Graphs with Given Cyclomatic Number Extremal Relatively to Vertex Degree Function Index for Convex Functions

Ioan Tomescu
Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei, 14, 010014 Bucharest, Romania
ioan@fmi.unibuc.ro

(Received April 21, 2021)

Abstract

In this paper it is shown that the unique graph obtained from the star S_{n} by adding γ edges between a fixed pendant vertex v and γ other pendant vertices, has the maximum (minimum) vertex degree function index $H_{f}(G)$ in the set of all n-vertex connected graphs having cyclomatic number γ when $1 \leq \gamma \leq n-2$ if $f(x)$ is strictly convex (concave) and satisfies an additional property. This property holds for example if $f(x)$ is differentiable and its derivative is also strictly convex (concave). The general zeroth-order Randić index ${ }^{0} R_{\alpha}(G)$ is strictly convex and verifies this property for $\alpha>2$.

1 Introduction and notation

In this paper we shall use the notation and terminology from [16]. We recall some of them. A universal vertex in a graph of order n is a vertex v having $d(v)=n-1$. All extremal graphs considered in this paper will contain universal vertices. An (n, m)-graph is a graph having n vertices and m edges. The set of (n, m) -graphs will be denoted by $G(n, m)$.

The disjoint union of two vertex-disjoint graphs G_{1} and G_{2}, denoted by $G_{1} \cup G_{2}$, is the graph whose vertex and edge sets are $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1}\right) \cup E\left(G_{2}\right)$, respectively. The union of k copies of a graph G will be denoted by $k G$.

For two vertex-disjoint graphs G and H, the join $G \vee H$ is obtained by joining by edges each vertex of G to all vertices of H. The n-vertex star graph is denoted by S_{n}.

The first Zagreb index $M_{1}(G)[6]$ is defined as $M_{1}(G)=\sum_{v \in V(G)} d(v)^{2}$. The general first Zagreb index (sometimes referred as "zeroth-order general Randić index"), denoted by ${ }^{0} R_{\alpha}(G)$ was defined $[8,10]$ as ${ }^{0} R_{\alpha}(G)=\sum_{v \in V(G)} d(v)^{\alpha}$, where α is a real number, $\alpha \notin$ $\{0,1\}$.

Some extremal results concerning the first Zagreb index or the general zeroth-order Randić index were deduced in $[1,5,7-14,18]$; see also the surveys $[2,4]$.

The cyclomatic number or the circuit rank of a graph G, denoted $\gamma(G)$ is the minimum number of edges whose deletion transforms G into an acyclic graph. For a connected graph $G \in G(n, m)$ it holds that $\gamma(G)=m-n+1$.

Let $\mathbb{G}_{n, \gamma}$ be the set of all connected n-vertex graphs with cyclomatic number γ.
Let v be a fixed pendant vertex of the n-vertex star S_{n}, where $n \geq 3$. As in [3], for $0 \leq \gamma \leq n-2$ denote by $H_{n, \gamma}$ the graph obtained from S_{n} by joining by edges v with γ other pendant vertices. We have $H_{n, \gamma} \in \mathbb{G}_{n, \gamma}$ and $H_{n, 0}=S_{n}$.

The vertex-degree function index $H_{f}(G)$ was introduced in [17] as

$$
H_{f}(G)=\sum_{v \in V(G)} f(d(v))
$$

for a function $f(x)$ defined on non-negative real numbers. In this paper we will impose to function $f(x)$ to be strictly convex (concave) and satisfy an additional property. ${ }^{0} R_{\alpha}(G)$ corresponds to $f(x)=x^{\alpha}$, which is strictly convex for $\alpha<0$ or $\alpha>1$ and strictly concave for $0<\alpha<1$.

2 Graphs with given cyclomatic number and maximum vertex degree function index

We need the following property, which was proved in [16]:
Lemma 2.1. In the set of connected (n, m)-graphs G having $m \geq n$, the graph which maximizes (minimizes) $H_{f}(G)$ where $f(x)$ is strictly convex (concave) possesses the following properties:
(1) G has a universal vertex v;
(2) The subgraph $G-v$ consists of some isolated vertices and a nontrivial connected component C which is maximum (minimum) relatively to H_{g}, where $g(x)=f(x+1)$ and C also contains a universal vertex.
For unicyclic, bicyclic and tricyclic graphs we obtain the following corollary:

Corollary 2.2. [16] Let $G \in G(n, m)$ be a connected graph such that $H_{f}(G)$ is maximum and $f(x)$ is strictly convex. Then for:
a) $m=n: G=K_{1} \vee\left(K_{2} \cup(n-3) K_{1}\right)$;
b) $m=n+1: G=K_{1} \vee\left(K_{1,2} \cup(n-4) K_{1}\right)$;
c) $m=n+2: G=K_{1} \vee\left(K_{1,3} \cup(n-5) K_{1}\right)$ or $G=K_{1} \vee\left(K_{3} \cup(n-4) K_{1}\right)$. The first case occurs when $f(4)+3 f(2)>3 f(3)+f(1)$; when the inequality is reversed then the second graph is maximum. In case of equality both graphs are maximum. A similar result holds when convex is replaced by concave and maximum by minimum.

