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Abstract
Based on elementary geometry, a novel vertex-degree-based molecular structure

descriptor was recently introduced by Gutman in the chemical graph theory, defined
as SOred(G) =

∑
uv∈E(G)

√
(du − 1)2 + (dv − 1)2, where du denotes the degree of

vertex u in G, and named as reduced Sombor index. It was demonstrated that the
reduced Sombor index can help to exert modest discriminative potential and pre-
dict physico-chemical properties of molecules, and it performs with slightly better
predictive potential than the Sombor index [10,27]. Based on the results of testing
predictive potential of reduced Sombor indices, it may be successfully applied on
modeling thermodynamic properties of compounds [27].

In this paper, we obtain some bounds for reduced Sombor index of graphs with
given several parameters (such as maximum degree ∆, minimum degree δ, matching
number β, chromatic number χ, independence number α, clique number ω), some
special graphs (such as unicyclic grahs, bipartite graphs, graphs with no triangles,
graphs with no Kr+1 (2 ≤ r ≤ n− 1)) and the Nordhaus-Gaddum-type results. We
also characterize some extremal molecular graphs. Then we obtain the expected
values of reduced Sombor index in random polyphenyl chains. At last, we apply
the reduced Sombor index to graph spectrum and energy problems.
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1 Introduction
In this paper, notations and terminologies used but not defined here can refer to Bondy

and Murty [3]. Inspired by Euclidean metric, a novel vertex-degree-based molecular struc-

ture descriptor was recently introduced by Gutman in the chemical graph theory, the

reduced Sombor index [17], defined as

SOred(G) =
∑

uv∈E(G)

√
(du − 1)2 + (dv − 1)2 .

(reduced) Sombor index was developed as the geometric representation of vertex-degree-

based molecular structure descriptor, and any vertex-degree-based descriptor can be

viewed as a special case of a Sombor-type index [18].

Since the first paper [17] on the Sombor indices was published, a flood of papers

were created to report the properties of Sombor indices. Recently, the Sombor index

was studied on trees, unicyclic graphs and bicyclic graphs [6,29], molecular graphs [5,10].

Moreover, the mathematical properties of Sombor index were studied in [9,18,25,33]. Also,

in [10,27] chemical applicability of Sombor indices was considered. One can refer [22, 23]

for more and some other details on the Sombor indices.

The rest of the paper is organized as follows. In Section 2 we obtain some bounds for

reduced Sombor index of graphs with a given several parameters (such as maximum degree

∆, minimum degree δ, matching number β, chromatic number χ, independence number α,

clique number ω), some special graphs (such as unicyclic grahs, bipartite graphs, graphs

with no triangles, graphs with no Kr+1 (2 ≤ r ≤ n− 1)) and the Nordhaus-Gaddum-type

results. In Section 3 We characterize the extremal graphs among molecular graphs. In

Section 4 we obtain the expected values of reduced Sombor index in random polyphenyl

chains. In Section 5 we apply the reduced Sombor index to graph spectrum and energy

problems. In Section 6 we conclude this paper.

2 On the reduced Sombor index of graphs

2.1 Simple graphs

Here are three simple properties of reduced Sombor index.

Lemma 2.1 [10] Let G be a simple graph with n vertices. Then

0 ≤ SOred(G) ≤ SOred(Kn) =

√
2

2
n(n− 1)(n− 2),
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with left equality iff G ∼= tK2 ∪ (n− 2t)K1 where 0 ≤ t ≤ bn
2
c, right equality iff G ∼= Kn.

Lemma 2.2 [10] Let G be a simple connected graph with n vertices. Then

SOred(Pn) ≤ SOred(G) ≤ SOred(Kn),

with left equality iff G ∼= Pn, right equality iff G ∼= Kn.

Lemma 2.3 [10] Let T be a tree with n vertices. Then

SOred(Pn) ≤ SOred(T ) ≤ SOred(Sn),

with left equality iff T ∼= Pn, right equality iff T ∼= Sn.

In 2014, Gutman et al. [20] proposed the reduced reciprocal Randić (RRR) index,

which is defined as RRR(G) =
∑

uv∈E(G)

√
(du − 1)(dv − 1). By the definition of reduced

Sombor index, we have

Theorem 2.4 Let G be a simple connected graph. Then

SOred(G) ≥
√
2RRR(G),

with equality iff G is a regular graph.

Let G be a simple connected graph with no pendent vertices. Denote ψ(G) =∑
uv∈E(G)

1√
(du−1)(dv−1)

, then ψ(G) ·RRR(G) ≥ m2. By Theorem 2.4, we have

Theorem 2.5 Let G be a simple connected graph with m edges and no pendent vertices.

Then

SOred(G) ≥
√
2m2

ψ(G)
,

with equality iff G is a regular graph.

In the following we consider the bounds of simple graphs with given some parameters.

Denote ∆, δ the maximum and minimum degree of G, then we have the following results.

Theorem 2.6 Let G be a simple connected graph with n vertices. Then
√
2

2
nδ(δ − 1) ≤ SOred(G) ≤

√
2

2
n∆(∆− 1),

with equality iff G is a regular graph.
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Proof. It is obvious that nδ ≤
∑

v∈V (G)

dv = 2m ≤ n∆, with equality iff dv = ∆ or δ for all

v ∈ V (G). Then we have

(1) SOred(G) =
∑

uv∈E(G)

√
(du − 1)2 + (dv − 1)2 ≥

√
2m(δ − 1) ≥

√
2
2
nδ(δ − 1), with

equality iff dv = δ for all v ∈ V (G).

(2) SOred(G) =
∑

uv∈E(G)

√
(du − 1)2 + (dv − 1)2 ≤

√
2m(∆− 1) ≤

√
2
2
n∆(∆− 1), with

equality iff dv = ∆ for all v ∈ V (G). �

Lemma 2.7 [18,25] Let G be a simple connected graph with n vertices, m edges. Zg(G)

is the first Zagreb index of the graph G. Then
√
2

2
(Zg(G)− 2m) ≤ SOred(G) ≤ Zg(G)− 2m,

with left equality iff du = dv for any uv ∈ E(G), right equality iff G ∼= n
2
K2 for even n.

Since Zg(G) ≥ 4m2

n
with equality iff G is a regular graph (see [14]). By Lemma 2.7,

we have

Theorem 2.8 Let G be a simple connected graph with n vertices, m edges. Then

SOred(G) ≥
√
2m

n
(2m− n),

with equality iff G is a regular graph.

