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Abstract

Let G be a connected graph of order n with degree sequence D(G) = [d1, d2, . . . ,
dn]. The first degree-based entropy of G is defined as

I1(G) = ln(

n∑

i=1

di)−
1∑n

i=1 di

n∑

i=1

(di ln di).

In this paper, we characterize the corresponding extremal graphs which attain the
maximum value of I1(G) among all k-cyclic graphs of order n, where k ≥ 1.

1 Introduction

The information content of graphs and networks have been studied in the last fifties based

on the profound and initial works due to Shannon [11,12]. The concept of graph entropy

has been introduced to measure the structural complexity of graphs and networks [10,13],

which is also an information-theoretic quantity that has been introduced by Mowshowitz

[9]. Moreover, many graph invariants, such as the number of vertices or edges, the vertex

degree sequences, have been used for developing entropy-based measures to characterize

the structure of complex network [4–7]. In this paper, we use degree powers to present

graph entropies, which has been proven useful in information theory, social network,

network reliability and mathematical chemistry [1, 2].
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Let G = (V (G), E(G)) be a simple connected graph with n vertices and m edges,

where V (G) = {1, 2, . . . , n} is called the vertex set, and the edge set E(G) is composed

of two-element subset ij of V (G) named edges, i.e., i ∼ j if ij ∈ E(G). Let NG(i) = {j ∈
V (G) | j ∼ i} be the neighborhood of i and di = |NG(i)| be the degree of i. Denote by

D(G) = [d1, d2, . . . , dn] the degree sequence of G. The cyclomatic number of G, written

as k, is the minimum number of edges we need to remove from the graph such that the

resulting graph admits no more cycles. It is well-known that k = m − n + 1 and in this

situation, G is said to be a k-cyclic graph.

Recently, Cao, Dehmer and Shi in [3] introduced the following special degree-based

graph entropy by extending the Shannon’s entropy:

Is(G) = ln

(
n∑

i=1

dsi

)
− 1∑n

i=1 d
s
i

n∑

i=1

(dsi ln d
s
i ). (1)

The authors mostly analyzed the special case that G is a tree, unicyclic graph, bicyclic

graph for s = 1. Therefore in this note, we consider k-cyclic graphs with k ≥ 1, which

generalizes the main result of Cao et al. [3].

Suppose s = 1, observe that

n∑

i=1

dsi =
n∑

i=1

di = 2m.

From Equality (1), we infer

I1(G) = ln

(
n∑

i=1

di

)
− 1∑n

i=1 di

n∑

i=1

(di ln di) = ln (2m)− 1

2m

n∑

i=1

(di ln di), (2)

which is called the first degree-based entropy of a connected graph by Ghalavand et al.

in [8]. Therefore, if we consider the extremal values of I1(G) of a class of graphs with

given number of edges, it suffices to determine the extremal values of
∑n

i=1(di ln di).

Now we define a function h(G) =
∑n

i=1(di ln di). In what follows, we consider the

extremal values of h(G) for k-cyclic graphs, from which we can easily obtain the extremal

values of the graph entropy.

Let G be a connected graph with D(G) = [d1, d2, . . . , dn] such that di ≥ dj+2 for some

pair of i, j ∈ V (G), then there must exist a vertex v ∈ V (G) such that i ∼ v and j ̸∼ v.

Let G′ be the graph obtained from G by removing the edge iv and adding the edge jv.

It is clear that G′ has the sequence [d1, d2, . . . , di − 1, . . . , dj +1, . . . , dn], i.e., by replacing

the pair (di, dj) by the pair (di − 1, dj + 1). Obviously, the sum of all degree powers of G
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equals the sum of all degree powers of G′. The next Lemma gives a relationship between

the h(G) and h(G′).

Lemma 1.1 (Lemma 1, [3]). For graphs G and G′ shown above, we have h(G) > h(G′).

