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Abstract

The Zagreb indices are very popular topological indices in mathematical chem-
istry and attracted a lot of attention in recent years. The first and second Zagreb
indices of a graph G = (V,E) are defined as M1(G) =

∑
vı̇∈V d2ı̇ and M2(G) =∑

υı̇∼υȷ̇
(dı̇dȷ̇), where dı̇ denotes the degree of a vertex υı̇ and υı̇ ∼ υȷ̇ represents the

adjacency of vertices υı̇ and υȷ̇ in G. It has been conjectured that M1/n ≤ M2/m
holds for a connected graph G with n = |V | and m = |E|. Later, it is proved that
this inequality holds for some classes of graphs but does not hold in general. This
inequality is proved to be true for graphs with dı̇ ∈ [h, h+ ⌈

√
h⌉] or dı̇ ∈ [h, h+ z],

where h ≥ z(z−1)/2. In this paper, we prove that the graphs satisfy the inequality
if the sequences (dı̇) and (Sı̇) have the similar monotonicity, where Sı̇ =

∑
υȷ̇∈N(υı̇)

dȷ̇
and N(υı̇) = {υȷ̇ ∈ V |υı̇ ∼ υȷ̇}. As a consequence, we present an infinite family of
connected graphs with dı̇ ∈ [1,∞), for which the inequality holds. Moreover, we
establish the relations between M1/n and M2/m in case of general graphs.

1 Introduction

The structural invariants are numerical parameters of a (molecular) graph that charac-

terize its topology and are referred to as topological indices in mathematical chemistry.

They are the conclusive outcomes of a mathematical and logical process which converts

the chemical knowledge concealed inside the molecule's symbolic representation into a

valuable number that has been proved to be fruitful in modeling a variety of physico-

chemical properties in various QSAR and QSPR investigations [7, 17,23].

We consider simple, finite and undirected graph G = (V,E) having vertex set V =

1Corresponding author.

MATCH
Communications in Mathematical 

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 87 (2022) 115-123

ISSN: 0340-6253

doi: 10.46793/match.87-1.115N

https://doi.org/10.46793/match.87-1.115N


{υ1, υ2, . . . , υn} and edge set E, where n = |V | and m = |E| referred to as order and size

of G, respectively. For a vertex υı̇ ∈ V , we denote by N(υı̇), the set of vertices that are

adjacent to υı̇ and by dı̇ = |N(υı̇)|, the degree of υı̇. Also, we denote the maximum degree

and the minimum degree by ∆ and δ respectively. We assume that the degree sequence

(dı̇) = (d1, d2, · · · , dn) satisfies ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0. If this sequence is con-

stant, i.e., dı̇ = δ = ∆, for every vertex υı̇ in G, then G is called a regular graph. Further,

for a given vertex υı̇, we define Sı̇ =
∑

υı̇∼υȷ̇
dȷ̇ and we call (Sı̇) = (S1, S2, · · · , Sn) a degree-

sum sequence. It is easy to observe that δ2 = minυı̇∈V {Sı̇} and ∆2 = maxυı̇∈V {Sı̇}.
The Zagreb indices (ZIs) are among the oldest, best known, and most studied vertex

degrees-based topological indices which were put forward in [9]. Later, they were en-

hanced in [10] and utilized in the modeling of structure-property relationship [23]. The

first and second ZIs Mi(G) (i = 1, 2) of G are respectively defined as:

M1(G) =
n∑

ı̇=1

d2ı̇

and

M2(G) =
∑

υı̇∼υȷ̇

dı̇dȷ̇.

Although the Zagreb indices were introduced at the same time and were almost always

studied together, the comparison between them was not done for several years. Notice that

the order of magnitude of M1 for general graphs is O(n3), while the order of magnitude

of M2 is O(mn2). This recommends comparing M1/n and M2/m rather than M1 and

M2. Caporossi and Hansen proposed the following conjecture based on the AutoGraphiX

conjecture-generating computer method [5].

Conjecture 1. For all connected graphs G:

M1(G)

n
≤ M2(G)

m
, (1)

where the bound is tight for complete graphs.

The relationship (1) is often referred to as the Zagreb indices inequality in the literature.

