are no 3-regular graph with m edges. Thus, if G is a graph with n vertices, m ≥ 6

edges and maximum degree 3, there exists at least a vertex with degree less than 3.

Seeking for a contradiction assume that a vertex of G has degree 1 and the other vertices

have degree 3. Handshaking lemma gives 3(n − 1) + 1 = 2m, and so, 2m ≡ 1 (mod 3),

a contradiction. Therefore, there are at least two edges incident to a vertex with degree

less than 3, and we have
du + dv − 2

dudv
≥ 1

2
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for these edges. Also,
du + dv − 2

dudv
≥ 2∆− 2

∆2
=

4

9

for every edge. Hence, we have for any α > 0

ABCα(G) ≥ (m− 2)
4α

9α
+ 2

1

2α
,

and the equality holds if and only if G has a vertex with degree 2 and the other vertices

with degree 3, i.e., G ∈ Am.

If α < 0, then we obtain the converse inequality.

Finally, assume that m ≡ 2 (mod 3), and so, 2m ≡ 1 (mod 3). As in the previous case,

handshaking lemma gives that there are no 3-regular graph with m edges.

Seeking for a contradiction assume that a graph G has exactly two edges which do

not join two vertices with degree 3. Since G is connected, these two edges join vertices

with degrees either 2 and 3, or 1 and 3. Therefore, G has either a vertex with degree 2

and the other vertices with degree 3, or two vertices with degree 1 and the other vertices

with degree 3. Handshaking lemma gives in both cases 3k + 2 = 2m for some integer k,

and so, 2m ≡ 2 (mod 3), a contradiction.

Hence, G has either one or more than two edges not joining two vertices with degree

3.

If G has exactly one edge not joining two vertices with degree 3, then this edge joins

vertices with degrees 1 and 3. Thus, G ∈ Cm and

ABCα(G) = (m− 1)
4α

9α
+

2α

3α
.

If G has at least three edges not joining two vertices with degree 3, then these three

edges verify for α > 0 ( du + dv − 2

dudv

)α
≥ 1

2α
.

Hence,

ABCα(G) ≥ (m− 3)
4α

9α
+ 3

1

2α
,

and the equality is attained if and only if G has exactly three edges not joining two vertices

with degree 3 and these edges have at least an endpoint with degree 2, i.e., G ∈ Bm.

If α < 0, then the converse inequality holds.
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We are going to study the function

F (α) = min
{

(m− 1)
4α

9α
+

2α

3α
, (m− 3)

4α

9α
+ 3

1

2α

}

= (m− 3)
4α

9α
+ min

{
2

4α

9α
+

2α

3α
, 3

1

2α

}
.

Let us consider the function

H(α) = 2
4α

9α
+

2α

3α
− 3

1

2α
.

Since 4/9 < 1/2 < 2/3 and

2 log
4

9
+ log

2

3
= 5 log

2

3
> 3 log

1

2
,

Corollary 5 gives that there exists a unique negative zero α0 of H, and H(α) > 0 if and

only if α ∈ (−∞, α0) ∪ (0,∞). Since H(−1) = 0, we have α0 = −1 and

(m− 1)
4α

9α
+

2α

3α
> (m− 3)

4α

9α
+ 3

1

2α

if and only if α ∈ (−∞,−1) ∪ (0,∞). This finishes the proof of item (3).

One can easily check that the following holds for the case m < 6 (note that m ≥ 3

when the maximum degree is 3).

Proposition 8. Let G be a connected graph with m < 6 edges and maximum degree 3,

and α ∈ R.

(1) If m = 3, then G is the star graph S4 and

ABCα(G) = 3
2α

3α
.

(2) If m = 4, then

2α

3α
+ 3

1

2α
≤ ABCα(G), if α > 0,

2α

3α
+ 3

1

2α
≥ ABCα(G), if α < 0.

The equality in each bound is attained if and only if G is the cycle graph C3 with an edge

attached at a vertex.

(3) If m = 5, then

4α

9α
+ 4

1

2α
≤ ABCα(G), if α > 0,

4α

9α
+ 4

1

2α
≥ ABCα(G), if α < 0.
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The equality in each bound is attained if and only if G is the complete graph K4 without

an edge.