Note that $K_{1} \vee\left(K_{1,3} \cup(n-5) K_{1}\right)=H_{n, 3}$ and the inequality occuring in case c) of this Corollary can be written as

$$
f(4)+f(2)-2 f(3)>f(3)+f(1)-2 f(2) .
$$

This inequality is a particular case of the following property:
We say that function $f(x)$ has property $\left(P_{\nearrow} ; P_{\searrow}\right)$ if $\varphi(i+1)>\varphi(i) ; \varphi(i+1)<\varphi(i)$, respectively for every integer $i \geq 0$, where $\varphi(x)=f(x+2)+f(x)-2 f(x+1)$. Note that if $f(x)$ is differentiable and its derivative is strictly convex, then $f(x)$ has property P_{\nearrow}, since $\varphi^{\prime}(x)=f^{\prime}(x+2)+f^{\prime}(x)-2 f^{\prime}(x+1)>0$ by Jensen inequality. This implies that $\varphi(x)$ is a strictly increasing function, hence $f(x)$ has property P_{\nearrow}. A similar situation occurs when $f^{\prime}(x)$ is strictly concave. Also if $\varphi(x)$ is strictly convex, then $\varphi(1)>\varphi(0)$ implies property P_{\nearrow}. Indeed, if $\varphi(2) \leq \varphi(1)$ holds we would have $\varphi(0)+\varphi(2)<2 \varphi(1)$, which contradicts Jensen inequality and by induction we deduce that $\varphi(i+1)>\varphi(i)$ for every $i \geq 0$.

We shall state a preliminary result which will be used in the proof of the main result of this paper.
Theorem 2.3. Let $n \geq 2$ and G be an n-vertex graph with m edges such that $1 \leq m \leq$ $n-1$. If $f(x)$ is a strictly convex function having property P_{\nearrow}, then it holds

$$
H_{f}(G) \leq f(m)+m f(1)+(n-m-1) f(0)
$$

with equality if and only if $G=S_{m+1} \cup(n-m-1) K_{1}$.
Proof. The proof is by induction on m. For $m=1$ the result holds. Suppose that the theorem is true for $m=k-1$, where $2 \leq k \leq n-1$, and let G be an n-vertex graph with k edges. Consider an edge $u v \in E(G)$. We get $d(u)+d(v) \leq k+1$. If $d(u) \leq d(v)$ it follows that $d(u) \leq(k+1) / 2$. We can write $H_{f}(G)-H_{f}(G-u v)=$
$f(d(u))-f(d(u)-1)+f(d(v))-f(d(v)-1) . f(x)$ being strictly convex, it follows that $f(x+1)-f(x)$ is strictly increasing in x. Since $d(v) \leq k+1-d(u)$ we obtain that

$$
H_{f}(G)-H_{f}(G-u v) \leq f(d(u))-f(d(u)-1)+f(k+1-d(u))-f(k-d(u))
$$

We will show that the maximum of this alternating sum is reached only for $d(u)=1$ if $d(u) \leq(k+1) / 2$. By letting $d(u)=x$ and $g(x)=f(x)-f(x-1)+f(k+1-x)-f(k-x)$ we get that $g(x+1)-g(x)=\varphi(x-1)-\varphi(k-x-1)$. Since $f(x)$ has property P_{\nearrow} we have $\varphi(x-1)<\varphi(k-x-1)$ for every $1 \leq x<k / 2$, which implies that $g(x+1)<g(x)$ for every $1 \leq x<k / 2$. We shall consider two cases: A1. k is odd; A2. k is even.

A1. In this case it is necessary to prove that $g(1)>g(2)>\ldots>g((k+1) / 2)$, or $g(x)>g(x+1)$ for every $x=1, \ldots,(k-1) / 2$. This property holds since $(k-1) / 2<k / 2$.

A2. Now we must prove that $g(1)>g(2)>\ldots>g(k / 2)$, or $g(x)>g(x+1)$ for every $x=1, \ldots, k / 2-1$. This inequality is true since $k / 2-1<k / 2$.
We deduce that

$$
H_{f}(G)-H_{f}(G-u v) \leq f(1)-f(0)+f(k)-f(k-1)
$$

and equality holds only for $d(u)=1$ and $d(v)=k$. $G-u v$ has $k-1$ edges and by the induction hypothesis we have $H_{f}(G-u v) \leq f(k-1)+(k-1) f(1)+(n-k) f(0)$ with equality if and only if $G=S_{k} \cup(n-k-2) K_{1}$. Consequently, $H_{f}(G) \leq f(k)+k f(1)+(n-k-1) f(0)$ and equality is reached if and only if $G=S_{k+1} \cup(n-k-1) K_{1}$.