Soon after the inequality was announced, it was investigated in [12] that there exist graphs

for which (1) fails to hold. Despite of the fact that the work presented in [12] seemed

to completely resolve Hansen’s conjecture, it was just the origin of a novel platform

for researchers to investigate the validity or non-validity of (1) for numerous classes of
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graphs [1–3,6,8,11,14–16,20–22,24]. The developments on this conjecture are summarized

in the survey [18].

The Zagreb indices inequality (1) is proved to hold for graphs having vertex degrees from

the set {h − z, h, h + z}, for any h, z ∈ N, see [3]. This is equivalent to (1) satisfies for

graphs having vertex degrees belong to any interval of length three. Later, in [21], it was

proven that any graph G having vertex degrees from an interval [h, h + 3], satisfies (1),

for any h ∈ N but h ̸= 2. This finding was strengthened in [3] by demonstrating that

the inequality (1) attains for graphs having vertex degrees from an interval [h, h+ ⌈
√
h⌉],

for any h ∈ N. This result was further enhanced in [2], where it was shown that for

every z ∈ N, the inequality (1) attains for graphs having vertex degrees from an interval

[h, h+ z] if and only if h ≥ z(z − 1)/2 or [h, h+ z] = [1, 4].

The question of how to characterize the graphs for which the inequality (1) holds is still

unanswered. In this paper, we make a step forward by demonstrating that this inequality

holds for graphs with degree sequence (dı̇) and degree-sum sequence (Sı̇) have the similar

monotonicity. Resultantly, we present an infinite family of connected graphs with vertex

degrees belong to the interval [1,∞), for which the inequality (1) holds. Moreover, we

establish the relations between M1(G)/n and M2(G)/m for general graphs.

This paper is organized as follows. In section 2, we compare M1/n and M2/m and provide

a sufficient condition for the validity of Zagreb indices inequality (1). From this we give

an infinite family of connected graphs in section 3, satisfying the Zagreb indices inequality

(1). In section 4, we obtain the relations between M1/n and M2/m for the general graphs.

2 Comparison between M1/n and M2/m

In this section, we prove that the graphs satisfy the Zagreb indices inequality (1) if both

the degree sequence and the degree-sum sequence have the similar monotonicity.

Lemma 1. For any graph G:

M1(G) =
n∑

ı̇=1

Sı̇, (2)

where Sı̇ =
∑

υȷ̇∈N(υı̇)

dȷ̇.
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Proof.

M1(G) =
n∑

ı̇=1

d2ı̇ =
n∑

ı̇=1

dı̇dı̇ = d1d1 + d2d2 + · · ·+ dndn

= d1 + d1 + · · ·+ d1︸ ︷︷ ︸
d1 times

+ d2 + d2 + · · ·+ d2︸ ︷︷ ︸
d2 times

+ · · ·+ dn + dn + · · ·+ dn︸ ︷︷ ︸
dn times

By rearranging with respect to the sum of degrees of neighbor vertices of each vertex υı̇,

we have

M1(G) =
n∑

i=1

∑

υȷ̇∈N(υı̇)

dȷ̇.

By taking Sı̇ =
∑

υȷ̇∈N(υı̇)

dȷ̇, the desired result follows.

Lemma 2. For any graph G:

M2(G) =
1

2

n∑

ı̇=1

dı̇Sı̇, (3)

where Sı̇ =
∑

υȷ̇∈N(υı̇)

dȷ̇.

Proof.

M2(G) =
1

2

∑

υı̇∼υȷ̇

2dı̇dȷ̇

=
1

2


d1

∑

υȷ̇∈N(v1)

dȷ̇ + d2
∑

υȷ̇∈N(v2)

dȷ̇ + · · ·+ dn
∑

υȷ̇∈N(vn)

dȷ̇




=
1

2

n∑

ı̇=1

dı̇
∑

υȷ̇∈N(vn)

dȷ̇.

By setting Sı̇ =
∑

υȷ̇∈N(υı̇)

dȷ̇, the required result follows.

Lemma 3. A graph G having order n = p + q and degree-sum sequence (S1, S2, · · · , Sn)

is complete bipartite graph if and only if S1 = S2 = · · · = Sn = pq.