If m ≥ 11 is an odd integer, then we denote by Dm the set of graphs with m edges such

that a vertex has degree 2 and the other vertices have degree 4. Since m − 1 is an even

integer (at least 10), there exists a 4-regular graph with m − 1 edges; if we replace any

fixed edge of this graph by a path P3, then we obtain a graph in Dm (and so, Dm 6= ∅).
Obviously, any graph in Dm can be obtained in this way from a 4-regular graph with

m− 1 edges.

If m ≥ 11 is an odd integer, then we denote by Em the set of graphs with m edges

such that two non-adjacent vertices have degree 3 and the other vertices have degree 4.

Since m+ 1 is an even integer (grater than 10), there exists a 4-regular graph with m+ 1

edges; if we remove an edge of this graph, then we obtain a graph in Em. Any graph in

Em can be obtained in this way from a 4-regular graph with m+ 1 edges.

If m ≥ 11 is an odd integer, then we denote by Fm the set of graphs with m edges

such that two adjacent vertices have degree 3 and the other vertices have degree 4. If

m ≥ 13, then m − 3 is an even integer (at least 10), and there exists a 4-regular graph

with m− 3 edges; if we replace two fixed edges of this graph by two paths P3 and we join

by an edge the central vertices of these P3, then we obtain a graph in Fm. If m = 11, then

we can obtain a graph in F11 from the complete graph K4 with V (K4) = {v1, v2, v3, v4},
by adding a path P3 between v1 and v2, another path P3 between v3 and v4, and joining

by an edge the central vertices of these P3.

Theorem 4. Let G be a connected graph with m ≥ 10 edges and maximum degree 4, and

α ∈ R.

(1) Assume that m is an even integer. Then

m
3α

8α
≥ ABCα(G), if α < 0,

m
3α

8α
≤ ABCα(G), if α > 0.

The equality in each bound is attained if and only if G is a 4-regular graph.
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(2) Assume that m is an odd integer. Then

(m− 2)
3α

8α
+ 2

1

2α
≥ ABCα(G), if α < 0,

(m− 2)
3α

8α
+ 2

1

2α
≤ ABCα(G), if 0 < α ≤ α1,

(m− 5)
3α

8α
+ 4

5α

12α
+

4α

9α
≤ ABCα(G), if α1 ≤ α ≤ α2,

(m− 6)
3α

8α
+ 6

5α

12α
≤ ABCα(G), if α ≥ α2,

where α1 ≈ 0.33 is the unique positive solution of the equation

3 · 27α + 2 · 36α = 4 · 30α + 32α,

and α2 ≈ 5.89 is the unique positive solution of the equation

27α + 32α = 2 · 30α.

If α < α1, then the equality is attained if and only if G ∈ Dm. If α1 < α < α2, then the

equality is attained if and only if G ∈ Fm. If α > α2, then the equality is attained if and

only if G ∈ Em.

Proof. Item (1) is a direct consequence of Theorems 1 and 2.

Assume now that m is an odd integer. Handshaking Lemma gives that G is not a

4-regular graph, and so, although the bounds in item (1) hold, they are not sharp.

If G ∈ Dm, then

ABCα(G) = (m− 2)
3α

8α
+ 2

1

2α
.

If G ∈ Em, then

ABCα(G) = (m− 6)
3α

8α
+ 6

5α

12α
.

If G ∈ Fm, then

ABCα(G) = (m− 5)
3α

8α
+ 4

5α

12α
+

4α

9α
.

Let us show that if G is a graph with minimum ABCα when α > 0 (respectively,

maximum ABCα when α < 0), then G ∈ Dm∪Em∪Fm. In order to do that assume that

α > 0 (the case α < 0 is similar).

Assume that G /∈ Dm ∪ Em ∪ Fm.

Assume that G has a vertex u1 with degree 2. Since G /∈ Dm, there exists an edge e1

non-incident to u1 which is incident to a vertex with degree less than 4. Since the two
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edges incident to u1 have weight 1/2α, e1 has weight greater than 3α/8α, and every edge

has weight at least 3α/8α, we have

ABCα(G) > (m− 2)
3α

8α
+ 2

1

2α
,

which is the ABCα index of the graphs in Dm. Thus, we can assume that each vertex of

G with degree less than 4 has degree 1 or 3.

