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Abstract

In this paper it is shown that the unique graph obtained from the star Sn by
adding γ edges between a fixed pendant vertex v and γ other pendant vertices,
has the maximum (minimum) vertex degree function index Hf (G) in the set of all
n-vertex connected graphs having cyclomatic number γ when 1 ≤ γ ≤ n − 2 if
f(x) is strictly convex (concave) and satisfies an additional property. This property
holds for example if f(x) is differentiable and its derivative is also strictly convex
(concave). The general zeroth-order Randić index 0Rα(G) is strictly convex and
verifies this property for α > 2.

1 Introduction and notation

In this paper we shall use the notation and terminology from [16]. We recall some of

them. A universal vertex in a graph of order n is a vertex v having d(v) = n − 1. All

extremal graphs considered in this paper will contain universal vertices. An (n,m)-graph

is a graph having n vertices and m edges. The set of (n,m)-graphs will be denoted by

G(n,m).

The disjoint union of two vertex-disjoint graphs G1 and G2, denoted by G1∪G2, is the

graph whose vertex and edge sets are V (G1) ∪ V (G2) and E(G1) ∪ E(G2), respectively.

The union of k copies of a graph G will be denoted by kG.

For two vertex-disjoint graphs G and H, the join G ∨ H is obtained by joining by

edges each vertex of G to all vertices of H. The n-vertex star graph is denoted by Sn.
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The first Zagreb index M1(G) [6] is defined as M1(G) =
∑

v∈V (G)

d(v)2. The general

first Zagreb index (sometimes referred as ”zeroth-order general Randić index”), denoted

by 0Rα(G) was defined [8, 10] as 0Rα(G) =
∑

v∈V (G)

d(v)α, where α is a real number, α ̸∈

{0, 1}.
Some extremal results concerning the first Zagreb index or the general zeroth-order

Randić index were deduced in [1, 5, 7–14, 18]; see also the surveys [2, 4].

The cyclomatic number or the circuit rank of a graph G, denoted γ(G) is the minimum

number of edges whose deletion transforms G into an acyclic graph. For a connected graph

G ∈ G(n,m) it holds that γ(G) = m− n+ 1.

Let Gn,γ be the set of all connected n-vertex graphs with cyclomatic number γ.

Let v be a fixed pendant vertex of the n-vertex star Sn, where n ≥ 3. As in [3], for

0 ≤ γ ≤ n − 2 denote by Hn,γ the graph obtained from Sn by joining by edges v with γ

other pendant vertices. We have Hn,γ ∈ Gn,γ and Hn,0 = Sn.

The vertex-degree function index Hf (G) was introduced in [17] as

Hf (G) =
∑

v∈V (G)

f(d(v)),

for a function f(x) defined on non-negative real numbers. In this paper we will impose to

function f(x) to be strictly convex (concave) and satisfy an additional property. 0Rα(G)

corresponds to f(x) = xα, which is strictly convex for α < 0 or α > 1 and strictly concave

for 0 < α < 1.

2 Graphs with given cyclomatic number and maxi-

mum vertex degree function index

We need the following property, which was proved in [16]:

Lemma 2.1. In the set of connected (n,m)-graphs G having m ≥ n, the graph which

maximizes (minimizes) Hf (G) where f(x) is strictly convex (concave) possesses the fol-

lowing properties:

(1) G has a universal vertex v;

(2) The subgraph G − v consists of some isolated vertices and a nontrivial connected

component C which is maximum (minimum) relatively to Hg, where g(x) = f(x+1) and

C also contains a universal vertex.

For unicyclic, bicyclic and tricyclic graphs we obtain the following corollary:
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Corollary 2.2. [16] Let G ∈ G(n,m) be a connected graph such that Hf (G) is maximum

and f(x) is strictly convex. Then for:

a) m = n: G = K1 ∨ (K2 ∪ (n− 3)K1);

b) m = n+ 1: G = K1 ∨ (K1,2 ∪ (n− 4)K1);

c) m = n+ 2: G = K1 ∨ (K1,3 ∪ (n− 5)K1) or G = K1 ∨ (K3 ∪ (n− 4)K1). The first case

occurs when f(4)+3f(2) > 3f(3)+ f(1); when the inequality is reversed then the second

graph is maximum. In case of equality both graphs are maximum. A similar result holds

when convex is replaced by concave and maximum by minimum.

Note that K1 ∨ (K1,3 ∪ (n − 5)K1) = Hn,3 and the inequality occuring in case c) of

this Corollary can be written as

f(4) + f(2)− 2f(3) > f(3) + f(1)− 2f(2).

