A Note on Extremality of the First Degree-Based Entropy

Yuhong Yang
College of Mathematics and Systems Science, Xinjiang University, Urumqi, Xinjiang 830046, P. R. China
yuhong_yangsu@163.com

(Received April 25, 2021)

Abstract

Let G be a connected graph of order n with degree sequence $D(G)=\left[d_{1}, d_{2}, \ldots\right.$, $\left.d_{n}\right]$. The first degree-based entropy of G is defined as $$
I_{1}(G)=\ln \left(\sum_{i=1}^{n} d_{i}\right)-\frac{1}{\sum_{i=1}^{n} d_{i}} \sum_{i=1}^{n}\left(d_{i} \ln d_{i}\right) .
$$

In this paper, we characterize the corresponding extremal graphs which attain the maximum value of $I_{1}(G)$ among all k-cyclic graphs of order n, where $k \geq 1$.

\section*{1 Introduction}

The information content of graphs and networks have been studied in the last fifties based on the profound and initial works due to Shannon $[11,12]$. The concept of graph entropy has been introduced to measure the structural complexity of graphs and networks [10,13], which is also an information-theoretic quantity that has been introduced by Mowshowitz [9]. Moreover, many graph invariants, such as the number of vertices or edges, the vertex degree sequences, have been used for developing entropy-based measures to characterize the structure of complex network [4-7]. In this paper, we use degree powers to present graph entropies, which has been proven useful in information theory, social network, network reliability and mathematical chemistry $[1,2]$.

Let $G=(V(G), E(G))$ be a simple connected graph with n vertices and m edges, where $V(G)=\{1,2, \ldots, n\}$ is called the vertex set, and the edge set $E(G)$ is composed of two-element subset $i j$ of $V(G)$ named edges, i.e., $i \sim j$ if $i j \in E(G)$. Let $N_{G}(i)=\{j \in$ $V(G) \mid j \sim i\}$ be the neighborhood of i and $d_{i}=\left|N_{G}(i)\right|$ be the degree of i. Denote by $D(G)=\left[d_{1}, d_{2}, \ldots, d_{n}\right]$ the degree sequence of G. The cyclomatic number of G, written as k, is the minimum number of edges we need to remove from the graph such that the resulting graph admits no more cycles. It is well-known that $k=m-n+1$ and in this situation, G is said to be a k-cyclic graph.

Recently, Cao, Dehmer and Shi in [3] introduced the following special degree-based graph entropy by extending the Shannon's entropy:

$$
\begin{equation*}
I_{s}(G)=\ln \left(\sum_{i=1}^{n} d_{i}^{s}\right)-\frac{1}{\sum_{i=1}^{n} d_{i}^{s}} \sum_{i=1}^{n}\left(d_{i}^{s} \ln d_{i}^{s}\right) \tag{1}
\end{equation*}
$$

The authors mostly analyzed the special case that G is a tree, unicyclic graph, bicyclic graph for $s=1$. Therefore in this note, we consider k-cyclic graphs with $k \geq 1$, which generalizes the main result of Cao et al. [3].

Suppose $s=1$, observe that

$$
\sum_{i=1}^{n} d_{i}^{s}=\sum_{i=1}^{n} d_{i}=2 m
$$

From Equality (1), we infer

$$
\begin{equation*}
I_{1}(G)=\ln \left(\sum_{i=1}^{n} d_{i}\right)-\frac{1}{\sum_{i=1}^{n} d_{i}} \sum_{i=1}^{n}\left(d_{i} \ln d_{i}\right)=\ln (2 m)-\frac{1}{2 m} \sum_{i=1}^{n}\left(d_{i} \ln d_{i}\right) \tag{2}
\end{equation*}
$$

which is called the first degree-based entropy of a connected graph by Ghalavand et al. in [8]. Therefore, if we consider the extremal values of $I_{1}(G)$ of a class of graphs with given number of edges, it suffices to determine the extremal values of $\sum_{i=1}^{n}\left(d_{i} \ln d_{i}\right)$.

Now we define a function $h(G)=\sum_{i=1}^{n}\left(d_{i} \ln d_{i}\right)$. In what follows, we consider the extremal values of $h(G)$ for k-cyclic graphs, from which we can easily obtain the extremal values of the graph entropy.

Let G be a connected graph with $D(G)=\left[d_{1}, d_{2}, \ldots, d_{n}\right]$ such that $d_{i} \geq d_{j}+2$ for some pair of $i, j \in V(G)$, then there must exist a vertex $v \in V(G)$ such that $i \sim v$ and $j \nsim v$. Let G^{\prime} be the graph obtained from G by removing the edge $i v$ and adding the edge $j v$. It is clear that G^{\prime} has the sequence $\left[d_{1}, d_{2}, \ldots, d_{i}-1, \ldots, d_{j}+1, \ldots, d_{n}\right]$, i.e., by replacing the pair $\left(d_{i}, d_{j}\right)$ by the pair $\left(d_{i}-1, d_{j}+1\right)$. Obviously, the sum of all degree powers of G
equals the sum of all degree powers of G^{\prime}. The next Lemma gives a relationship between the $h(G)$ and $h\left(G^{\prime}\right)$.