Since Zg(G) ≤ n(2m− n+ 1) with equality iff G ∼= Kn, K1,n−1 or n
2
K2 (see [35]). By

Lemma 2.7, we have

Theorem 2.9 Let G be a simple graph with n vertices, m edges. Then

SOred(G) ≤ (2m− n)(n− 1),

with equality iff G ∼= n
2
K2 for some even n.

In order to obtain the minimum value of the reduced Sombor index of unicyclic graphs,

we need the following lemmas.

Theorem 2.10 Let G be a simple connected graph with n vertices, m edges. Then

(1) SOred(G) ≥
√
2m(δ − 1),

(2) SOred(G) ≥
√
2
2
(2m(2m

n
− 1) + 1

2
(∆− δ)2) ≥

√
2m(2m

n
− 1).

with equality iff G is a regular graph.
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Proof. (1) By Lemma 2.7 and Zg(G) ≥ 2mδ, with equality iff G is a regular graph. Thus

SOred(G) ≥
√
2m(δ − 1), with equality iff G is a regular graph.

(2) By Lemma 2.7 and Zg(G) ≥ 4m2

n
+ 1

2
(∆− δ)2, with equality iff d2 = · · · = dn−1 =

d1+dn
2

(see [1]). Thus SOred(G) ≥
√
2
2
(2m(2m

n
− 1) + 1

2
(∆ − δ)2) ≥

√
2m(2m

n
− 1), with

equality iff G is a regular graph. �

In the following, we obtain the minimum unicyclic graphs with respect to reduced

Sombor index.

Theorem 2.11 Let G be a unicyclic graph with n vertices. Then

(1) SOred(G) ≥
√
2n(δ − 1),

(2) SOred(G) ≥
√
2n+

√
2
4
(∆− δ)2 ≥

√
2n,

with equality iff G ∼= Cn.

Proof. For unicyclic graph G, n = |V (G)| = |E(G)| = m. Combine with Theorem 2.10,

we obtain the conclusions. �

Since
n∑

i=1

d2i ≥ d21 + d2n + (2m−d1−dn)2

n−2
with equality iff d2 = · · · = dn−1 = d1+dn

2
, where

d1 ≥ d2 ≥ · · · ≥ dn (see [8]). By Lemma 2.7, we have

Theorem 2.12 Let G be a simple connected graph with n vertices, m edges. Then

SOred(G) ≥
√
2

2

(
∆2 + δ2 +

(2m−∆− δ)2

n− 2
− 2m

)
,

with equality iff G is a regular graph.

Let Γ be the class of graphs with d2 = d3 = · · · = dn, and ∆2 the second maximum

degree of G. Since Zg(G) ≥ ∆2+ (2m−∆)2

n−1
+ 2(n−2)

(n−1)2
(∆2− δ)2 with equality iff G is a regular

graph or G ∈ Γ (see [13]). By Lemma 2.7, we have that

Theorem 2.13 Let G be a simple graph with n vertices, m edges. Then

SOred(G) ≥
√
2

2

(
∆2 +

(2m−∆)2

n− 1
+

2(n− 2)

(n− 1)2
(∆2 − δ)2 − 2m

)
,

with equality iff G is a regular graph.
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2.2 Simple graphs with no triangles

In the following we consider the bounds of simple graphs with no triangles or Kr+1 (2 ≤

r ≤ n− 1).

Theorem 2.14 Let G be a simple connected graph with n vertices and no triangles. Then

SOred(G) ≤

{
m
√

(δ − 1)2 + (n− δ − 1)2, if ∆+ δ ≤ n;

m
√

(∆− 1)2 + (n−∆− 1)2, if ∆+ δ ≥ n.

Proof. Since G be a simple connected graph with n vertices and no triangles, then

du + dv ≤ n for every uv ∈ E(G). Let f(x) = x2 + (n− 2− x)2 where δ− 1 ≤ x ≤ ∆− 1.

It is obvious that f ′(x) < 0 for x ∈ [δ − 1, n
2
− 1], f ′(x) > 0 for x ∈ [n

2
− 1,∆ − 1].

Thus (1) if ∆+ δ ≤ n, then
√

(du − 1)2 + (n− 1− dv)2 ≤
√

(δ − 1)2 + (n− 1− δ)2, (2)

if ∆ + δ ≥ n, then
√

(du − 1)2 + (n− 1− dv)2 ≤
√

(∆− 1)2 + (n− 1−∆)2. From the

definition of reduced Sombor index, we have

(1) If ∆+ δ ≤ n, then

SOred(G) ≤
∑

uv∈E(G)

√
(du − 1)2 + (n− 1− dv)2 ≤ m

√
(δ − 1)2 + (n− δ − 1)2;

(2) If ∆+ δ ≥ n, then

SOred(G) ≤
∑

uv∈E(G)

√
(du − 1)2 + (n− 1− dv)2 ≤ m

√
(∆− 1)2 + (n−∆− 1)2. �

With the help of the following properties, we can obtain other bounds of simple graphs

with no triangles or Kr+1 (2 ≤ r ≤ n− 1).

Theorem 2.15 Let G be a simple connected graph with minimum degree δ and |E(G)| =

m. Then

SOred(G) ≤ Zg(G)−
√
2((

√
2− 1)δ + 1)m,

with equality iff G is a regular graph.

Proof. Without loss of generality, we suppose du ≥ dv for every uv ∈ E(G). It is obvious

that
√

(du − 1)2 + (dv − 1)2 ≤ du − 1 + (
√
2− 1)(dv − 1) = du −

√
2 + (

√
2− 1)dv.

From the definition of reduced Sombor index, we have

SOred(G) =
∑

uv∈E(G)

√
(du − 1)2 + (dv − 1)2 ≤

∑
uv∈E(G),du≥dv

(du + (
√
2 − 1)dv −

√
2) =∑

uv∈E(G)

(du + dv) −
∑

uv∈E(G),du≥dv

[(2 −
√
2)dv +

√
2] ≤ Zg(G) −

√
2((

√
2 − 1)δ + 1)m, with

equality iff G is a regular graph. �
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Theorem 2.16 Let G be a simple connected graph with n vertices, minimum degree δ

and no triangles. Then

SOred(G) ≤ m(n−
√
2− (2−

√
2)δ),

with equality iff G ∼= Kn
2
,n
2
.