If G has two vertices v1, v2 with degree 1, then the edges incident to them have weights

at least 2α/3α, and so,

ABCα(G) ≥ (m− 2)
3α

8α
+ 2

2α

3α
> (m− 2)

3α

8α
+ 2

1

2α
,

which is the ABCα index of the graphs in Dm. Thus, we can assume also that G with

has at most a vertex with degree 1.

Note that if G has n vertices and k of them have degree less than 4 (d1, . . . , dk,

respectively), Handshaking Lemma gives

4(n− k) + d1 + · · ·+ dk = 2m ≡ 2 (mod 4),

d1 + · · ·+ dk ≡ 2 (mod 4).

Let V0 be the set of vertices with degree less than 4, and E0 the set of edges incident

to some vertex in V0. Let m1 be the cardinality of the set of edges incident to a vertex

in V0 and to a vertex with degree 4, and m2 the cardinality of the set of edges incident

to two vertices in V0. Thus, m0 = m1 +m2 is the cardinality of E0. We have

m1 + 2m2 =
∑

u∈V0
du.

Since m is odd, G is not a 4-regular graph and m0 ≥ 1. Also, since G is a connected

graph, m1 ≥ 1 and so,

2m0 = 2m1 + 2m2 ≥ 1 +m1 + 2m2 =1 +
∑

u∈V0
du.

Assume that G has exactly a vertex with degree 1 and r ≥ 0 vertices with degree 3.

Thus, 1 + 3r ≡ 2 (mod 4) and so, r ≡ 3 (mod 4) and r ≥ 3. Hence, 2m0 ≥ 2 + 3r ≥ 11

and m0 ≥ 6. Since the weight of each edge in E0 is at least

(3 + 4− 2

3 · 4
)α

=
5α

12α
,

and the weight of the edge incident to the vertex with degree 1 is at least

(1 + 2− 2

1 · 2
)α

=
1

2α
,

160



we have

ABCα(G) ≥ (m− 6)
3α

8α
+

1

2α
+ 5

5α

12α
> (m− 6)

3α

8α
+ 6

5α

12α
,

which is the ABCα index of the graphs in Em.

Assume that G has not vertices with degree 1 and has r vertices with degree 3. Thus,

3r ≡ 2 (mod 4) and so, r ≡ 2 (mod 4). Since G /∈ Em∪Fm, we have r > 2 and then r ≥ 6.

Hence, 2m0 ≥ 1 + 3r ≥ 19 and m0 ≥ 10. Since the weight of each edge in E0 is at least

5α/12α, we have

ABCα(G) ≥ (m− 10)
3α

8α
+ 10

5α

12α
> (m− 6)

3α

8α
+ 6

5α

12α
,

which is the ABCα index of the graphs in Em.

Consequently, if G is a graph with minimum ABCα when α > 0, then G ∈ Dm∪Em∪
Fm. A similar argument gives the result if α < 0.

Next, we are going to study the function

F (α) = min
{

(m− 2)
3α

8α
+ 2

1

2α
, (m− 6)

3α

8α
+ 6

5α

12α
, (m− 5)

3α

8α
+ 4

5α

12α
+

4α

9α

}

= (m− 6)
3α

8α
+ min

{
4

3α

8α
+ 2

1

2α
, 6

5α

12α
,

3α

8α
+ 4

5α

12α
+

4α

9α

}
.

Let us consider the functions

H0(α) = 4
3α

8α
+ 2

1

2α
− 6

5α

12α
,

H1(α) = 3
3α

8α
+ 2

1

2α
− 4

5α

12α
− 4α

9α
,

H2(α) =
3α

8α
+

4α

9α
− 2

5α

12α
.