Lemma 1.1 (Lemma 1, [3]). For graphs G and G^{\prime} shown above, we have $h(G)>h\left(G^{\prime}\right)$.
Proof. Observe that $d_{i}>d_{i}-1 \geq d_{j}+1>d_{j}$ since $d_{i} \geq d_{j}+2$. We obtain

$$
\begin{aligned}
h(G)-h\left(G^{\prime}\right) & =d_{i} \ln d_{i}+d_{j} \ln d_{j}-\left(d_{i}-1\right) \ln \left(d_{i}-1\right)-\left(d_{j}+1\right) \ln \left(d_{j}+1\right) \\
& =\left(d_{i} \ln d_{i}-\left(d_{i}-1\right) \ln \left(d_{i}-1\right)\right)-\left(\left(d_{j}+1\right) \ln \left(d_{j}+1\right)-d_{j} \ln d_{j}\right) \\
& =\left(\ln \xi_{1}+1\right)-\left(\ln \xi_{2}+1\right)>0,
\end{aligned}
$$

where $\xi_{1} \in\left(d_{i}-1, d_{i}\right)$ and $\xi_{2} \in\left(d_{j}, d_{j}+1\right)$.

2 Extremality of the first degree-based entropy

If G is a connected k-cyclic graph of order n having a_{i} vertices of degree $d_{i}(i=1,2, \ldots, t)$, where $d_{1}>d_{2}>\cdots>d_{t}$ and $\sum_{i=1}^{t} a_{i}=n$, we write the degree sequence of G as $D(G)=\left[d_{1}^{a_{1}}, d_{2}^{a_{2}}, \ldots, d_{t}^{a_{t}}\right]$.

- If $2(k-1)$ is divisible by n, written as $n \mid 2(k-1)$, we define a connected r-regular k-cyclic graph G_{1} on n vertices such that

$$
\begin{equation*}
r=2+\frac{2(k-1)}{n} \tag{3}
\end{equation*}
$$

- If $2(k-1)$ is not divisible by n, written as $n \nmid 2(k-1)$, we define a connected k-cyclic graph G_{2} of order n with degree sequence $D\left(G_{2}\right)=\left[(d+1)^{a_{1}}, d^{a_{2}}\right]$, where

$$
\left\{\begin{array}{l}
d=\left\lceil 1+\frac{2 k-2}{n}\right\rceil \tag{4}\\
a_{1}=(2-d) n+2 k-2 \\
a_{2}=(d-1) n-2 k+2
\end{array}\right.
$$

Now we aim to study the minimum value of $h(G)$ among all connected k-cyclic graphs.
Lemma 2.1. Let G be a connected k-cyclic graph of order n, where $k \geq 1$ and G_{1}, G_{2} be the graphs defined above. Then one of the following two assertions occurs:
(i) if $n \mid 2(k-1)$, it holds that $h(G) \geq h\left(G_{1}\right)$, the equality holds if and only if $G \cong G_{1}$,
(ii) if $n \nmid 2(k-1)$, it holds that $h(G) \geq h\left(G_{2}\right)$, the equality holds if and only if $G \cong G_{2}$.

Proof. Suppose that $G_{\text {min }}$ attains the minimum value of $h(G)$ among all connected k cyclic graphs of order n with $m=k+n-1$ edges, and $G_{m i n}$ has the degree sequence $D\left(G_{\min }\right)=\left[d_{1}, d_{2}, \ldots, d_{n}\right]$ satisfying $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$. We claim that for each pair of $\left(d_{i}, d_{j}\right)$, it occurs that

$$
d_{i}=d_{j} \text { or } d_{i}=d_{j}+1
$$

Otherwise if there exists a pair $\left(d_{i}, d_{j}\right)$ such that $d_{i} \geq d_{j}+2$, then there must exist a vertex v such that $i \sim v$ and $j \nsim v$. We construct a k-cyclic graph G^{\prime} obtained from $G_{\min }$ by removing the edge $i v$ and adding the edge $j v$, i.e., by replacing the pair $\left(d_{i}, d_{j}\right)$ by the pair $\left(d_{i}-1, d_{j}+1\right)$. Then by Lemma 1.1, we obtain that $h\left(G_{\text {min }}\right)>h\left(G^{\prime}\right)$, which contradict the minimality of $G_{\text {min }}$. In particular, it holds that

$$
\begin{equation*}
d_{1}=d_{n} \quad \text { or } \quad d_{1}=d_{n}+1 \tag{5}
\end{equation*}
$$

