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Abstract

Let G = (V,E) be a finite simple graph. The Sombor index SO(G) of G is
defined as

∑
uv∈E(G)

√
d2u + d2v, where du is the degree of vertex u in G. Let G be

a connected graph constructed from pairwise disjoint connected graphs G1, . . . , Gk

by selecting a vertex of G1, a vertex of G2, and identifying these two vertices. Then
continue in this manner inductively. We say that G is a polymer graph, obtained
by point-attaching from monomer units G1, ..., Gk. In this paper, we consider some
particular cases of these graphs that are of importance in chemistry and study their
Sombor index.

1 Introduction

A molecular graph is a simple graph such that its vertices correspond to the atoms and

the edges to the bonds of a molecule. Let G = (V,E) be a finite, connected, simple graph.

We denote the degree of a vertex v in G by dv. A topological index of G is a real number

related to G. It does not depend on the labeling or pictorial representation of a graph.

The Wiener index W (G) is the first distance based topological index defined as W (G) =∑
{u,v}⊆G d(u, v) = 1

2

∑
u,v∈V (G) d(u, v) with the summation runs over all pairs of vertices of

G [18]. The topological indices and graph invariants based on distances between vertices

of a graph are widely used for characterizing molecular graphs, establishing relationships

between structure and properties of molecules, predicting biological activity of chemical
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compounds, and making their chemical applications. The Wiener index is one of the most

used topological indices with high correlation with many physical and chemical indices of

molecular compounds [18]. Recently in [9] a new vertex-degree-based molecular structure

descriptor was put forward, the Sombor index, defined as

SO(G) =
∑

uv∈E(G)

√
d2u + d2v.

Cruz, Gutman and Rada in [3] characterized the graphs extremal with respect to this

index over the chemical graphs, chemical trees and hexagon systems (see [8]). In [5],

the chemical importance of the Sombor index has investigated and it is shown that this

index is useful in predicting physico‐chemical properties with high accuracy compared to

some well‐established and often used indices. Also a sharp upper bound for the Sombor

index among all molecular trees with fixed numbers of vertices has obtained, and those

molecular trees achieving the extremal value has characterized. In [14] the predictive and

discriminative potentials of Sombor index, reduced Sombor index, and average Sombor

index examined. All three topological molecular descriptors showed good predictive po-

tential. In [4] some novel lower and upper bounds on the Sombor index of graphs has

presented by using some graph parameters, especially, maximum and minimum degree.

Moreover, several relations on Sombor index with the first and second Zagreb indices of

graphs obtained. The mathematical relations between the Sombor index and some other

well-known degree-based descriptors investigated in [17].

In this paper, we consider the Sombor index of polymer graphs. Such graphs can be

decomposed into subgraphs that we call monomer units. Blocks of graphs are particular

examples of monomer units, but a monomer unit may consist of several blocks. For

convenience, the definition of these kind of graphs will be given in the next section. In

Section 2, the Sombor index of some graphs are computed from their monomer units.

In Section 3, we apply the results of Section 2, in order to obtain the Sombor index of

families of graphs that are of importance in chemistry.

2 Sombor index of polymers
Let G be a connected graph constructed from pairwise disjoint connected graphs G1, . . . , Gk

as follows. Select a vertex of G1, a vertex of G2, and identify these two vertices. Then

continue in this manner inductively. Note that the graph G constructed in this way has
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a tree-like structure, the Gi’s being its building stones (see Figure 1). Usually say that

G is a polymer graph, obtained by point-attaching from G1, . . . , Gk and that Gi’s are the

monomer units of G. A particular case of this construction is the decomposition of a

connected graph into blocks (see [7]).

b

b

b
b

b

b b

Gi

Gj

Figure 1. A polymer graph with monomer units G1, . . . , Gk.

By the definition of the Sombor index, we have the following easy result:

Proposition 2.1 Let G be a polymer graph with composed of monomers {Gi}ki=1. Then

SO(G) >
k∑

i=1

SO(Gi).