Proof. Since G be a simple connected graph with n vertices, minimum degree δ and no

triangles. Then Zg(G) ≤ mn with equality iff G is a complete bipartite graph (see [35]).

Combine with Lemma 2.15, the conclusion holds. �

Theorem 2.17 Let G be a simple connected graph with n vertices, minimum degree δ

and no Kr+1 (2 ≤ r ≤ n− 1). Then

SOred(G) ≤
2r − 2

r
mn−

√
2((

√
2− 1)δ + 1)m,

with equality iff G is a regular complete r-partite graph.

Proof. Since G is a simple connected graph with n vertices, minimum degree δ and no

Kr+1 (2 ≤ r ≤ n− 1). Then Zg(G) ≤ 2r−2
r
mn with equality iff G is a complete 2-partite

graph for r = 2 and a regular complete r-partite graph for r ≥ 3 (see [37]). Combine with

Lemma 2.15, the conclusion holds. �

Except the above results, we also have the following results.

Theorem 2.18 Let G be a simple connected graph with n vertices, m edges, and minimum

degree δ. Then

SOred(G) ≤ m

(
2m

n− 1
+ n− (2 +

√
2)− (2−

√
2)δ

)
,

with equality iff G ∼= Kn.

Proof. Since G is a simple connected graph with n vertices, m edges, and minimum degree

δ. Then Zg(G) ≤ m( 2m
n−1

+n−2) with equality iff G ∼= Kn, K1,n−1, or K1∪Kn−1 (see [35]).

Combine with Lemma 2.15, the conclusion holds. �

Theorem 2.19 Let G be a simple connected graph with n vertices, m edges, and minimum

degree δ. Then

SOred(G) ≤ n(2m−nδ)+n
2

(
δ2 + 1 + (δ − 1)

√
(δ + 1)2 + 4(2m− nδ)

)
−
√
2((

√
2−1)δ+1)m,

with equality iff G is a regular graph.
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Proof. Since G is a simple connected graph with n vertices, m edges, and minimum degree

δ. Then Zg(G) ≤ n(2m−nδ)+ n
2
(δ2+1+(δ−1)

√
(δ + 1)2 + 4(2m− nδ)) with equality iff

G is a regular graph or G ∼= K1,n−1 (see [35]). Combine with Lemma 2.15, the conclusion

holds. �

2.3 Bipartite graphs (with given matching number)

In the following we consider the bounds of bipartite graphs (with given matching number).

The monotonicity of reduced Sombor index is obvious.

Lemma 2.20 Let G be a graph and u, v ∈ V (G), then

(1) if e = uv /∈ G, then SOred(G) < SOred(G+ e);

(2) if e = uv ∈ G, then SOred(G) > SOred(G− e).

Theorem 2.21 Let G be a bipartite graph with n vertices. Then

SOred(G) ≤
⌈n
2

⌉ ⌊n
2

⌋√(⌈n
2

⌉
− 1
)2

+
(⌊n

2

⌋
− 1
)2
,

with equality iff G ∼= Kdn
2
e,bn

2
c.

Proof. Since G is a bipartite graph with n vertices, we suppose p ≥ q. Then by Lemma

2.20, SOred(G) ≤ SOred(Kp,q). Thus SOred(G) ≤ SOred(Kp,q) = pq
√

(p− 1)2 + (q − 1)2 =

p(n− p)
√

(p− 1)2 + (n− p− 1)2.

Let f(x) = x(n − x)
√

(x− 1)2 + (n− x− 1)2, where dn
2
e ≤ x ≤ n − 1. It is obvious

that f ′(x) = x(n−x)(2x−n)+(n−2x)[(x−1)2+(n−x−1)2]
(x−1)2+(n−x−1)2

≤ 0 for dn
2
e ≤ x ≤ n−1. Thus SOred(G) ≤

p(n − p)
√

(p− 1)2 + (n− p− 1)2 ≤ dn
2
ebn

2
c
√

(dn
2
e − 1)2 + (bn

2
c − 1)2, with equality iff

G ∼= Kdn
2
e,bn

2
c. �

Figure 1: Bipartite graph B(r, t, a, b).

Let B(r, t, a, b) be the bipartite graph obtained from G1 = Kr,r+a and G2 = Kt,t+b

by joining each vertex of r-part in G1 to each vertex of t-part in G2, where r, t, a, b are

non-negative integers, see Figure 1.
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Lemma 2.22 [7] Let G be a bipartite graph of order n with bipartition (X,Y ) and

matching number β. Then there exists a bipartite graph G′ = B(r, t, a, b) such that

(1) I(G′) ≤ I(G) for the topological index I which decreases with addition of edges;

(2) I(G′) ≥ I(G) for the topological index I which increases with addition of edges,

with equality if and only if G ∼= B(r, t, a, b) for some non-negative integers r, t, a, b, where

r + t = β, r + t+ a = |X| and r + t+ b = |Y |.

Lemma 2.23 If bipartite graph B(r, t, a, b) � Kr+t,r+t+a+b. Then SOred(B(r, t, a, b)) <

SOred(Kr+t,r+t+a+b).

Proof. From the definition of reduced Sombor index, we have
SOred(Kr+t,r+t+a+b)− SOred(B(r, t, a, b))

= (r + t)(r + t+ a+ b)
√

(r + t+ a+ b− 1)2 + (r + t− 1)2

− r(r + a)
√

(r + t+ a− 1)2 + (r − 1)2 − rt
√

(r + t+ a− 1)2 + (r + t+ b− 1)2

− t(t+ b)
√

(r + t+ b− 1)2 + (t− 1)2

≥ (r(t+ b) + t(r + a))
√

(r + t+ a+ b− 1)2 + (r + t− 1)2

− rt
√

(r + t+ a− 1)2 + (r + t+ b− 1)2

≥ rt
[√

4(r + t+ a+ b− 1)2 + 4(r + t− 1)2 −
√

(r + t+ a− 1)2 + (r + t+ b− 1)2
]

= rt

[
4(r + t+ a+ b− 1)2 + 4(r + t− 1)2 − (r + t+ a− 1)2 − (r + t+ b− 1)2√
4(r + t+ a+ b− 1)2 + 4(r + t− 1)2 +

√
(r + t+ a− 1)2 + (r + t+ b− 1)2

]
> 0.

�

In the following, we obtain maximum bipartite graphs with given matching number.

Theorem 2.24 Let G be a bipartite graph with n vertices and matching number β. Then

SOred(G) ≤ SOred(Kβ,n−β) = β(n− β)
√

(β − 1)2 + (n− β − 1)2,

with equality iff G ∼= Kβ,n−β.