Now we partition the discussion into the following two parts.
Case 1. $n \mid 2(k-1)$.
Let $\frac{2(k-1)}{n}=p$, where p is a positive integer. We will show that $d_{1}=d_{n}$, i.e., $G_{\min }$ is a regular graph. Otherwise, by Eq. (5), it follows that $d_{1}=d_{n}+1$. So we can assume that $D\left(G_{\text {min }}\right)=\left[\left(d_{n}+1\right)^{a_{1}}, d_{n}^{a_{2}}\right]$ with $a_{1}>0, a_{2}>0$. Obviously,

$$
\left\{\begin{array}{l}
a_{1}+a_{2}=n \tag{6}\\
a_{1} \cdot\left(d_{n}+1\right)+a_{2} \cdot d_{n}=2 m=2(n+k-1)
\end{array}\right.
$$

which gives that

$$
\left\{\begin{array}{l}
a_{1}=\left(2-d_{n}\right) n+2(k-1), \\
a_{2}=\left(d_{n}-1\right) n-2 k+2 .
\end{array}\right.
$$

Since $a_{1}=\left(2-d_{n}\right) n+2(k-1)>0, a_{2}=\left(d_{n}-1\right) n-2 k+2>0$, we obtain that

$$
1+\frac{2(k-1)}{n}<d_{n}<2+\frac{2(k-1)}{n}
$$

which is equivalent to

$$
\begin{equation*}
1+p<d_{n}<2+p \tag{7}
\end{equation*}
$$

Note that p, d_{n} are all positive integers, which is impossible due to Eq. (7). Therefore $d_{1}=d_{n}$ and $G_{\text {min }}$ is a regular graph. Since $n d_{n}=2 m=2(k+n-1)$, then $d_{n}=2+\frac{2(k-1)}{n}$. Hence $G_{\text {min }} \cong G_{1}$.

Case 2. $n \nmid 2(k-1)$.
Let $\frac{2(k-1)}{n}=p$, where p is not an integer. We claim that $d_{1}=d_{n}+1$. Otherwise by Eq. (5), it follows that $d_{1}=d_{n}$, then $n d_{n}=2 m=2(k+n-1)$. Hence $d_{n}=2+\frac{2(k-1)}{n}=2+p$. Since p is not an integer, then d_{n} is also not an integer, a contradiction. Hence $d_{1}=d_{n}+1$ and we assume that $D\left(G_{\min }\right)=\left[\left(d_{n}+1\right)^{a_{1}}, d_{n}^{a_{2}}\right]$ with $a_{1}>0, a_{2}>0$. Similarly, according to Eq. (6) in Case 1, we obtain that

$$
1+\frac{2(k-1)}{n}<d_{n}<2+\frac{2(k-1)}{n} .
$$

Therefore $d_{n}=\left\lceil 1+\frac{2(k-1)}{n}\right\rceil=\left\lfloor 2+\frac{2(k-1)}{n}\right\rfloor$ and

$$
\left\{\begin{array}{l}
a_{1}=\left(2-\left\lceil 1+\frac{2(k-1)}{n}\right\rceil\right) n+2(k-1), \\
a_{2}=\left(\left\lceil 1+\frac{2(k-1)}{n}\right\rceil-1\right) n-2 k+2,
\end{array}\right.
$$

which gives that

$$
D\left(G_{\text {min }}\right)=\left[\left(\left\lceil 1+\frac{2(k-1)}{n}\right\rceil+1\right)^{\left(2-\left\lceil 1+\frac{2(k-1)}{n}\right\rceil\right) n+2(k-1)},\left\lceil 1+\frac{2(k-1)}{n}\right\rceil^{\left(\left\lceil 1+\frac{2(k-1)}{n}\right\rceil-1\right) n-2 k+2}\right] .
$$

Hence $G_{\text {min }} \cong G_{2}$.
Combining Lemma 2.1 with Eq. (2), we finally get the following result towards the extremal properties of the graph entropy.

Theorem 2.1. Let G be a connected k-cyclic $\operatorname{graph}(k \geq 1)$ with n vertices. Then one of the following conditions holds:
(i) if $n \mid 2(k-1), I_{1}(G) \leq I_{1}\left(G_{1}\right)$, the equality holds if and only if $G \cong G_{1}$,
(ii) if $n \nmid 2(k-1), I_{1}(G) \leq I_{1}\left(G_{2}\right)$, the equality holds if and only if $G \cong G_{2}$.

