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Abstract

Recently, Gutman defined a new vertex-degree-based graph invariant, named
the Sombor index SO of a graph G, and is defined by

SO(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2,

where dG(v) is the degree of the vertex v of G. In this paper, we obtain the sharp
lower and upper bounds on SO(G) of a connected graph, and characterize graphs
for which these bounds are attained.

1 Introduction

Let G be a connected graph with vertex set V (G) and edge set E(G). The order of G

is denoted by n. The degree of the vertex v is denoted by dG(v). For v ∈ V (G), NG(v)

denotes the set of all neighbors of v. An edge uv of a graph G is called a cut edge if

the graph G − uv is disconnected. For uv ∈ E(G), denote by G − uv the subgraph of

G obtained from G by deleting the edge uv. For two nonadjacent vertices u and v of G,

denote by G+uv the graph obtained from G by adding the edge uv. The girth of a graph

G is the length of the shortest cycle which is contained in G. The maximum degree of G

∗Corresponding author

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 86 (2021) 703-713
                         

                                          ISSN 0340 - 6253 



is denoted by ∆. The complete graph and the cycle of order n are denoted by Kn and

Cn, respectively. The clique number of a graph G is the maximal order of a complete

subgraph of G.

Gutman [2] defined a new vertex-degree-based graph invariant, named ”Sombor index”

of a graph G, denoted by SO(G) and is defined by

SO(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2.

Mathematical properties and applications of SO index were established in [2].

In this paper, we obtain the sharp lower bounds on SO(G) of a graph of order n with

the maximum degree ∆ and of a graph of order n with girth g. Also, we give the sharp

upper bound on SO(G) of a unicyclic graph of order n with girth g. Very recently, for

the graphs of order n with k pendent vertices, the graphs were characterized that have

the extremal classical Zagreb indices [1], multiplicative sum Zagreb index [3], and reduced

second Zagreb index [4]. Hence, furthermore, we obtain the sharp upper bound on SO(G)

of a graph of order n with k pendent vertices (r cut edges). Moreover, the corresponding

extremal graphs are characterized for which all the above bounds are attained.

2 Graphs with minimum Sombor index

In this section, we study the graphs with minimum Sombor index. Let P = uu1u2 · · ·uk

be a path of length k in G such that dG(u) ≥ 3, dG(uk) = 1 and dG(ui) = 2 for i =

1, 2, . . . , k − 1. Then it is called a pendent path in G, u and k are called the origin and

the length of P . Let us consider a function θ(t) =
√
t2 + 4−

√
t2 + 1 and one can easily

see that θ(t) is decreasing on [0,+∞).

Lemma 2.1. Let P and Q be two pendent paths with origins u and v in graph G, respec-

tively. Let x be a neighbor vertex of u who lies on P and y be the pendent vertex on Q.

Denote G′ = G− ux+ xy. Then SO(G) > SO(G′).
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Proof. Let z be the neighbor vertex of y in G. Suppose first that u ̸= v. Then

SO(G)− SO(G′)

=
∑

w∈NG(u)\x

√
dG(u)2 + dG(w)2 +

√
dG(u)2 + dG(x)2 +

√
1 + dG(z)2

−
∑

w∈NG(u)\x

√
(dG(u)− 1)2 + dG(w)2 −

√
22 + dG(x)2 −

√
22 + dG(z)2

>
√

dG(u)2 + dG(x)2 +
√

1 + dG(z)2 −
√

22 + dG(x)2 −
√

22 + dG(z)2. (1)

Suppose now that u = v. If the length of Q is equal to one, then u = z and

SO(G)− SO(G′)

=
∑

w∈NG(u)\{x,y}

√
dG(u)2 + dG(w)2 +

√
dG(u)2 + 1 +

√
dG(u)2 + dG(x)2

−
∑

w∈NG(u)\{x,y}

√
(dG(u)− 1)2 + dG(w)2 −

√
(dG(u)− 1)2 + 22 −

√
22 + dG(x)2

>
√

dG(u)2 + dG(x)2 −
√

22 + dG(x)2 ≥ 0

since dG(u) ≥ 2. If the length of Q is greater than one then let x′ be the neighbor of u

on path Q. Hence

SO(G)− SO(G′)