Proof. Suppose that G is a bipartite graph with n vertices, bipartition (X,Y ), and

matching number β, such that its reduced Sombor index is as large as possible.

By Lemma 2.20, 2.22, there exists a bipartite graph B(r, t, a, b) such that SOred(G) ≤

SOred(B(r, t, a, b)) with equality iff G ∼= B(r, t, a, b), where r+ t = β, r+ t+ a = |X| and

r + t+ b = |Y |.

By Lemma 2.23, SOred(B(r, t, a, b)) ≤ SOred(Kr+t,r+t+a+b) with equality iff G ∼=

Kr+t,r+t+a+b, i.e. G ∼= Kβ,n−β. This completes the proof. �
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2.4 Simple graphs with given chromatic number

Denote by X (n, χ) the set of connected graphs with n vertices and chromatic number χ.

By the monotonicity of reduced Sombor index and the definition of X (n, χ), we have

Theorem 2.25 Let G ∈ X (n, χ). Then

SOred(G) ≤ SOred(Kn1,n2,...,nχ),

with equality iff G ∼= Kn1,n2,...,nχ, where
χ∑

i=1

ni = n.

The Turán graph Tn,k is a special complete multipartite graph Kn1,n2,...,nk
with |ni −

nj| ≤ 1 for 1 ≤ i, j ≤ k. Further describing the maximum reduced Sombor index in

Kn1,n2,...,nχ is still an open problem. Therefore we propose the following conjecture.

Conjecture 2.1 Let G ∈ Kn1,n2,...,nχ. Then

SOred(G) ≤ SOred(Tn,χ),

with equality iff G ∼= Tn,χ.

2.5 Simple graphs with given independence number

Let CS(n, α) be the complete split graph with n vertices and independence number α.

In the following, we obtain maximum simple connected graphs with given independence

number.

Theorem 2.26 Let G be a simple connected graph with n vertices and independence

number α. Then

SOred(G) ≤
√
2

(
n− α

2

)
(n− 2) + α(n− α)

√
(n− α− 1)2 + (n− 2)2,

with equality iff G ∼= CS(n, α).

Proof. Since G is a simple connected graph with n vertices and independence number α.

By Lemma 2.20, we have

SOred(G) ≤ SOred(CS(n, α)) =
√
2
(
n−α
2

)
(n− 2)+α(n−α)

√
(n− α− 1)2 + (n− 2)2,

with equality iff G ∼= CS(n, α). �
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2.6 Simple graphs with given clique number

Theorem 2.27 Let G be a simple graph with n vertices and clique number ω. Then

SOred(G) ≥
√
2

2

(
n3

ω2
+ 2m(2n− 1)− n3

)
,

with equality iff G is a k-regular graph and ω = n
n−k

.

Proof. Since G is a simple graph with n vertices and clique number ω. Then Zg(G) ≥

4mn + n3

ω2 − n3 with equality iff G is a regular graph of degree k and ω = n
n−k

(see [15]).

Combine with Lemma 2.7, the conclusion holds. �

2.7 Nordhaus–Gaddum-type results

Theorem 2.28 Let G be a simple graph with n vertices. Then
√
2

4
n{2bn

2
c2−2(n−1)bn

2
c+(n−2)(n−1)} ≤ SOred(G)+SOred(G) ≤

√
2

2
n(n−1)(n−2),

with left equality iff G is a bn
2
c-regular graph, right equality iff G ∼= Kn or G ∼= Kn.

Proof. Since |E(G)|+ |E(G)| =
(
n
2

)
and

√
(di − 1)2 + (dj − 1)2 ≤

√
2(n− 2) for i ∼ j in

G or G. Thus SOred(G) + SOred(G) ≤
(
n
2

)√
2(n− 2) =

√
2
2
n(n− 1)(n− 2), with equality

iff G ∼= Kn or G ∼= Kn.

On the other hand, we have SOred(G) =
∑
i∼j

√
(di − 1)2 + (dj − 1)2 ≥

√
2
2

∑
i∼j

[(di− 1)+

(dj − 1)] =
√
2
2

n∑
i=1

(di − 1)(di − 1). And SOred(G) =
∑
i∼j

√
(n− 2− di)2 + (n− 2− dj)2 ≥

√
2
2

∑
i∼j

[(n−2−di)+(n−2−dj)] =
√
2
2

n∑
i=1

(n−2−di)(n−1−di). So SOred(G)+SOred(G) ≥
√
2
2

n∑
i=1

[(di−1)(di−1)+(n−2−di)(n−1−di)] =
√
2
2

n∑
i=1

[2d2i −2(n−1)di+(n−2)(n−1)] ≥
√
2
2
n{2bn

2
c2 − 2(n− 1)bn

2
c+ (n− 2)(n− 1)}, with equality iff G is a bn

2
c-regular graph. �

3 On the reduced Sombor index of molecular graphs

A molecular graph is a graph with maximum degree at most 4. Cruza et al. [5], considered

the Sombor index of molecular graphs. In the following, we obtain the extremal molecular

graphs with respect to reduced Sombor index. Let G be a molecular graph. Denote by

nx the number of vertices of G with degree x, mx,y the number of edges connecting a
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vertex with degree x and a vertex with degree y. Thus, n =
4∑

i=1

ni. Let P = {(x, y) ∈

N ×N : 1 ≤ x ≤ y ≤ 4}, then n =
∑

(x,y)∈P

x+y
xy
mx,y. Reduced Sombor index can be writed

as SOred(G) =
∑

(x,y)∈P

√
(x− 1)2 + (y − 1)2 mx,y.

Theorem 3.1 Let G be a molecular graph with n vertices. Then

SOred(G) ≤ 6
√
2n,

with equality iff G is a 4-regular molecular graph.