Proof. Observe that di > di − 1 ≥ dj + 1 > dj since di ≥ dj + 2. We obtain

h(G)− h(G′) = di ln di + dj ln dj − (di − 1) ln(di − 1)− (dj + 1) ln(dj + 1)

= (di ln di − (di − 1) ln(di − 1))− ((dj + 1) ln(dj + 1)− dj ln dj)

= (ln ξ1 + 1)− (ln ξ2 + 1) > 0,

where ξ1 ∈ (di − 1, di) and ξ2 ∈ (dj, dj + 1).

2 Extremality of the first degree–based entropy

If G is a connected k-cyclic graph of order n having ai vertices of degree di(i = 1, 2, . . . , t),

where d1 > d2 > · · · > dt and
∑t

i=1 ai = n, we write the degree sequence of G as

D(G) = [da11 , da22 , . . . , datt ].

• If 2(k − 1) is divisible by n, written as n|2(k − 1), we define a connected r-regular

k-cyclic graph G1 on n vertices such that

r = 2 +
2(k − 1)

n
. (3)

• If 2(k−1) is not divisible by n, written as n ∤ 2(k−1), we define a connected k-cyclic

graph G2 of order n with degree sequence D(G2) = [(d+ 1)a1 , da2 ], where





d = ⌈1 + 2k−2
n

⌉,
a1 = (2− d)n+ 2k − 2,

a2 = (d− 1)n− 2k + 2.

(4)

Now we aim to study the minimum value of h(G) among all connected k-cyclic graphs.

Lemma 2.1. Let G be a connected k-cyclic graph of order n, where k ≥ 1 and G1, G2 be

the graphs defined above. Then one of the following two assertions occurs:

(i) if n|2(k − 1), it holds that h(G) ≥ h(G1), the equality holds if and only if G ∼= G1,

(ii) if n ∤ 2(k− 1), it holds that h(G) ≥ h(G2), the equality holds if and only if G ∼= G2.
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Proof. Suppose that Gmin attains the minimum value of h(G) among all connected k-

cyclic graphs of order n with m = k + n − 1 edges, and Gmin has the degree sequence

D(Gmin) = [d1, d2, . . . , dn] satisfying d1 ≥ d2 ≥ · · · ≥ dn. We claim that for each pair of

(di, dj), it occurs that

di = dj or di = dj + 1.

Otherwise if there exists a pair (di, dj) such that di ≥ dj + 2, then there must exist a

vertex v such that i ∼ v and j ̸∼ v. We construct a k-cyclic graph G′ obtained from

Gmin by removing the edge iv and adding the edge jv, i.e., by replacing the pair (di, dj)

by the pair (di − 1, dj + 1). Then by Lemma 1.1, we obtain that h(Gmin) > h(G′), which

contradict the minimality of Gmin. In particular, it holds that

d1 = dn or d1 = dn + 1. (5)

Now we partition the discussion into the following two parts.

Case 1. n|2(k − 1).

Let 2(k−1)
n

= p, where p is a positive integer. We will show that d1 = dn, i.e., Gmin is a

regular graph. Otherwise, by Eq. (5), it follows that d1 = dn + 1. So we can assume that

D(Gmin) = [(dn + 1)a1 , da2n ] with a1 > 0, a2 > 0. Obviously,

{
a1 + a2 = n,
a1 · (dn + 1) + a2 · dn = 2m = 2(n+ k − 1), (6)

which gives that {
a1 = (2− dn)n+ 2(k − 1),

a2 = (dn − 1)n− 2k + 2.

Since a1 = (2− dn)n+ 2(k − 1) > 0, a2 = (dn − 1)n− 2k + 2 > 0, we obtain that

1 +
2(k − 1)

n
< dn < 2 +

2(k − 1)

n
,

which is equivalent to

1 + p < dn < 2 + p. (7)

Note that p, dn are all positive integers, which is impossible due to Eq. (7). Therefore

d1 = dn and Gmin is a regular graph. Since ndn = 2m = 2(k+n−1), then dn = 2+ 2(k−1)
n

.

Hence Gmin
∼= G1 .
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Case 2. n ∤ 2(k − 1).

Let 2(k−1)
n

= p, where p is not an integer. We claim that d1 = dn+1. Otherwise by Eq.