Proof. Let G be a complete bipartite graph having n = p + q vertices and bipartition

(V1, V2), where |V1| = p and |V2| = q. By the definition of complete bipartite graph, degree

of each vertex pi ∈ V1 is q and likewise degree of each vertex qj ∈ V2 is p. Therefore, for

each pı̇ ∈ V1, we have

Sı̇ =
∑

qj∈N(pı̇)

dȷ̇ = q + q + · · ·+ q︸ ︷︷ ︸
p times

= pq.
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Also, for each qj ∈ V2, we have

Sȷ̇ =
∑

pi∈N(qj)

dı̇ = p+ p+ · · ·+ p︸ ︷︷ ︸
q times

= qp.

Hence, for every vertex υı̇ ∈ V , we have S1 = S2 = · · · = Sn = pq.

Conversely, let S1 = S2 = · · · = Sn = pq = k, where k ∈ N. Then, we prove that for

each value of k, we get a complete bipartite graph G ∼= Kp,q with the bipartition (V1, V2),

where |V1| = p and |V2| = q. For the values of k, three cases arise:

Case 1. If k = 1, then G ∼= K1,1, for which S1 = S2 = 1.

Case 2. If k is a prime number, then G ∼= K1,k, for which S1 = S2 = · · · = Sk+1 = k.

Case 3. If k is a composite number, i.e., k = pq, then G ∼= Kp,q, for which S1 = S2 =

· · · = Sp+q = pq = k.

In the following, we state the well-known Chebyshev's inequality:

Lemma 4. [13] Let ξ1, ξ2, . . . , ξn and σ1, σ2, . . . , σn be real numbers. If the sequences (ξı̇)

and (σı̇) have the similar monotonicity, then

1

n

n∑

ı̇=1

ξı̇σı̇ ≥
(
1

n

n∑

ı̇=1

ξı̇

)(
1

n

n∑

ı̇=1

σı̇

)
. (4)

The inequality is reversed if the sequences (ξı̇) and (σı̇) have the opposite monotonicity.

Equality attains in each case if and only if ξ1 = ξ2 = · · · = ξn or σ1 = σ2 = · · · = σn.

Now, we present the main result of this section.

Theorem 1. Let G be a connected graph having degree sequence (dı̇), degree-sum sequence

(Sı̇), order n and size m. If (dı̇) and (Sı̇) have the similar monotonicity, then

M1(G)

n
≤ M2(G)

m
. (5)

Equality attains if and only if G is regular or complete bipartite graph.

Proof. Let ξ1, ξ2, · · · , ξn and σ1, σ2, · · · , σn be real numbers, satisfying ξ1 ≤ ξ2 ≤ · · · ≤ ξn

and σ1 ≤ σ2 ≤ · · · ≤ σn or ξ1 ≥ ξ2 ≥ · · · ≥ ξn and σ1 ≥ σ2 ≥ · · · ≥ σn. Then, inequality

(4) is valid. We choose ξı̇ = dı̇ and σı̇ = Sı̇, for which inequality (4) becomes

1

n

n∑

ı̇=1

dı̇Sı̇ ≥
(
1

n

n∑

ı̇=1

dı̇

)(
1

n

n∑

ı̇=1

Sı̇

)
.
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From (2) and (3), we have
2

n
M2(G) ≥ 2m

n2
M1(G).

From here, the required inequality (5) follows.

Since equality in (4) attains if and only if ξ1 = ξ2 = · · · = ξn or σ1 = σ2 = · · · = σn. This

means that equality in (5) attains if and only if d1 = d2 = · · · = dn or S1 = S2 = · · · = Sn.

Then, d1 = d2 = · · · = dn implies G is a regular graph or from Lemma 3, S1 = S2 = · · · =
Sn implies G is a complete bipartite graph.

Remark 1. For the sufficient condition presented in Theorem 1, the Zagreb indices in-

equality holds for both connected and non-connected graphs.