Remark 1. Let G be a connected k-cyclic graph of order n with degree sequence $D(G)=$ $\left[d_{1}, d_{2}, \ldots, d_{n}\right]$.

- If $n \mid 2(k-1)$ and G is not isomorphic to G_{1}, together with Case 1 in the proof of Lemma 2.1, we observe that $d_{1} \neq d_{n}+1$. Then we deduce that there exists a pair $\left(d_{i}, d_{j}\right)$ such that $d_{i} \geq d_{j}+2$. In this situation, there also exists a vertex $v \in V(G)$ satisfying $i \sim v$ and $j \nsim v$. Let G^{*} be the graph obtained from G by removing the edge iv and adding the edge $j v$. Continue this process until there is no pair $\left(d_{i}, d_{j}\right)$ such that $d_{i} \geq d_{j}+2$. Thus we obtain a k-cyclic graph sequence $G, G^{*}, G_{1}^{*}, \ldots, G_{s}^{*}$ such that $G_{s}^{*} \cong G_{1}$.
- If $n \nmid 2(k-1)$ and G is not isomorphic to G_{2}, after the same operation as above, we can obtain a graph $G_{s}^{* *}$ such that for each pair $\left(d_{i}, d_{j}\right)$, it occurs that $d_{i}=d_{j}$ or $d_{i}=d_{j}+1$. Combining with Case 2 in the proof of Lemma 2.1, we have $d_{1}=d_{n}+1$ and $G_{s}^{* *} \cong G_{2}$.

Now we consider two particular cases in which $k \in\{1,2\}$. We conclude this paper by the following two Corollaries, which can be deduced from the result of [3].

Corollary 2.1 (Theorem 2, [3]). Let G be a unicyclic graph(1-cyclic graph) of order n, then $I_{1}(G) \leq I_{1}\left(C_{n}\right)$, where C_{n} is a cycle of order n. The equality holds if and only if $G \cong C_{n}$.

Proof. By Theorem 2.1, if $k=1$, then for each unicyclic graph of order n, it holds that $n \mid 2(k-1)=0$. According to Eq. (3), the corresponding extremal graph G_{1} is a 2-regular unicyclic graph, i.e., G_{1} is a cycle.

Corollary 2.2 (Theorem 3, [3]). Let G be a bicyclic graph(2-cyclic graph) of order n, then $I_{1}(G) \leq I_{1}\left(G_{2}\right)$, where G_{2} is a connected bicyclic graph with degree sequence $D\left(G_{2}\right)=$ $\left[3^{2}, 2^{n-2}\right]$. The equality holds if and only if $G \cong G_{2}$.

Proof. By Theorem 2.1, if $k=2$, then for each bicyclic graph of order $n(n>2)$, it follows that $n \nmid 2(k-1)=2$. From Eq. (4), we have $d=2, a_{1}=2, a_{2}=n-2$. Then the corresponding extremal graph G_{2} is an irregular graph with degree sequence $D\left(G_{2}\right)=\left[3^{2}, 2^{n-2}\right]$.

References

[1] B. Bollobás, V. Nikiforov, Degree powers in graphs with forbidden subgraphs, El. J. Comb. 11 (2004) \#R42.
[2] B. Bollobás, V. Nikiforov, Degree powers in graphs: The Erdős-Stone theorem, Comb. Prob. Comput. 21 (2012) 89-105.
[3] S. Cao, M. Dehmer, Y. Shi, Extremality of degree-based graph entropies, Inf. Sci. 278 (2014) 22-33.
[4] Z. Chen, M. Dehmer, Y. Shi, A note on distance-based graph entropies, Entropy 16 (2014) 5416-5427.
[5] M. Dehmer, Information processing in complex networks: Graph entropy and information functionals, Appl. Math. Comput. 201 (2008) 82-94.
[6] M. Dehmer, A. Mowshowitz, A history of graph entropy measures, Inf. Sci. 181 (2011) 57-78.
[7] M. Eliasi, On extremal properties of general graph entropies, MATCH Commun. Math. Comput. Chem. 79 (2018) 645-657.
[8] A. Ghalavand, M. Eliasi, A. Ashrafi, First degree-based entropy of graphs, J. Appl. Math. Comput. 59 (2019) 37-46.
[9] A. Mowshowitz, Entropy and the complexity of graphs. I. An index of the relative complexity of a graph, Bull. Math. Biophys. 30 (1968) 175-204.
[10] N. Rashevsky, Life, information theory, and topology, Bull. Math. Biophys. 17 (1955) 229-235.
[11] C. E. Shannon, W. Weaver, The Mathematical Theory of Communication, Univ. Illinois Press, Urbana, 1949.
[12] C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948) 379-423.
[13] E. Trucco, A note on the information content of graphs, Bull. Math. Biophys. 18 (1965) 129-135.