Proof. For convenience, we denote Q = {(x, y) ∈ P : (x, y) 6= (4, 4)}. Since n =∑
(x,y)∈P

x+y
xy
mx,y, then m4,4 = 2(n−

∑
(x,y)∈Q

x+y
xy
mx,y). From the definition of reduced Sombor

index, we have

SOred(G) =3
√
2m4,4 +

∑
(x,y)∈Q

√
(x− 1)2 + (y − 1)2mx,y

=6
√
2

n−
∑

(x,y)∈Q

x+ y

xy
mx,y

+
∑

(x,y)∈Q

√
(x− 1)2 + (y − 1)2mx,y

=6
√
2n+

∑
(x,y)∈Q

(√
(x− 1)2 + (y − 1)2 − 6

√
2
x+ y

xy

)
mx,y

=6
√
2n+

∑
(x,y)∈P

(√
(x− 1)2 + (y − 1)2 − 6

√
2
x+ y

xy

)
mx,y ≤ 6

√
2n .

with equality iff
√

(x− 1)2 + (y − 1)2 = 6
√
2x+y

xy
for (x, y) ∈ P , then (x, y) = (4, 4), i.e.,

G is a 4-regular molecular graph. �

The minimum reduced Sombor index of molecular graph is obvious.

Theorem 3.2 Let G be a molecular graph with n vertices. Then

SOred(G) ≥

{
0, if n ≡ 0(mod 2);

2, if n ≡ 1(mod 2).

And SOred(G) = 0 with equality iff G ∼= n
2
P2, SOred(G) = 2 with equality iff G ∼=

n−3
2
P2 ∪ P3.

By Lemma 2.2 and 3.1, we have the following result.
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Theorem 3.3 Let G be a connected molecular graph with n vertices. Then
√
2(n− 3) + 2 ≤ SOred(G) ≤ 6

√
2n,

with left equality iff G ∼= Pn, right equality iff G is a connected 4-regular molecular graph.

Deng et al. [10] obtain the maximum value of the reduced Sombor index and the

corresponding extremal graphs for all molecular trees. Let CT n be the set of molecular

trees with n vertices.

Lemma 3.4 [10] Let T ∈ CT n, n ≥ 5. Then

SOred(T ) ≤


(2 +

√
2)n+ 2− 5

√
2, n ≡ 2(mod 3);

(2 +
√
2)n+ 1 + 3

√
13− 13

√
2, n ≡ 1(mod 3);

(2 +
√
2)n+ 2

√
10− 9

√
2, n ≡ 0(mod 3).

Figure 2: Three types of maximum molecular trees.

The corresponding maximum molecular trees are depicted in Figure 2.

If n ≡ 2(mod 3) (n ≥ 5), the maximum molecular trees are (1) of Figure 2.

If n ≡ 1(mod 3) (n ≥ 13), the maximum molecular trees are (2) of Figure 2.

If n ≡ 0(mod 3) (n ≥ 9), the maximum molecular trees are (3) of Figure 2.

Exponential reduced Sombor index is defined as

eSOred(G) =
∑

uv∈E(G)

e
√

(du−1)2+(dv−1)2 .

We conjecture that the maximum molecular trees of exponential reduced Sombor index

and reduced Sombor index are the same.

Conjecture 3.1 Let T ∈ CT n, n ≥ 5. Then

eSOred(T ) ≤


2
3
(n+ 1)e3 + 1

3
(n− 5)e3

√
2, n ≡ 2(mod 3);

1
3
(2n+ 1)e3 + 1

3
(n− 13)e3

√
2 + 3e

√
13, n ≡ 1(mod 3);

2
3
ne3 + 1

3
(n− 9)e3

√
2 + 2e

√
10, n ≡ 0(mod 3).

The corresponding maximum molecular trees, also see Figure 2.
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4 The expected values of reduced Sombor index in
random polyphenyl chains

Random network theory is an important part of network science. In recent years, there

are many results about the extreme values of topological indices of random molecular

graphs, such as [24,28,32,34,39] and references cited therein. The polyphenyl chains are

special molecular graphs. A polyphenyl chain PPCh with h hexagons can be regarded as

a polyphenyl chain PPCh−1 with h − 1 hexagons to which a new terminal hexagon Hh

has been adjoined by a cut edge. For h ≥ 3, the terminal hexagon Hh can be attached

in three ways, which results in the local arrangements, we describe as PPC1
h, PPC2

h, and

PPC3
h, respectively, see Figure 3.

Figure 3: The three types of local arrangements in polyphenyl chains.

Suppose that the change from PPCh−1 to PPCh is a random process. The probability

from PPCh−1 to PPCh is p1, p2 and 1 − p1 − p2, respectively, see Figure 3. p1, p2 are

constants, irrelative to h. Thus, the process is a zeroth-order Markov process. With

associating probabilities, such a polyphenyl chain is called a random polyphenyl chain.

We denote it by PPC(h; p1, p2).

Denote by Mh = PPC(h; 1, 0) the polyphenyl meta-chain, Oh = PPC(h; 0, 1) the

polyphenyl orth-chain, Ph = PPC(h; 0, 0) the polyphenyl para-chain, respectively.

Recall that mx,y(G) is the number of edges connecting a vertex with degree x and a

vertex with degree y in G. Thus

SOred(PPCh) =
√
2m2,2(PPCh) +

√
5m2,3(PPCh) + 2

√
2m3,3(PPCh).

Denote by Eh = E[SOred(PPC(h; p1, p2))] the expected values of reduced Sombor index

of random polyphenyl chain PPC(h; p1, p2). In the following, we determine Eh.

Theorem 4.1 Let PPC(h; p1, p2) (h ≥ 2) be a random polyphenyl chain. Then

Eh = [(3
√
2− 2

√
5)p2 + 4(

√
2 +

√
5)]h+ 2(2

√
5− 3

√
2)p2 + 2(

√
2− 2

√
5).
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Proof. When h = 2, then E2 = E[SOred(PPC(2; p1, p2))] = 10
√
2 + 4

√
5.

When h ≥ 3, m2,2(PPCh), m2,3(PPCh), m3,3(PPCh) depend on the three possible

constructions(see Figure 3).

Case 1. PPCh−1 → PPC1
h, with probability p1.

m2,2(PPC
1
h) = m2,2(PPCh−1) + 2;

m2,3(PPC
1
h) = m2,3(PPCh−1) + 4;

m3,3(PPC
1
h) = m3,3(PPCh−1) + 1.

Thus, SOred(PPC
1
h) = SOred(PPCh−1) + 4(

√
2 +

√
5).

Case 2. PPCh−1 → PPC2
h, with probability p2.

m2,2(PPC
2
h) = m2,2(PPCh−1) + 3;

m2,3(PPC
2
h) = m2,3(PPCh−1) + 2;

m3,3(PPC
2
h) = m3,3(PPCh−1) + 2.

Thus, SOred(PPC
2
h) = SOred(PPCh−1) + 7

√
2 + 2

√
5.