We consider some particular cases of these graphs and study their Sombor index. As

an example of point-attaching graph, consider the graph Km and m copies of Kn. By

definition, the graph Q(m,n) is obtained by identifying each vertex of Km with a vertex

of a unique Kn. The graph Q(5, 4) is shown in Figure 2.

Theorem 2.2 For the graph Q(m,n) (see Figure 2), and n ≥ 2 we have:

SO(Q(m,n)) = m(
(m+ n− 2)(m− 1)

2
+ (n− 1)2(

n

2
− 1))

√
2

+m(n− 1)
√

(m+ n− 2)2 + (n− 1)2.

Proof. There are m(m−1)
2

edges with endpoints of degree m+n−2. Also there are m(n−1)

edges with endpoints of degree m+ n− 2 and n− 1 and there are m(n− 1)(n
2
− 1) edges

with endpoints of degree n− 1. Therefore

SO(Q(m,n)) =
m(m− 1)

2

√
(m+ n− 2)2 + (m+ n− 2)2

+m(n− 1)
√

(m+ n− 2)2 + (n− 1)2

+m(n− 1)(
n

2
− 1)

√
(n− 1)2 + (n− 1)2,
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and we have the result.
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Figure 2. The graph Q(m,n) and Q(5, 4), respectively.

To obtain more results, we need the following theorem:

Theorem 2.3 [8] Let G = (V,E) be a graph and e = uv ∈ E. Also let dw be the degree

of vertex w in G. Then,

SO(G− e) < SO(G)− |du − dv|√
2

.

bcbc bc bc bc bc bc bc
x1 x2

x3y1 y2 y3
G1 G2 G3 bc bcb b b

xn ynyn−1

Gn−1
xn−1

Gn

Figure 3. Link of n graphs G1, G2, . . . , Gn

Here we study the Sombor index for links of graphs, circuits of graphs, chains of

graphs, and bouquets of graphs.

Theorem 2.4 Let G be a polymer graph with composed of monomers {Gi}ki=1 with respect

to the vertices {xi, yi}ki=1. Let G be the link of graphs (see Figure 3). Then,

SO(G) >
k∑

i=1

SO(Gi) +
k−1∑
i=1

|dxi+1
− dyi |√
2

.

Proof. First we remove edge y1x2 (Figure 3). By Proposition 2.3, we have

SO(G) > SO(G− y1x2) +
|dy1 − dx2|√

2
.

Let G′ be the link graph related to graphs {Gi}ki=2 with respect to the vertices {xi, yi}ki=2.

Then we have,

SO(G− y1x2) = SO(G1) + SO(G′),

and therefore,

SO(G) > SO(G1) + SO(G′) +
|dy1 − dx2|√

2
.

By continuing this process, we have the result.
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Theorem 2.5 Let G1, G2, . . . , Gk be a finite sequence of pairwise disjoint connected graphs

and let xi ∈ V (Gi). Let G be the circuit of graphs {Gi}ki=1 with respect to the vertices

{xi}ki=1 and obtained by identifying the vertex xi of the graph Gi with the i-th vertex of

the cycle graph Ck (Figure 4). Then,

SO(G) >
|dx1 − dxn|√

2
+

k∑
i=1

SO(Gi) +
k−1∑
i=1

|dxi
− dxi+1

|√
2

.

Proof. First we remove edge xnx1 (Figure 4). By Proposition 2.3, we have

SO(G) > SO(G− xnx1) +
|dxn − dx1|√

2
.

Now we remove edge x1x2. Then,

SO(G) > SO(G− {xnx1, x1x2}) +
|dxn − dx1|√

2
+

|dx2 − dx1|√
2

.

Let G′ be the graph related to circuit graph with {Gi}ki=2 with respect to the vertices

{xi}ki=2 and removing the edge xnx1. Then we have,

SO(G− {xnx1, x1x2}) = SO(G1) + SO(G′),

and therefore,

SO(G) > SO(G1) + SO(G′) +
|dxn − dx1 |√

2
+

|dx2 − dx1|√
2

.