This inequality is a particular case of the following property:

We say that function f(x) has property (P↗;P↘) if φ(i + 1) > φ(i);φ(i + 1) < φ(i),

respectively for every integer i ≥ 0, where φ(x) = f(x+2)+ f(x)− 2f(x+1). Note that

if f(x) is differentiable and its derivative is strictly convex, then f(x) has property P↗,

since φ′(x) = f ′(x + 2) + f ′(x) − 2f ′(x + 1) > 0 by Jensen inequality. This implies that

φ(x) is a strictly increasing function, hence f(x) has property P↗. A similar situation

occurs when f ′(x) is strictly concave. Also if φ(x) is strictly convex, then φ(1) > φ(0)

implies property P↗. Indeed, if φ(2) ≤ φ(1) holds we would have φ(0) + φ(2) < 2φ(1),

which contradicts Jensen inequality and by induction we deduce that φ(i+ 1) > φ(i) for

every i ≥ 0.

We shall state a preliminary result which will be used in the proof of the main result

of this paper.

Theorem 2.3. Let n ≥ 2 and G be an n-vertex graph with m edges such that 1 ≤ m ≤
n− 1. If f(x) is a strictly convex function having property P↗, then it holds

Hf (G) ≤ f(m) +mf(1) + (n−m− 1)f(0),

with equality if and only if G = Sm+1 ∪ (n−m− 1)K1.

Proof. The proof is by induction on m. For m = 1 the result holds. Suppose that

the theorem is true for m = k − 1, where 2 ≤ k ≤ n − 1, and let G be an n-vertex

graph with k edges. Consider an edge uv ∈ E(G). We get d(u) + d(v) ≤ k + 1. If

d(u) ≤ d(v) it follows that d(u) ≤ (k + 1)/2. We can write Hf (G) − Hf (G − uv) =
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f(d(u))− f(d(u)− 1) + f(d(v))− f(d(v)− 1). f(x) being strictly convex, it follows that

f(x+ 1)− f(x) is strictly increasing in x. Since d(v) ≤ k + 1− d(u) we obtain that

Hf (G)−Hf (G− uv) ≤ f(d(u))− f(d(u)− 1) + f(k + 1− d(u))− f(k − d(u)).

We will show that the maximum of this alternating sum is reached only for d(u) = 1 if

d(u) ≤ (k+1)/2. By letting d(u) = x and g(x) = f(x)−f(x−1)+f(k+1−x)−f(k−x)

we get that g(x + 1) − g(x) = φ(x − 1) − φ(k − x − 1). Since f(x) has property P↗ we

have φ(x− 1) < φ(k − x− 1) for every 1 ≤ x < k/2, which implies that g(x+ 1) < g(x)

for every 1 ≤ x < k/2 . We shall consider two cases: A1. k is odd; A2. k is even.

A1. In this case it is necessary to prove that g(1) > g(2) > . . . > g((k + 1)/2), or

g(x) > g(x+1) for every x = 1, . . . , (k− 1)/2. This property holds since (k− 1)/2 < k/2.

A2. Now we must prove that g(1) > g(2) > . . . > g(k/2), or g(x) > g(x+1) for every

x = 1, . . . , k/2− 1. This inequality is true since k/2− 1 < k/2.

We deduce that

Hf (G)−Hf (G− uv) ≤ f(1)− f(0) + f(k)− f(k − 1)

and equality holds only for d(u) = 1 and d(v) = k. G − uv has k − 1 edges and by the

induction hypothesis we haveHf (G−uv) ≤ f(k−1)+(k−1)f(1)+(n−k)f(0) with equality

if and only if G = Sk∪(n−k−2)K1. Consequently, Hf (G) ≤ f(k)+kf(1)+(n−k−1)f(0)

and equality is reached if and only if G = Sk+1 ∪ (n− k − 1)K1. ■
The following theorem gives the maximum value of the vertex degree function index

Hf (G) in the set Gn,γ for every 1 ≤ γ ≤ n− 2.

Theorem 2.4. If n ≥ 3, 1 ≤ γ ≤ n − 2, f(x) is strictly convex which has property P↗

and G is a connected n-vertex graph with cyclomatic number γ, then

Hf (G) ≤ f(n− 1) + f(γ + 1) + γf(2) + (n− γ − 2)f(1),

with equality if and only if G = Hn,γ = K1 ∨ (K1,γ ∪ (n− γ − 2)K1).

Proof. Let G ∈ Gn,γ be such that Hf (G) is maximum. By Lemma 2.1 there exists a

universal vertex v ∈ V (G). We can write:

Hf (G) = f(n− 1) +Hg(G− v),

where g(x) = f(x+1). Since f(x) is strictly convex and satisfies P↗, it follows that g(x)

has the same properties. G− v has n′ = n− 1 vertices and m′ = m−n+1 = γ(G) edges.

112



Since by hypothesis we have 1 ≤ γ(G) ≤ n − 2 it follows that 1 ≤ m′ ≤ n′ − 1. We can

apply Theorem 2.3 for G − v, since Hg(G − v) must be maximum also, which concludes

the proof. ■
Analogous results for general sum-connectivity index χα(G) =

∑
uv∈E(G)

(d(u) + d(v))α

were deduced in [3] for α ≥ 2 and in [15] for 1 < α < 2.

A similar result holds for strictly concave functions f(x) which have property P↘: the

minimum of Hf (G) is reached in Gn,γ if and only if G = Hn,γ = K1∨(K1,γ∪(n−γ−2)K1).
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