Case 3. PPCh−1 → PPC3
h, with probability 1− p1 − p2.

m2,2(PPC
3
h) = m2,2(PPCh−1) + 2;

m2,3(PPC
3
h) = m2,3(PPCh−1) + 4;

m3,3(PPC
3
h) = m3,3(PPCh−1) + 1.

Thus, SOred(PPC
3
h) = SOred(PPCh−1) + 4(

√
2 +

√
5).

Thus, Eh = E[SOred(PPC(h; p1, p2))] = p1SOred(PPC
1
h)+p2SOred(PPC

2
h)+(1−p1−

p2)SOred(PPC
3
h) = SOred(PPCh−1) + (3

√
2− 2

√
5)p2 + 4(

√
2 +

√
5). Since E[Eh] = Eh,

then

Eh = Eh−1 + (3
√
2− 2

√
5)p2 + 4(

√
2 +

√
5).

Since above equation is a first order constant coefficient linear difference equation, we

can easily get Eh = [(3
√
2− 2

√
5)p2+4(

√
2+

√
5)]h+2(2

√
5− 3

√
2)p2+2(

√
2− 2

√
5). �

Recall that Mh = PPC(h; 1, 0) is the polyphenyl meta-chain, Oh = PPC(h; 0, 1) is

the polyphenyl orth-chain, Ph = PPC(h; 0, 0) is the polyphenyl para-chain. By Theorem

4.1, we have
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Corollary 4.2 The reduced Sombor index of Mh, Oh and Ph are

SOred(Oh) = (7
√
2 + 2

√
5)h− 4

√
2;

SOred(Mh) = SOred(Ph) = 4(
√
2 +

√
5)h− 2(

√
2− 2

√
5).

Corollary 4.3 Among all polyphenyl chains PPCh, we have

(7
√
2 + 2

√
5)h+ 4

√
5− 6

√
2 ≤ SOred(PPCh) ≤ 4(

√
2 +

√
5)h− 2(

√
2− 2

√
5),

with left equality iff G ∼= Oh, right equality iff G ∼= Ph or G ∼= Mh.

Denote by PCh the set of all polyphenyl chains with h hexagons. The average value

of reduced Sombor indices among PCh can be characterized as

SOavr(PCh) =
1

|PCh|
∑

G∈PCh

SOred(G).

Since each element in PCh has the same probability of occurrence, we have p1 = p2 =

1− p1 − p2 =
1
3
. Then we have

Theorem 4.4 The average values of reduced Sombor index among PCh is

SOavr(PCh) =
5
3
(3
√
2 + 2

√
5)h− 8

3

√
5.

We find that the average values of reduced Sombor index with respect to {Mh,Oh,Ph}

are SOred(Mh)+SOred(Oh)+SOred(Ph)
3

= 5
3
(3
√
2 + 2

√
5)h− 8

3

√
5 = SOavr(PCh).

The expected values of (reduced) Sombor index for random hexagonal chains, random

phenylene chains can be obtained by a similar method.

5 Applying reduced Sombor index to graph spectrum
and energy problems

5.1 Reduced Sombor spectral radius and energy of simple graph

Let G be a simple graph, the adjacent matrix A(G) is defined as

(A(G))ij =

{
1, uiuj ∈ E(G);

0, others.

Let the eigenvalues of A(G) be λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G), and λ1(G) is the spectral

radius of G. The energy of G is defined as EA(G) =
n∑

i=1

|λi| (see [19]). The energy

levels of the electrons in the molecule represent the eigenvalues of the graph. The energy
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of graphs has a wide range of applications in science and engineering, such as satellite

communications, face recognition, processing of high-resolution satellite images, etc.

The reduced Sombor index is defined as SOred(G) =
∑

uiuj∈E(G)

√
(di − 1)2 + (dj − 1)2.

Similarly, we propose the reduced Sombor matrix

(Sr(G))ij =

{ √
(di − 1)2 + (dj − 1)2, uiuj ∈ E(G);

0, others.

Let the eigenvalues of Sr(G) be µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G), and µ1(G) is the reduced

Sombor spectral radius of G. The reduced Sombor energy of G is defined as ES(G) =
n∑

i=1

|µi|.

Theorem 5.1 Let G be a simple connected graph with n (n ≥ 3) vertices, maximum

degree ∆ and minimum degree δ. Then
√
2(δ − 1)λ1 ≤ µ1 ≤

√
2(∆− 1)λ1,

with equality iff G is a connected regular graph.

Proof. (1) Let X = (x1, x2, · · · , xn) be a unit eigenvector of G corresponding to λ1. By

Rayleigh Quotient, µ1 ≥ XTSrX
XTX

= XTSrX = 2
∑

uiuj∈E(G)

√
(di − 1)2 + (dj − 1)2xixj ≥

2
√
2(δ − 1)

∑
uiuj∈E(G)

xixj =
√
2(δ − 1)XTAX =

√
2(δ − 1)X

TAX
XTX

=
√
2(δ − 1)λ1, with

equality iff di = dj for all uiuj ∈ E(G), i.e., G is a connected regular graph.

(2) Let Y = (y1, y2, · · · , yn) be a unit eigenvector of G corresponding to µ1. By

Rayleigh Quotient, µ1 = Y TSrY
Y TY

= Y TSrY = 2
∑

uiuj∈E(G)

√
(di − 1)2 + (dj − 1)2yiyj ≤

2
√
2(∆− 1)

∑
uiuj∈E(G)

yiyj =
√
2(∆− 1)Y

TAY
Y TY

≤
√
2(∆− 1)λ1, with equality iff di = dj for

all uiuj ∈ E(G), i.e., G is a connected regular graph. �

Theorem 5.2 Let G be a simple connected graph with n (n ≥ 3) vertices, m edges,

maximum degree ∆ and minimum degree δ. R(G), Zg(G) are the Randic index and first

Zagreb index of G. Then

(1) µ1 ≥
√
2(δ − 1)(d− 2m

n
), with equality iff G is a d-regular graph.

(2) µ1 ≥
√
2(δ−1)
m

R(G), with equality iff G is a regular graph.

(3) (δ − 1)
√

2Zg(G)

n
≤ µ1 ≤

√
2∆(∆ − 1), with equality iff G is a connected regular

graph.
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(4) 2
√
2m(δ−1)

n
≤ µ1 ≤ (∆ − 1)

√
2(2m− n+ 1), with left equality iff G is a connected

regular graph, right equality iff G ∼= Kn.