By continuing this process, we have the result.

x1

x2

x3

G1

G2

G3

xnGn

bc

bcbc

bc

Figure 4. Circuit of n graphs G1, G2, . . . , Gn

The following theorem is another lower bound for the Sombor index of the circuit of

graphs.
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Theorem 2.6 Let G1, G2, . . . , Gk be a finite sequence of pairwise disjoint connected graphs

and let xi ∈ V (Gi). Let G be the circuit of graphs {Gi}ki=1 with respect to the vertices

{xi}ki=1 and obtained by identifying the vertex xi of the graph Gi with the i-th vertex of

the cycle graph Ck (Figure 4). Then,

SO(G) ≥ 2k
√
2 +

k∑
i=1

SO(Gi).

The equality holds if and only if for every 1 ≤ i ≤ k, Gi = K1.

Proof. Let di be the degree of the vertex xi before creating G. Since d(xi) = di + 2, we

have:

SO(G) =
√

(dk + 2)2 + (d1 + 2)2 +
k−1∑
i=1

√
(di + 2)2 + (di+1 + 2)2

+
k∑

i=1

( ∑
uv∈E(Gi−xi)

√
d2u + d2v +

∑
xi∼u∈Gi

√
(di + 2)2 + d2u

)
≥

√
4 + 4 +

k−1∑
i=1

√
4 + 4 +

k∑
i=1

( ∑
uv∈E(Gi−xi)

√
d2u + d2v +

∑
xi∼u∈Gi

√
d2i + d2u

)
= 2k

√
2 +

k∑
i=1

SO(Gi).

If Gi has at least one edge then the equality does not hold and therefore we have the

result.

bcbc bc bcbc bcbc bc
x1 x2

x3

y1 y2 y3
G1 G2 G3 bc bcb b b

xn

ynyn−1

Gn−1

xn−1

Gn

Figure 5. Chain of n graphs G1, G2, . . . , Gn

Theorem 2.7 Let G1, G2, . . . , Gn be a finite sequence of pairwise disjoint connected

graphs and let xi, yi ∈ V (Gi). Let C(G1, ..., Gn) be the chain of graphs {Gi}ni=1 with

respect to the vertices {xi, yi}ki=1 which obtained by identifying the vertex yi with the

vertex xi+1 for i = 1, 2, . . . , n− 1 (Figure 5). Then,

(i)

SO(C(G1, ..., Gn)) > SO(C(G1, ..., Gn−1)) + SO(Gn − yn−1) +
∑

u∼yn−1

u∈V (Gn)

|du − dyn−1|√
2

.
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(ii)

SO(C(G1, ..., Gn)) > SO(C(G1)) +
n∑

i=2

SO(Gi − yi−1) +
n−1∑
i=1

∑
u∼yi

u∈V (Gi+1)

|du − dyi |√
2

.

Proof.

(i) Consider C(G1, ..., Gn) in Figure 5. By using inductively Theorem 2.3 for all edges

in Gn which one of the their end vertices is yn−1 we have the result.

(ii) The result follows by applying Part (i) inductively.

Similar to the Theorem 2.7 we have:

Theorem 2.8 Let G1, G2, . . . , Gn be a finite sequence of pairwise disjoint connected

graphs and let xi ∈ V (Gi). Let B(G1, ..., Gn) be the bouquet of graphs {Gi}ni=1 with

respect to the vertices {xi}ni=1 and obtained by identifying the vertex xi of the graph Gi

with x (see Figure 6). Then,

SO(B(G1, ..., Gn)) > SO(G1) +
n∑

i=2

SO(Gi − xi) +
n−1∑
i=1

∑
u∼xi+1

u∈V (Gi+1)

|du − dxi+1
|√

2
.

x1

x2

x3

G1

G2

G3

xnGn

b

b

b

bcx

Figure 6. Bouquet of n graphs G1, G2, . . . , Gn and x1 = x2 = . . . = xn = x

3 Chemical applications

In this section, we apply our previous results in order to obtain the Sombor index of

families of graphs that are of importance in chemistry.
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3.1 Spiro-chains
Spiro-chains are defined in [6]. Making use of the concept of chain of graphs, a spiro-chain

can be defined as a chain of cycles. We denote by Sq,h,k the chain of k cycles Cq in which

the distance between two consecutive contact vertices is h (see S6,2,8 in Figure 7).