=
∑

w∈NG(u)\{x,x′}

√
dG(u)2 + dG(w)2 +

√
dG(u)2 + dG(x′)2

+
√

dG(u)2 + dG(x)2 +
√

1 + dG(z)2

−
∑

w∈NG(u)\{x,x′}

√
(dG(u)− 1)2 + dG(w)2 −

√
(dG(u)− 1)2 + dG(x′)2

−
√

22 + dG(x)2 −
√

22 + dG(z)2

>
√

dG(u)2 + dG(x)2 +
√

1 + dG(z)2 −
√

22 + dG(x)2 −
√

22 + dG(z)2. (2)

Therefore from the inequalities (1) or (2), it follows that

SO(G)− SO(G′) >
√

9 + dG(x)2 −
√

4 + dG(x)2 − θ(2) (3)

since dG(u) ≥ 3, dG(z) ≥ 2 and θ(t) is decreasing. Clearly dG(x) ≤ 2. If dG(x) = 1 then

we have SO(G) > SO(G′) from (3). If dG(x) = 2 then we also get SO(G) − SO(G′) >
√
13−

√
8− θ(2) > 0 from (3).

A tree is said to be star-like if it has exactly one vertex of degree greater than two.

Connected graphs of order n with the maximum degree at most two are only Pn and Cn.

-705-



In [2], it has been proved that SO(G) > SO(Pn) for any connected graph G of order n.

Therefore we consider a graph G which is different from Pn and Cn.

Theorem 2.2. Let G be a connected graph of order n with maximum degree ∆ ≥ 3.

(i) If 2∆ ≤ n− 1 then

SO(G) ≥ ∆(
√
∆2 + 4 +

√
5) + 2(n− 2∆− 1)

√
2 (4)

with equality if and only if G is isomorphic to a star-like tree of order n with maximum

degree ∆ in which all neighbors of the maximum degree vertex have degree two.

(ii) If 2∆ > n− 1 then

SO(G) ≥ (n− 1−∆)(
√
∆2 + 4 +

√
5) + (2∆− n+ 1)

√
∆2 + 1 (5)

with equality if and only if G is isomorphic to a star-like tree of order n with maximum

degree ∆ in which the maximum degree vertex has exactly 2∆−n+1 pendent neighbors.

Proof. Let SO(G) be minimum in the class of graphs of order n with maximum degree

∆ and w be the maximum degree vertex of G. If there is a non-cut edge xy in G such

that x ̸= w and y ̸= w, then SO(G) > SO(G− xy) and it follows that G is a tree. Now,

we prove that G is isomorphic to a star-like tree of order n with maximum degree ∆. If

not there is a pendent path uu1 · · ·uk such that u ̸= w. Clearly there is a pendent vertex

z ( ̸= uk) in G. Then SO(G) > SO(G− uu1 + u1z) by Lemma 2.1 and it contradicts the

fact that SO(G) is minimum.

Hence G is a star-like tree of order n with maximum degree ∆. Let k be the number

of pendent neighbors of w. Then

SO(G) = k(θ(2)− θ(∆)) + ∆(
√
∆2 + 4 +

√
5) + 2(n− 1− 2∆)

√
2. (6)

Since θ is a decreasing function and ∆ ≥ 3, we have θ(2) > θ(∆). Therefore we distinguish

the following two cases.

(i) If 2∆ ≤ n − 1 then there are star-like trees of order n with maximum degree ∆ such

that k = 0. Hence from (6), we obtain the required result.

(ii) If 2∆ > n − 1 then k ≥ 2∆ − n + 1. Hence from (6), we easily get the inequality

(5) and with equality if and only if G is isomorphic to a star-like tree of order n with

maximum degree ∆ in which the maximum degree vertex has exactly 2∆−n+1 pendent

neighbors.
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Denote by Cn,1 the graph obtained by attaching one pendent edge to a vertex of Cn−1.

Theorem 2.3. Let SO(G) be minimum in the class of graphs of order n with girth g. If

G is different from Cn, then G is isomorphic to the unicyclic graph with girth g that has

exactly one pendent path.

Proof. Let C be a cycle of length g and xy /∈ C be a non-cut edge of G. Then SO(G) >

SO(G− xy) and it follows that G is a unicyclic graph. Therefore, if g = n− 1 then G is

isomorphic to Cn,1 and hence the theorem in this case. Let now g ≤ n − 2 and G is not

isomorphic to the unicyclic graph that has exactly one pendent path of length at least

two. Then repeatedly using the transformation in Lemma 2.1, we get the required result.