(5) µ1 ≥ 2
√
2(δ−1)(m−δ)

n−1
, with equality iff G is a regular graph.

Proof. (1) Since λ1 ≥ d − 2m
n

, with equality iff G is a d-regular graph (see [16]). By

Theorem 5.1, the result holds.

(2) Since λ1 ≥ 1
m

∑
uiuj∈E(G)

√
didj = R(G)

m
, with equality iff G is a regular graph (see

[16]). By Theorem 5.1, the result holds.

(3) Since
√

Zg(G)

n
≤ λ1 ≤ ∆, with left equality iff G is a regular or semiregular graph,

right equality iff G is a regular graph (see [36]). By Theorem 5.1, the result holds.

(4) Since 2m
n

≤ λ1 ≤
√
2m− n+ 1, with left equality iff G is a regular graph, right

equality iff G ∼= Kn or G ∼= K1,n−1 (see [21]). By Theorem 5.1, the result holds.

(5) Since λ1 ≥ 2(m−δ)
n−1

(see [11]). By Theorem 5.1, the result holds. �

Some of the following properties are similar to some other spectral radius and energy,

such as Randić spectral radius and energy, etc. (see [2,38]). For convenience, let Fr(G) =∑
uiuj∈E(G)

[(di−1)2+(dj−1)2]. We first obtain the relationship between the reduced Sombor

spectral radius µ1 and Fr.

Theorem 5.3 Let G be a simple graph with n vertices. Then

µ1 ≤
√

2(n− 1)Fr

n
,

with equality iff G is the graph without edges or a complete graph.

Proof. By Cauchy-Schwarz inequality, we have (
n∑

i=2

µi)
2 ≤ (n− 1)(

n∑
i=2

µ2
i ). Since

n∑
i=1

µi = 0

and
n∑

i=1

µ2
i = tr(S2

r ) = 2
∑

uiuj∈E(G)

[(di− 1)2+(dj − 1)2] = 2Fr, then µ2
1 ≤ (n− 1)(2Fr −µ2

1),

so µ1 ≤
√

2(n−1)Fr

n
, with equality iff µ2 = µ3 = · · · = µn. i.e., G is the graph without

edges or a complete graph (see Proposition 1 of [38]). �

In the following, we obtain the relationship between the reduced Sombor energy ES(G)

and Fr.
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Theorem 5.4 Let G be a simple graph with n vertices. Then

(1) ES(G) ≤
√
2nFr, with equality iff G is the graph without edges or all vertices of G

have degree one.

(2) ES(G) ≥ 2
√
Fr, with equality iff G is the graph without edges or a complete bipartite

graph with possibly isolated vertices.

(3) ES(G) ≥
√
n(n− 1)

n
√
D2 + 2Fr, where D = |µ1µ2 · · ·µn| = |det(Sr(G))|.

(4) ES(G) ≥ 2Fr+n|µ1||µn|
|µ1|+|µn| .

(5) ES(G) ≥ 1
2

√
8nFr − n2(|µ1| − |µn|)2.

(6) ES(G) ≥
√

2nFr − nbn
2
c(1− 1

n
bn
2
c)(|µ1| − |µn|)2.

Proof. (1) By Cauchy-Schwarz inequality, ES(G) =

√
(

n∑
i=1

|µi|)2 ≤
√

n∑
i=1

1
n∑

i=1

|µi|2 =√
n

n∑
i=1

µ2
i =

√
n× tr(S2

r ) =
√

2n
∑

uiuj∈E(G)

[(di − 1)2 + (dj − 1)2] =
√
2nFr, with left

equality iff µ1 = |µ2| = · · · = |µn|, i.e., G is the graph without edges or all vertices

of G have degree one (see Theorem 4 of [2], Proposition 3 of [38]).

(2) [ES(G)]
2 = [

n∑
i=1

|µi|]2 =
n∑

i=1

µ2
i + 2

∑
1≤i<j≤n

|µi||µj| ≥
n∑

i=1

µ2
i + 2|

∑
1≤i<j≤n

µiµj| =

n∑
i=1

µ2
i + 2|(−1

2

n∑
i=1

µ2
i )| = 2

n∑
i=1

µ2
i = 2tr(S2

r ) = 4
∑

uiuj∈E(G)

[(di − 1)2 + (dj − 1)2] = 4Fr, thus

ES(G) ≥ 2
√
Fr, with left equality iff G is the graph without edges or a complete bipartite

graph with possibly isolated vertices (see Proposition 6 of [38]).

(3) We know the fact that for any ai ≥ 0 (i = 1, 2, · · · , n), then a1+a2+···+an
n

≥

n
√
a1a2 · · · an. Thus

∑
i6=j

|µi||µj |

n(n−1)
≥ n(n−1)

√∏
i 6=j

|µi||µj| = n(n−1)

√
n∏

i=1

|µi|2(n−1) = n

√
n∏

i=1

|µi|2 =

n
√
D2. Then

∑
i 6=j

|µi||µj| ≥ n(n − 1)
n
√
D2. By the proof of (2), we have [ES(G)]

2 =

2Fr +
∑
i 6=j

|µi||µj|, thus we have ES(G) ≥
√
n(n− 1)

n
√
D2 + 2Fr.

(4) Since
n∑

i=1

a2i + rR
n∑

i=1

b2i ≤ (r + R)(
∑n

i=1 aibi), where rbi ≤ ai ≤ Rbi, ai, bi (1 ≤

i ≤ n) are nonnegative real numbers, r, R are real constants (see [12]). Then
n∑

i=1

|µi||µi|+

|µ1||µn|
n∑

i=1

12 ≤ (|µ1| + |µn|)(
n∑

i=1

|µi| × 1). By proof of (2), we have
n∑

i=1

|µi|2 = 2Fr and
n∑

i=1

|µi| = ES. Thus 2Fr + n|µ1||µn| ≤ (|µ1|+ |µn|)ES, so ES(G) ≥ 2Fr+n|µ1||µn|
|µ1|+|µn| .

(5) Since
n∑

i=1

a2i
n∑

i=1

b2i − (
n∑

i=1

aibi)
2 ≤ n2

4
(M1M2 −m1m2)

2, where ai, bi are nonnegative

real numbers, M1 = max1≤i≤n{ai}; M2 = max1≤i≤n{bi}; m1 = min1≤i≤n{ai}; m2 =

min1≤i≤n{bi} (see [26]). Thus
n∑

i=1

1
n∑

i=1

|µi|2−(
n∑

i=1

|µi|)2 ≤ n2

4
(|µ1|−|µn|)2, then 2nFr−E2

S ≤
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n2

4
(|µ1| − |µn|)2, i.e., ES(G) ≥ 1

2

√
8nFr − n2(|µ1| − |µn|)2.