The following theorem gives the maximum value of the vertex degree function index $H_{f}(G)$ in the set $\mathbb{G}_{n, \gamma}$ for every $1 \leq \gamma \leq n-2$.
Theorem 2.4. If $n \geq 3,1 \leq \gamma \leq n-2, f(x)$ is strictly convex which has property P_{\nearrow} and G is a connected n-vertex graph with cyclomatic number γ, then

$$
H_{f}(G) \leq f(n-1)+f(\gamma+1)+\gamma f(2)+(n-\gamma-2) f(1),
$$

with equality if and only if $G=H_{n, \gamma}=K_{1} \vee\left(K_{1, \gamma} \cup(n-\gamma-2) K_{1}\right)$.
Proof. Let $G \in \mathbb{G}_{n, \gamma}$ be such that $H_{f}(G)$ is maximum. By Lemma 2.1 there exists a universal vertex $v \in V(G)$. We can write:

$$
H_{f}(G)=f(n-1)+H_{g}(G-v)
$$

where $g(x)=f(x+1)$. Since $f(x)$ is strictly convex and satisfies P_{\nearrow}, it follows that $g(x)$ has the same properties. $G-v$ has $n^{\prime}=n-1$ vertices and $m^{\prime}=m-n+1=\gamma(G)$ edges.

Since by hypothesis we have $1 \leq \gamma(G) \leq n-2$ it follows that $1 \leq m^{\prime} \leq n^{\prime}-1$. We can apply Theorem 2.3 for $G-v$, since $H_{g}(G-v)$ must be maximum also, which concludes the proof.

Analogous results for general sum-connectivity index $\chi_{\alpha}(G)=\sum_{u v \in E(G)}(d(u)+d(v))^{\alpha}$ were deduced in [3] for $\alpha \geq 2$ and in [15] for $1<\alpha<2$.

A similar result holds for strictly concave functions $f(x)$ which have property P_{\searrow} : the minimum of $H_{f}(G)$ is reached in $\mathbb{G}_{n, \gamma}$ if and only if $G=H_{n, \gamma}=K_{1} \vee\left(K_{1, \gamma} \cup(n-\gamma-2) K_{1}\right)$.

References

[1] R. Ahlswede, G. O. H. Katona, Graphs with maximal number of adjacent pairs of edges, Acta Math. Acad. Sci. Hungar. 32 (1978) 97-120.
[2] A. Ali, I. Gutman, E. Milovanović, I. Milovanović, Sum of powers of the degrees of graphs: Extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80 (2018) 5-84.
[3] A. Ali, D. Dimitrov, Z. Du, F. Ishfaq, On the extremal graphs for general sumconnectivity index (χ_{α}) with given cyclomatic number when $\alpha>1$, Discr. Appl. Math. 257 (2019) 19-30.
[4] A. Ali, L. Zhong, I. Gutman, Harmonic index and its generalizations: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 81 (2019) 249-311.
[5] H. Deng, A unified approach to the extremal Zagreb indices for trees, unicyclic graphs and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 597-616.
[6] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[7] I. Gutman, Graphs with smallest sum of squares of vertex degrees, Kragujevac J. Math. 25 (2003) 51-54.
[8] Y. Hu, X. Li, Y. Shi, T. Xu, I. Gutman, On molecular graphs with smallest and greatest zeroth-order general Randić index, MATCH Commun. Math. Comput. Chem. 54 (2005) 425-434.
[9] Y. Hu, X. Li, Y. Shi, T. Xu, Connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index, Discr. Appl. Math. 155 (2007) 1044-1054.
[10] X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208.
[11] X. Li, Y. Shi, (n, m)-graphs with maximum zeroth-order general Randić index for $\alpha \in(-1,0)$, MATCH Commun. Math. Comput. Chem. 62 (2009) 163-170.
[12] N. Linial, E. Rozenman, An extremal problem on degree sequences of graphs, Graphs Comb. 18 (2002) 573-582.
[13] L. Pavlović, M. Lazić, T. Aleksić, More on "Connected (n, m)-graphs with minimum and maximum zeroth-order general Randić index", Discr. Appl. Math. 157 (2009) 2938-2944.
[14] I. Tomescu, M. Arshad, M. K. Jamil, Extremal topological indices for graphs of given connectivity, Filomat 29 (2015) 1639-1643.
[15] I. Tomescu, Proof of a conjecture concerning maximum general sum-connectivity index χ_{α} of graphs with given cyclomatic number when $1<\alpha<2$, Discr. Appl. Math. 267 (2019) 219-223.
[16] I. Tomescu, Properties of connected (n, m)-graphs extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 85 (2021) 285-294.
[17] Y. Yao, M. Liu, F. Belardo, C. Yang, Unified extremal results of topological indices and spectral invariants of graphs, Discr. Appl. Math. 271 (2019) 218-232.
[18] H. Zhang, S. Zhang, Unicyclic graphs with the first three smallest and largest first general Zagreb index, MATCH Commun. Math. Comput. Chem. 55 (2006) 427-438.