The following result easily follows from Theorem 2.3.

Theorem 2.4. Let G be a unicyclic graph order n which is different from Cn. Then

SO(Cn) < SO(G).

Proof. Let g be the girth of G. Suppose that SO(G) is minimum in the class of graphs of

order n with girth g. Since G is different from Cn, G is isomorphic to the unicyclic graph

with girth g that has exactly one pendent path by Theorem 2.3. If g = n − 1 then G is

isomorphic to Cn,1 and it follows that SO(Cn,1) = 2
√
2(n− 3) + 2

√
13 +

√
10 > 2n

√
2 =

SO(Cn). If g ≤ n − 2 then G is isomorphic to the unicyclic graph that has exactly one

pendent path of length at least two and it follows that SO(G) =
√
5+3

√
13+2

√
2(n−4) >

2n
√
2 = SO(Cn).

3 Graphs with maximum Sombor index

In this section, we study the graphs with maximum Sombor index. Namely, we obtain

the sharp upper bounds on SO index of a unicyclic graph of order n with girth g and of

a graph of order n with k pendent vertices (r cut edges).

Lemma 3.1. Let G be a connected graph and uv be a non-pendent cut edge in G. Denote

by G′ the graph obtained by the contraction of uv onto the vertex u and adding a pendent

vertex v to u. Then SO(G) < SO(G′).
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Proof. Let NG(u)\{v} = {u1, u2, . . . , us} and NG(v)\{u} = {v1, v2, . . . , vt}, then dG(u) =

s+1 and dG(v) = t+1. Since uv is a non-pendent cut edge of G, we have st > 0. Hence,

by the definition of SO, we obtain

SO(G′)− SO(G) =
s∑

i=1

√
(s+ t+ 1)2 + dG(ui)2 −

s∑
i=1

√
(s+ 1)2 + dG(ui)2

+
t∑

j=1

√
(s+ t+ 1)2 + dG(vj)2 −

t∑
j=1

√
(t+ 1)2 + dG(vj)2

+
√

(s+ t+ 1)2 + 1−
√

(s+ 1)2 + (t+ 1)2

>
√

(s+ t+ 1)2 + 1−
√

(s+ 1)2 + (t+ 1)2

and it follows that SO(G) < SO(G′) since [(s+ t+1)2+1]− [(s+1)2+(t+1)2] = 2st > 0.

Proposition 3.2. Let G be a connected graph of order n with k cut edges. If SO(G) is

maximum in the class of graphs of order n with k cut edges, then all k cut edges of G are

pendent.

Proof. Suppose, on the contrary, that G contains a non-pendent cut edge uv. Let G′

be the graph obtained by the contraction of uv onto the vertex u and adding a pendent

vertex v to u. Then SO(G) < SO(G′) by Lemma 3.1. Therefore, we have a contradiction

to the assumption that SO(G) is maximum in the class of graphs of order n with k cut

edges.

Let A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn) be non-increasing two sequences on

an interval I of real numbers such that a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn. If

a1 + a2 + · · ·+ ai ≥ b1 + b2 + · · ·+ bi for all 1 ≤ i ≤ n− 1

then we say that A majorizes B.

Now we introduce Karamata’s inequality, named after Jovan Karamata [5], also known

as the majorization inequality.

Lemma 3.3. [5] Let f : I → R be a strictly convex function. Let A = (a1, a2, . . . , an) and

B = (b1, b2, . . . , bn) be non-increasing sequences on I. If A majorizes B then

f(a1) + f(a2) + · · ·+ f(an) ≥ f(b1) + f(b2) + · · ·+ f(bn)

with equality if and only if ai = bi for all 1 ≤ i ≤ n.
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Theorem 3.4. Let G be a unicyclic graph of order n with girth g. Then

SO(G) ≤ 2
√

(n− g + 2)2 + 4 + (n− g)
√

(n− g + 2)2 + 1 + 2
√
2(g − 2) (7)

with equality if and only if G is isomorphic to the graph obtained by attaching n − g

pendent edges to a vertex of Cg.

Proof. Denote by Un,g the graph obtained by attaching n − g pendent edges to a vertex

of Cg. If G is isomorphic to Un,g then the equality holds in (7). Suppose that G is not

isomorphic to this graph and SO(G) is maximum among all unicyclic graphs of order n

with girth g. Then by Proposition 3.2, G is isomorphic to a graph such that each pendent

edge is attached to the unique cycle.