(6) Since |n
n∑

i=1

aibi −
n∑

i=1

ai
n∑

i=1

bi| ≤ nbn
2
c(1− 1

n
bn
2
c)(A− a)(B − b), where a ≤ ai ≤ A,

b ≤ bi ≤ B, ai, bi (1 ≤ i ≤ n) are nonnegative real numbers, a, b, A,B are real constants

(see [4]). Thus |n
n∑

i=1

|µi||µi| −
n∑

i=1

|µi|
n∑

i=1

|µi|| ≤ nbn
2
c(1 − 1

n
bn
2
c)(|µ1| − |µn|)(|µ1| − |µn|).

By proof of (2), we have
n∑

i=1

|µi|2 = 2Fr and
n∑

i=1

|µi| = ES. Thus |2nFr − (ES)
2| ≤

nbn
2
c(1 − 1

n
bn
2
c)(|µ1| − |µn|)2. By the conclusion of (1), 2nFr ≥ (ES)

2. So ES(G) ≥√
2nFr − nbn

2
c(1− 1

n
bn
2
c)(|µ1| − |µn|)2. �

5.2 Sombor energy of the splitting graph

Let G be a simple graph, the splitting graph S ′(G) (see [30]) is obtained from G by

taking a new vertex v′ corresponding to each vertex v of G and adding edges between v′

and all vertices of G adjacent to v. See Figure 4 for example. Rencently, S. K. Vaidya

and K. M. Popat [31] obtained the relationship between the energy of G and the energy

of S ′(G), which is E(S ′(G)) =
√
5E(G). Here, we obtain the relationship between the

Sombor energy of G and the Sombor energy of S ′(G) in the regular graph, which is

ES(S
′(G)) = 2ES(G). Without causing confusion, we still denote ES(G) the Sombor

energy of G in this subsection.

Figure 4: An example for the graph G and its splitting graph S ′(G).

Suppose G is a regular graph, then the Sombor matrix S(G) of G is
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S(G) =



u1 u2 u3 · · · un

u1 0
√
d21 + d22

√
d21 + d23 · · ·

√
d21 + d2n

u2
√
d22 + d21 0

√
d22 + d33 · · ·

√
d22 + d2n

u3
√
d23 + d21

√
d23 + d22 0 · · ·

√
d23 + d2n

... ... ... ... . . . ...

un
√
d2n + d21

√
d2n + d22

√
d2n + d23 · · · 0


where di is the degree of vertex ui (1 ≤ i ≤ n) of G.

The Sombor matrix S(S ′(G)) of splitting graph S ′(G) is



u1 u2 · · · un u′1 u′2 · · · u′n

u1 0
√
t21 + t22 · · ·

√
t21 + t2n 0

√
t21 + t′22 · · ·

√
t21 + t′2n

u2
√
t22 + t21 0 · · ·

√
t22 + t2n

√
t22 + t′21 0 · · ·

√
t22 + t′2n

... ... ... . . . ... ... ... . . . ...

un
√
t2n + t21

√
t2n + t22 · · · 0

√
t2n + t′21

√
t2n + t′22 · · · 0

u′1 0
√
t′21 + t22 · · ·

√
t′21 + t2n 0 0 · · · 0

u′2
√
t′22 + t21 0 · · ·

√
t′22 + t2n 0 0 · · · 0

... ... ... . . . ... ... ... . . . ...

u′n
√
t′2n + t21

√
t′2n + t22 · · · 0 0 0 · · · 0


where ti = 2di is the degree of vertex ui (1 ≤ i ≤ n) of S ′(G), t′i = d′i is the degree of

vertex u′i (1 ≤ i ≤ n) of S ′(G).

Thus,

S(S ′(G)) =

 2S(G)
√

5
2
S(G)√

5
2
S(G) 0


The Sombor spectrum of S ′(G) is[

2+
√
14

2
µi

2−
√
14

2
µi

n n

]
where µi (1 ≤ i ≤ n) is the eigenvalue of S(G) and 2±

√
14

2
µi are the eigenvalue of 2

√
5
2√

5
2

0
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Thus,

ES(S
′(G)) =

n∑
i=1

∣∣∣∣∣2±
√
14

2
µi

∣∣∣∣∣ =
n∑

i=1

|µi|

(
2 +

√
14

2
+

2−
√
14

2

)

=2
n∑

i=1

|µi| = 2ES(G) .

In addition, it is easy to know the relationship between the energy and Sombor energy.

If G is a k-regular graph, then ES(G) =
√
2kE(G). If G is a (k, t)-semiregular graph,

then ES(G) =
√
k2 + t2E(G).

6 Concluding remarks

Owing to the fact that the predictive potential of the reduced Sombor index is slightly

better than Sombor index [27], it is more meaningful to study the properties of the reduced

Sombor index. In this article, we obtain a large number of important properties of reduced

Sombor index. These results could be of some interest to researchers working in chemical

applications of graph theory, random graph theory and spectral graph theory. In the

following, we propose some novel indices.

The exponential reduced Sombor index is defined as

eSOred(G) =
∑

uv∈E(G)

e
√

(du−1)2+(dv−1)2 .

The reduced Sombor coindex is defined as

SOco(G) =
∑

uv/∈E(G)

√
(du − 1)2 + (dv − 1)2 .

The reduced eccentricity Sombor index is defined as

SOε(G) =
∑

{u,v}⊆V (G)

√
(εu − 1)2 + (εv − 1)2 ,

where εu denotes eccentricity rate of vertex u in G.

Similarly, we propose the reduced eccentricity Sombor matrix

(Sε(G))ij =

{ √
(εi − 1)2 + (εj − 1)2, i 6= j;

0, others.

Let the eigenvalues of Sε(G) be ν1(G) ≥ ν2(G) ≥ · · · ≥ νn(G), and ν1(G) is the reduced

eccentricity Sombor spectral radius of G. The reduced eccentricity Sombor energy of G
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is defined as ESε(G) =
∑n

i=1 |νi|. Any eccentricity-based descriptor can be viewed as

a special case of a eccentricity Sombor-type index. It is, of course, also interesting to

consider the properties of these novel indices, we intend to do it in the near future.
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