(5), it follows that d1 = dn, then ndn = 2m = 2(k+n−1). Hence dn = 2+ 2(k−1)
n

= 2+p.

Since p is not an integer, then dn is also not an integer, a contradiction. Hence d1 = dn+1

and we assume that D(Gmin) = [(dn + 1)a1 , da2n ] with a1 > 0, a2 > 0. Similarly, according

to Eq. (6) in Case 1, we obtain that

1 +
2(k − 1)

n
< dn < 2 +

2(k − 1)

n
.

Therefore dn = ⌈1 + 2(k−1)
n

⌉ = ⌊2 + 2(k−1)
n

⌋ and





a1 = (2− ⌈1 + 2(k−1)
n

⌉)n+ 2(k − 1),

a2 = (⌈1 + 2(k−1)
n

⌉ − 1)n− 2k + 2,

which gives that

D(Gmin) =



(⌈

1 +
2(k − 1)

n

⌉
+ 1

)(2−⌈1+ 2(k−1)
n ⌉)n+2(k−1)

,

⌈
1 +

2(k − 1)

n

⌉(⌈1+ 2(k−1)
n ⌉−1)n−2k+2


 .

Hence Gmin
∼= G2.

Combining Lemma 2.1 with Eq. (2), we finally get the following result towards the

extremal properties of the graph entropy.

Theorem 2.1. Let G be a connected k-cyclic graph(k ≥ 1) with n vertices. Then one of

the following conditions holds:

(i) if n | 2(k − 1), I1(G) ≤ I1(G1), the equality holds if and only if G ∼= G1,

(ii) if n ∤ 2(k − 1), I1(G) ≤ I1(G2), the equality holds if and only if G ∼= G2.

Remark 1. Let G be a connected k-cyclic graph of order n with degree sequence D(G) =

[d1, d2, . . . , dn].

• If n | 2(k − 1) and G is not isomorphic to G1, together with Case 1 in the proof of

Lemma 2.1, we observe that d1 ̸= dn + 1. Then we deduce that there exists a pair

(di, dj) such that di ≥ dj + 2. In this situation, there also exists a vertex v ∈ V (G)

satisfying i ∼ v and j ̸∼ v. Let G∗ be the graph obtained from G by removing the

edge iv and adding the edge jv. Continue this process until there is no pair (di, dj)

such that di ≥ dj + 2. Thus we obtain a k-cyclic graph sequence G,G∗, G∗
1, . . . , G

∗
s

such that G∗
s
∼= G1.
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• If n ∤ 2(k − 1) and G is not isomorphic to G2, after the same operation as above,

we can obtain a graph G∗∗
s such that for each pair (di, dj), it occurs that di = dj or

di = dj +1. Combining with Case 2 in the proof of Lemma 2.1, we have d1 = dn+1

and G∗∗
s

∼= G2.

Now we consider two particular cases in which k ∈ {1, 2}. We conclude this paper by

the following two Corollaries, which can be deduced from the result of [3].

Corollary 2.1 (Theorem 2, [3]). Let G be a unicyclic graph(1-cyclic graph) of order n,

then I1(G) ≤ I1(Cn), where Cn is a cycle of order n. The equality holds if and only if

G ∼= Cn.

Proof. By Theorem 2.1, if k = 1, then for each unicyclic graph of order n, it holds that

n | 2(k−1) = 0. According to Eq. (3), the corresponding extremal graph G1 is a 2-regular

unicyclic graph, i.e., G1 is a cycle.

Corollary 2.2 (Theorem 3, [3]). Let G be a bicyclic graph(2-cyclic graph) of order n, then

I1(G) ≤ I1(G2), where G2 is a connected bicyclic graph with degree sequence D(G2) =

[32, 2n−2]. The equality holds if and only if G ∼= G2.

Proof. By Theorem 2.1, if k = 2, then for each bicyclic graph of order n(n > 2), it

follows that n ∤ 2(k − 1) = 2. From Eq. (4), we have d = 2, a1 = 2, a2 = n − 2.

Then the corresponding extremal graph G2 is an irregular graph with degree sequence

D(G2) = [32, 2n−2].
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