Theorem 3.1 For the graph Sq,h,k, when h ≥ 2, we have:

SO(Sq,h,k) = (2qk − 8k + 8)
√
2 + (8k − 8)

√
5.

Proof. There are 4(k − 1) edges with endpoints of degree 2 and 4. Also there are

qk − 4(k − 1) edges with endpoints of degree 2. Therefore

SO(Sq,h,k) = 4(k − 1)
√
4 + 16 + (qk − 4(k − 1))

√
4 + 4,

and we have the result.

Theorem 3.2 For the graph Sq,1,k, we have:

SO(Sq,1,k) = (2qk − 2k − 4)
√
2 + 4k

√
5.

Proof. There are k − 2 edges with endpoints of degree 4. Also there are 2k edges with

endpoints of degree 4 and 2, and there are qk − 3k + 2 edges with endpoints of degree 2.

Therefore

SO(Sq,1,k) = (k − 2)
√
16 + 16 + 2k

√
16 + 4 + (qk − 3k + 2)

√
4 + 4,

and we have the result.

b

b

b b

b

b

b

bb

b

bbb

b

b b

b

b

b

b

bbb

b

b b

b

bb

b

bb

bb

b

bb

b

b b

b

Figure 7. The graph S6,2,8

Cactus graphs which are a class of simple linear polymers, were first known as Husimi

tree, they appeared in the scientific literature some sixty years ago in papers by Husimi

and Riddell concerned with cluster integrals in the theory of condensation in statisti-

cal mechanics [10, 11, 15]. We refer the reader to papers [2, 13, 16] for some aspects of

parameters of cactus graphs.
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As an immediate result of Theorems 3.1 and 3.2 we have the following results for

cactus chains (see [8]):

Corollary 3.3 [8]

(i) Let Tn be the chain triangular graph (see Figure 8) of order n. Then for every

n ≥ 2, SO(Tn) = (4n− 4)
√
2 + 4n

√
5.

(ii) Let Qn be the para-chain square cactus graph (see Figure 8) of order n. Then for

every n ≥ 2, SO(Qn) = 8
√
2 + (8n− 8)

√
5.

(iii) Let On be the para-chain square cactus (see Figure 9) graph of order n. Then for

every n ≥ 2, SO(On) = (6n− 4)
√
2 + 4n

√
5.

(iv) Let Oh
n be the Ortho-chain graph (see Figure 9) of order n. Then for every n ≥ 2,

SO(Oh
n) = (10n− 4)

√
2 + 4n

√
5.

(v) Let Ln be the para-chain hexagonal cactus graph (see Figure 10) of order n. Then

for every n ≥ 2, SO(Ln) = (4n+ 8)
√
2 + (8n− 8)

√
5.

(vi) Let Mn be the Meta-chain hexagonal cactus graph (see Figure 10) of order n. Then

for every n ≥ 2, SO(Mn) = (4n+ 8)
√
2 + (8n− 8)

√
5.
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b b b b

Figure 8. Chain triangular cactus Tn and para-chain square cactus Qn
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Figure 9. Para-chain square cactus On and ortho-chain graph Oh
n
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Figure 10. Para-chain Ln and Meta-chain Mn
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3.2 Polyphenylenes

Similarly to the above definition of the spiro-chain Sq,h,k, we can define the graph Lq,h,k

as the link of k cycles Cq in which the distance between the two contact vertices in the

same cycle is h (see L6,2,4 in Figure 11).

Theorem 3.4 For the graph Lq,h,k, when h ≥ 2, we have:

SO(Lq,h,k) = (2qk − 5k + 5)
√
2 + (4k − 4)

√
13.