Since 3/8 < 5/12 < 1/2 and

4 log
3

8
+ 2 log

1

2
< 6 log

5

12
,

Corollary 5 gives that there exists a unique positive zero α0 of H0, and H0(α) > 0 if and

only if α ∈ (−∞, 0) ∪ (α0,∞). Since H0(1) = 0, α0 = 1 and H0(α) > 0 if and only if

α ∈ (−∞, 0) ∪ (1,∞). Hence,

(m− 2)
3α

8α
+ 2

1

2α
> (m− 6)

3α

8α
+ 6

5α

12α

if and only if α ∈ (−∞, 0) ∪ (1,∞).
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Since 3/8 < 5/12 < 4/9 < 1/2 and

3 log
3

8
+ 2 log

1

2
< 4 log

5

12
+ log

4

9
,

Lemma 4 gives that there exists a unique positive zero α1 ≈ 0.33 of H1, and H1(α) > 0

if and only if α ∈ (−∞, 0) ∪ (α1,∞). Hence,

(m− 2)
3α

8α
+ 2

1

2α
> (m− 5)

3α

8α
+ 4

5α

12α
+

4α

9α

if and only if α ∈ (−∞, 0) ∪ (α1,∞).

Since 3/8 < 5/12 < 4/9 and

log
3

8
+ log

4

9
< 2 log

5

12
,

Corollary 5 gives that there exists a unique positive zero α2 ≈ 5.89 of H2, and H2(α) > 0

if and only if α ∈ (−∞, 0) ∪ (α2,∞). Hence,

(m− 5)
3α

8α
+ 4

5α

12α
+

4α

9α
> (m− 6)

3α

8α
+ 6

5α

12α

if and only if α ∈ (−∞, 0) ∪ (α2,∞).

Thus,

max
{

4
3α

8α
+ 2

1

2α
, 6

5α

12α
,

3α

8α
+ 4

5α

12α
+

4α

9α

}
= 4

3α

8α
+ 2

1

2α
,

for every α < 0, and the function

u(α) = min
{

4
3α

8α
+ 2

1

2α
, 6

5α

12α
,

3α

8α
+ 4

5α

12α
+

4α

9α

}

satisfies

u(α) = 4
3α

8α
+ 2

1

2α
, if 0 < α ≤ α1,

u(α) =
3α

8α
+ 4

5α

12α
+

4α

9α
, if α1 ≤ α ≤ α2,

u(α) = 6
5α

12α
, if α ≥ α2.

These facts imply the second item.

We deal now with the case m < 10 (note that m ≥ 4 when the maximum degree is

4).

Theorem 5. Let G be a connected graph with m < 10 edges and maximum degree 4, and

α ∈ R.
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(1) If m = 4, then G is the star graph S5 and

ABCα(G) = 4
3α

4α
.

(2) If m = 5, then

2
3α

4α
+ 3

1

2α
≥ ABCα(G), if α < 0,

2
3α

4α
+ 3

1

2α
≤ ABCα(G), if α > 0.

The equality in each bound is attained if and only if G is the cycle graph C3 with two

edges attached at a vertex.

(3) If m = 6, then

4
1

2α
+

3α

4α
+

5α

12α
≥ ABCα(G), if α ≤ α3,

6
1

2α
≥ ABCα(G), if α3 ≤ α < 0,

6
1

2α
≤ ABCα(G), if α > 0,

where α3 ≈ −2.87 is the unique negative solution of the equation

9α + 5α = 2 · 6α.

If α < α3, then the equality in the bound is attained if and only if G is the graph obtained

from the path graphs P1 and P3 by adding a new vertex incident to the four vertices in

P1 and P3. If α > α3, then the equality in each bound is attained if and only if G is

the graph obtained from two path graphs P2 by adding a new vertex incident to the four

vertices in the two path graphs.

(4) If m = 7, then

6
1

2α
+

3α

8α
≥ ABCα(G), if α ≤ α4,

3
4α

9α
+ 3

5α

12α
+

3α

4α
≥ ABCα(G), if α4 ≤ α < 0,

3
4α

9α
+ 3

5α

12α
+

3α

4α
≤ ABCα(G), if 0 < α ≤ α5,

4
1

2α
+

4α

9α
+ 2

5α

12α
≤ ABCα(G), if α ≥ α5,
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where α4 ≈ −12.48 is the unique negative solution of the equation

3 · 32α + 3 · 30α + 54α = 6 · 36α + 27α,

and α5 ≈ 0.11 is the unique positive solution of the equation

2 · 16α + 15α + 27α = 4 · 18α.

If α < α4, then the equality in the bound is attained if and only if G is the graph obtained

from the path graph S4 by adding a new vertex incident to the four vertices in S4. If

α4 < α < α5, then the equality in each bound is attained if and only if G is the graph

obtained from the union of the cycle graph C3 and an isolated vertex by adding a new

vertex incident to these four vertices. If α > α5, then the equality in the bound is attained

if and only if G is the graph obtained from the path graph P4 by adding a new vertex

incident to the four vertices in P4.