3 Graphs with dı̇ ∈ [1,∞) satisfying the Zagreb in-

dices inequality

Consider the infinite family of connected graphs G(r, t) that is constructed from wheel

graphs Wr
∼= Cr−1 + v by adding t pendant edges at a single vertex of cycles Cr, where

r ≥ 4 and t ≤ r−3. The order and size of G(r, t) are t+r+1 and t+r respectively. Observe

that ∆ (G(r, t)) = r < ∞ and δ (G(r, t)) = 1. Therefore, dı̇ ∈ [1,∞). The graph G(r, t)

with labeled vertices is depicted in Fig. 1. We labeled the vertices of G(r, t) in such a way

that both the degree sequence (d1, d2, · · · , dt, · · · , dt+r−1, dt+r, dt+r+1) and the degree-sum

sequence (S1, S2, · · · , St, · · · , St+r−1, St+r, St+r+1), are monotonically increasing. Hence,

from Theorem 1, the Zagreb indices inequality (1) is valid for G(r, t).

v1
v2

vt-1

vt

vt+1

vt+2

vt+3

vt+4
vt+5

vt+r-3
vt+r-2

vt+r-1

vt+r

vt+r+1

vt+r-4

vt+r-5

vt+r-7

vt+r-6

Figure 1. Graph G(r, t).
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4 Relations between M1/n and M2/m

In this section, we establish the relations between M1(G)/n and M2(G)/m for any graph

G.

We need the following inequality.

Theorem 2. [4] Let ξ1, ξ2, . . . , ξn and σ1, σ2, . . . , σn be positive real numbers such that for

1 ≤ ı̇ ≤ n, it holds that r ≤ ξı̇ ≤ R and t ≤ σı̇ ≤ T . Then,
∣∣∣∣∣n

n∑

ı̇=1

ξı̇σı̇ −
n∑

ı̇=1

ξı̇

n∑

ı̇=1

σı̇

∣∣∣∣∣ ≤ τ(n) (R− r) (T − t) , (6)

where τ (n) = n
⌈
n
2

⌉ (
1− 1

n

⌈
n
2

⌉)
. Further, equality attains if and only if ξ1 = ξ2 = · · · = ξn

and σ1 = σ2 = · · · = σn.

Theorem 3. Let G be a graph having order n and size m edges, then

−ϕ(m,n) +
M1(G)

n
≤ M2(G)

m
≤ M1(G)

n
+ ϕ(m,n), (7)

where ϕ(m,n) = τ(n)
2mn

(∆− δ)2 (∆ + δ) and τ (n) = n
⌈
n
2

⌉ (
1− 1

n

⌈
n
2

⌉)
. Further, each

inequality achieves if and only if G is a regular.

Proof. Let ξ1, ξ2, · · · , ξn and σ1, σ2, · · · , σn be positive real numbers for which there exist

real constants r, t, R and T , so that for each ı̇, r ≤ ξı̇ ≤ R and t ≤ σı̇ ≤ T . Then, from

Theorem 2, the inequality (6) is valid. We choose ξı̇ = dı̇, σı̇ = Sı̇, r = δ, R = ∆, t = δ2,

and T = ∆2, for which the inequality (6) becomes
∣∣∣∣∣n

n∑

ı̇=1

dı̇Sı̇ −
n∑

ı̇=1

dı̇

n∑

ı̇=1

Sı̇

∣∣∣∣∣ ≤ τ(n)(∆− δ)(∆2 − δ2),

where τ (n) = n
⌈
n
2

⌉ (
1− 1

n

⌈
n
2

⌉)
.

From (2) and (3), we have

|2nM2(G)− 2mM1(G)| ≤ τ(n)(∆− δ)2(∆ + δ).

This implies that

−τ(n)(∆− δ)2(∆ + δ) + 2mM1(G) ≤ 2nM2(G) ≤ 2mM1(G) + τ(n)(∆− δ)2(∆ + δ).

By taking ϕ(m,n) = τ(n)
2mn

(∆− δ)2 (∆+ δ), the required compound inequality (7) follows.

Since equality achieves in (6) if and only if ξ1 = ξ2 = · · · = ξn and σ1 = σ2 = · · · = σn.

This means that each equality achieves in (7) if and only if d1 = d2 = · · · = dn and

S1 = S2 = · · · = Sn. This implies that G is a regular.
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5 Conclusion

This paper is to study a new sufficient condition for the validity of Zagreb indices inequal-

ity (1) and to establish relations between M1(G)/n and M2(G)/m for the general graphs.

The main contribution of this paper deals with the validity of inequality (1) for the graphs

with vertex degrees belong to an interval of any length. We would like to conclude this

paper by raising the following question:

Problem: Characterize the graphs for which both the degree sequence (dı̇) and the

degree-sum sequence (Sı̇) have the similar monotonicity.
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