Proof. There are k − 1 edges with endpoints of degree 3. Also there are 4(k − 1) edges

with endpoints of degree 3 and 2, and there are qk − 4(k − 1) edges with endpoints of

degree 2. Therefore

SO(Lq,h,k) = (k − 1)
√
9 + 9 + 4(k − 1)

√
9 + 4 + (qk − 4(k − 1))

√
4 + 4,

and we have the result.

Theorem 3.5 For the graph Lq,1,k, we have:

SO(Lq,1,k) = (2qk − 5)
√
2 + 2k

√
13.

Proof. There are 2k− 3 edges with endpoints of degree 3. Also there are 2k edges with

endpoints of degree 3 and 2, and there are qk − 3k + 2 edges with endpoints of degree 2.

Therefore

SO(Lq,1,k) = (2k − 3)
√
9 + 9 + 2k

√
9 + 4 + (qk − 3k + 2)

√
4 + 4,

and we have the result.
b

b b

b b
b

b

b
b b

b b
b

b

b
b b

b b
b

b

b
b b

b b
b

Figure 11. The graph L6,2,4

bc bc bcy1 y2 y3

G1 G2 G3

Figure 12. Graphs G1, G2 and G3
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3.3 Triangulanes
We intend to derive the Sombor index of the triangulane Tk defined pictorially in [12].

We define Tk recursively in a manner that will be useful in our approach. First we define

recursively an auxiliary family of triangulanes Gk (k ≥ 1). Let G1 be a triangle and denote

one of its vertices by y1. We define Gk (k ≥ 2) as the circuit of the graphs Gk−1, Gk−1,

and K1 and denote by yk the vertex where K1 has been placed. The graphs G1, G2 and

G3 are shown in Figure 12.

bc

bc bc

Figure 13. Graphs T3

Theorem 3.6 For the graph Tk (see T3 in Figure 13), we have:

SO(Tk) =
(
36(2k−1 − 1) + 6(2k−1) + 12

)√
2 + 6(2k)

√
5.

Proof. Since creating such a graph is recursive, then there are 3 + 3
∑k−2

n=0 3(2
n) edges

with endpoints of degree 4. Also there are 3(2k) edges with endpoints of degree 4 and 2,

and there are 3(2k−1) edges with endpoints of degree 2. Therefore

SO(Tk) = (3 + 9
k−2∑
n=0

2n)
√
16 + 16 + 3(2k)

√
16 + 4 + 3(2k−1)

√
4 + 4,

and we have the result.

3.4 Nanostar dendrimers

We want to compute the Sombor index of the nanostar dendrimer Dk defined in [1]. In

order to define Dk, we follow [7]. First we define recursively an auxiliary family of rooted

dendrimers Gk (k ≥ 1). We need a fixed graph F defined in Figure 14, we consider one of

its endpoint to be the root of F . The graph G1 is defined in Figure 14, the leaf being its
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root. Now we define Gk (k ≥ 2) the bouquet of the following 3 graphs: Gk−1, Gk−1, and

F with respect to their roots; the root of Gk is taken to be its unique leaf (see G2 and G3

in Figure 15). Finally, we define Dk (k ≥ 1) as the bouquet of 3 copies of Gk with respect

to their roots (D2 is shown in Figure 16, where the circles represent hexagons).

Figure 14. Graphs F and G1, respectively.

Figure 15. Graphs G2 and G3, respectively.

Theorem 3.7 For the dendrimer D3[n] (see D3[2] in Figure 16) we have:

SO(D3[n]) = (63× 2n − 30)
√
2 + (18× 2n − 12)

√
13.

Proof. There are 3+9
n−1∑
k=0

2k edges with endpoints of degree 3. Also there are 6+18
n−1∑
k=0

2k

edges with endpoints of degree 3 and 2, and there are 12+18
n−1∑
k=0

2k edges with endpoints

of degree 2. Therefore

SO(D3[n]) = (3 + 9
n−1∑
k=0

2k)
√
9 + 9 + (6 + 18

n−1∑
k=0

2k)
√
9 + 4 + (12 + 18

n−1∑
k=0

2k)
√
4 + 4,

and we have the result.
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Figure 16. Nanostar D2 and D3[2], respectively.
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