(5) If m = 8, then

2
1

2α
+

3α

8α
+ 4

5α

12α
+

4α

9α
≥ ABCα(G), if α ≤ α6,

4
4α

9α
+ 4

5α

12α
≥ ABCα(G), if α6 ≤ α < 0,

4
4α

9α
+ 4

5α

12α
≤ ABCα(G), if α > 0,

where α6 ≈ −2.25 is the unique negative solution of the equation

2 · 36α + 27α = 3 · 32α.

If α < α6, then the equality in the bound is attained if and only if G is the graph obtained

from the complete graph K5 by removing two incident edges. If α > α6, then the equality

in each bound is attained if and only if G is the graph obtained from the complete graph

K5 by removing two non-incident edges.

(6) If m = 9, then

3
3α

8α
+ 6

5α

12α
≥ ABCα(G), if α < 0,

3
3α

8α
+ 6

5α

12α
≤ ABCα(G), if α > 0,

and the equality in each bound is attained if and only if G is the complete graph K5 with

an edge removed.
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Proof. One can easily check that items (1) and (2) hold.

Assume that m = 9. Let G1 be the graph obtained from the complete graph K5 by

removing an edge. We have

ABCα(G1) = 3
3α

8α
+ 6

5α

12α
.

Assume that α > 0.

Seeking for a contradiction assume that there are four vertices u1, u2, u3, u4 in G

with degree 4. Denote by v1, . . . , vn−4 the other vertices of G, with degrees d1, . . . , dn−4,

respectively. Handshaking Lemma gives 18 = 2m = 4 · 4 + d1 + · · ·+ dn−4 and d1 + · · ·+
dn−4 = 2. Each vertex ui has degree 4 and thus, it is incident on at least one vertex in

{v1, . . . , vn−4}; hence, d1 + · · ·+ dn−4 ≥ 4, a contradiction.

Hence, there are at most three vertices with degree 4. Thus, there are at most three

edges incident to two vertices with degree 4; since the other edges have weights at least

( 3 + 4− 2

3 · 4
)α

=
5α

12α
,

we have

ABCα(G) ≥ 3
3α

8α
+ 6

5α

12α
,

and the equality in this bound is attained if and only if G has three edges incident to two

vertices with degree 4 and six edges incident to a vertex with degree 4 and a vertex with

degree 3, i.e., G = G1.

If α < 0, then we obtain the converse inequality.

These facts give item (6).

Assume that m = 6. Let G2 (respectively, G3) be the graph obtained from two path

graphs P2 (respectively, the path graphs P1 and P3) by adding a new vertex incident to

the four vertices in the path graphs. It is easy to check that the extremal graphs are G2

and/or G3.

We have

ABCα(G2) = 6
1

2α
, ABCα(G3) = 4

1

2α
+

3α

4α
+

5α

12α
.

We are going to study the functions

min
{

6
1

2α
, 4

1

2α
+

3α

4α
+

5α

12α

}
and max

{
6

1

2α
, 4

1

2α
+

3α

4α
+

5α

12α

}
.
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Let us consider the function

H(α) =
3α

4α
+

5α

12α
− 2

1

2α
.

Since 5/12 < 1/2 < 3/4 and

log
3

4
+ log

5

12
> 2 log

1

2
,

Corollary 5 gives that there exists a unique negative zero α3 ≈ −2.87 of H, and H(α) > 0

if and only if α ∈ (−∞, α3) ∪ (0,∞). Hence,

4
1

2α
+

3α

4α
+

5α

12α
> 6

1

2α

if and only if α ∈ (−∞, α3) ∪ (0,∞). These facts give item (3).

Assume that m = 7. Let G4 (respectively, G5 or G6) be the graph obtained from the

path graph P4 (respectively, the star graph S4 or the union of the cycle graph C3 and an

isolated vertex) by adding a new vertex incident to the four vertices in P4 (respectively,

S4 or the union of C3 and an isolated vertex). One check that the extremal graphs are

G4, G5 and/or G6.

We have

ABCα(G4) = 4
1

2α
+

4α

9α
+ 2

5α

12α
,

ABCα(G5) = 6
1

2α
+

3α

8α
,

ABCα(G6) = 3
4α

9α
+ 3

5α

12α
+

3α

4α
.

We are going to study the functions

min
{

4
1

2α
+

4α

9α
+ 2

5α

12α
, 6

1

2α
+

3α

8α
, 3

4α

9α
+ 3

5α

12α
+

3α

4α

}
,

max
{

4
1

2α
+

4α

9α
+ 2

5α

12α
, 6

1

2α
+

3α

8α
, 3

4α

9α
+ 3

5α

12α
+

3α

4α

}
.

Let us consider the function

H1(α) = 3
4α

9α
+ 3

5α

12α
+

3α

4α
− 6

1

2α
− 3α

8α
.

Since 3/8 < 5/12 < 4/9 < 1/2 < 3/4 and

3 log
4

9
+ 3 log

5

12
+ log

3

4
< 6 log

1

2
+ log

3

8
,
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Lemma 7 gives that there exist a unique negative zero α4 ≈ −12.48 of H1 and a unique

positive zero a1 ≈ 1.57 of H1, and H1(α) > 0 if and only if α ∈ (α4, 0) ∪ (a1,∞). Hence,

3
4α

9α
+ 3

5α

12α
+

3α

4α
> 6

1

2α
+

3α

8α

if and only if α ∈ (α4, 0) ∪ (a1,∞).

Let us consider the function

H2(α) = 2
1

2α
+

3α

8α
− 4α

9α
− 2

5α

12α
.

Since 3/8 < 5/12 < 4/9 < 1/2 and

2 log
1

2
+ log

3

8
> log

4

9
+ 2 log

5

12
,

Lemma 4 gives that there exists a unique negative zero a2 ≈ −6.92 of H2, and H2(α) > 0

if and only if α ∈ (−∞, a2) ∪ (0,∞). Hence,

6
1

2α
+

3α

8α
> 4

1

2α
+

4α

9α
+ 2

5α

12α

if and only if α ∈ (−∞, a2) ∪ (0,∞).

Let us consider the function

H3(α) = 2
4α

9α
+

5α

12α
+

3α

4α
− 4

1

2α
.

Since 5/12 < 4/9 < 1/2 < 3/4 and

2 log
4

9
+ log

5

12
+ log

3

4
< 4 log

1

2
,

Lemma 6 gives that there exists a unique positive zero α5 ≈ 0.11 of H3, and H3(α) > 0

if and only if α ∈ (−∞, 0) ∪ (α5,∞). Hence,

3
4α

9α
+ 3

5α

12α
+

3α

4α
> 4

1

2α
+

4α

9α
+ 2

5α

12α

if and only if α ∈ (−∞, 0) ∪ (α5,∞). These facts give item (4).

Finally, assume that m = 8. Let G7 (respectively, G8) be the graph obtained from

the complete graph K5 by removing two non-incident edges (respectively, two incident

edges). One can check that the extremal graphs are G7 and/or G8.

We have

ABCα(G7) = 4
4α

9α
+ 4

5α

12α
, ABCα(G8) = 2

1

2α
+

3α

8α
+ 4

5α

12α
+

4α

9α
.
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We are going to study the functions

min
{

4
4α

9α
+ 4

5α

12α
, 2

1

2α
+

3α

8α
+ 4

5α

12α
+

4α

9α

}
,

max
{

4
4α

9α
+ 4

5α

12α
, 2

1

2α
+

3α

8α
+ 4

5α

12α
+

4α

9α

}
.

Let us consider the function

H(α) = 2
1

2α
+

3α

8α
− 3

4α

9α
.

Since 3/8 < 4/9 < 1/2 and

2 log
1

2
+ log

3

8
> 3 log

4

9
,

Corollary 5 gives that there exists a unique negative zero α6 ≈ −2.25 of H, and H(α) > 0

if and only if α ∈ (−∞, α6) ∪ (0,∞). Hence,

2
1

2α
+

3α

8α
+ 4

5α

12α
+

4α

9α
> 4

4α

9α
+ 4

5α

12α

if and only if α ∈ (−∞, α6) ∪ (0,∞). These facts give item (5).
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