Denote (in clockwise order) by u1, u2, . . . , ug the vertices on the cycle. Let k be the

number of pendent edges in G. For simplicity’s sake we denote dG(ui) = di, i = 1, 2, . . . , g.

Then, we have

2 ≤ di ≤ k + 2 and d1 + d2 + · · ·+ dg = k + 2g = n+ g. (8)

Consider a non-increasing sequence A = {ai} with length n+ g as follows:

k + 2

2
,
k + 2

2︸ ︷︷ ︸
2

, 1, 1, . . . , 1,︸ ︷︷ ︸
2g−4

2

k + 2
,

2

k + 2
, . . . ,

2

k + 2︸ ︷︷ ︸
k+2

.

Let c1, c2, . . . , cg be a permutation of the sequence d1, d2, . . . , dg. Then, we consider a

non-increasing sequence B = {bi} with length n+ g as follows:

c2
c1
, . . . ,

c2
c1︸ ︷︷ ︸

c1

,
c3
c2
, . . . ,

c3
c2︸ ︷︷ ︸

c2

, . . . ,
cg
cg−1

, . . . ,
cg
cg−1︸ ︷︷ ︸

cg−1

,
c1
cg
, . . . ,

c1
cg︸ ︷︷ ︸

cg

,

where for all 1 ≤ i ≤ g there exists j such that ci/ci−1 = dj/dj−1 with c0 = cg and d0 = dg.

Now we prove that A majorizes B. Denote Ai = a1 + a2 + · · ·+ ai and Bi = b1 + b2 +

· · · + bi for 1 ≤ i ≤ n + g. Then, one can easily see that An+g = Bn+g = n + g, A1 ≥ B1

and A2 ≥ B2 from (8) because c1, c2, . . . , cg is a permutation of d1, d2, . . . , dg.

Suppose first that 3 ≤ i ≤ 2g − 2. Then, we have Ai = k + 2 + i− 2 = k + i and

Bi = c2 + c3 + · · ·+ cs−1 +
pcs
cs−1

for some positive integers s and p,
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such that c1 + · · ·+ cs−2 + p = i and p ≤ cs−1. Therefore, we get

Ai −Bi = k + c1 + p− cs−1 −
pcs
cs−1

. (9)

On the other hand, for 1 ≤ i < j ≤ g we have di + dj ≤ k + 4 and it follows that

ci + cj ≤ k + 4. If p ≥ 2, then cs−1 + pcs/cs−1 ≤ cs−1 + cs ≤ k + 4 ≤ k + c1 + p since

p ≤ cs−1 and c1 ≥ 2. Therefore, we have Ai ≥ Bi from (9). If p = 1, then from (9), we

get

Ai −Bi ≥ k + 3− cs−1 −
cs
2

= k + 3 +
cs
2
− (cs−1 + cs) ≥ 0 (10)

since c1, cs−1, cs ≥ 2 and cs−1 + cs ≤ k + 4.

Suppose now that 2g − 2 < i ≤ n+ g. Then since An+g = n+ g,

Ai = n+ g − (n+ g − i) · 2

k + 2
. (11)

Moreover, since Bn+g = n+ g and the sequence B is non-increasing, we get

Bi ≤ n+ g − (n+ g − i)
c1
cg
. (12)

Therefore, from (11) and (12) we get Ai ≥ Bi using 2 ≤ c1, cg ≤ k+2. Hence we conclude

that A majorizes B.

Now, we prove that SO(G) < SO(Un,g) by using Karamata’s inequality. For this

purpose, let us consider a function f(x) =
√
1 + x2 and it is easy to see that this function

is strictly convex for x ∈ [0,+∞). By the definition of SO(G) and G is not isomorphic

to Un,g, we obtain

SO(G) =
√

d21 + d22 + · · ·+
√

d2g−1 + d2g +
√

d2g + d21

+(d1 − 2)
√

d21 + 1 + · · ·+ (dg − 2)
√

d2g + 1

< d1

√
1 +

(
d2
d1

)2

+ · · ·+ dg−1

√
1 +

(
dg
dg−1

)2

+ dg

√
1 +

(
d1
dg

)2

+k
√

(k + 2)2 + 1

= d1f

(
d2
d1

)
+ · · ·+ dg−1f

(
dg
dg−1

)
+ dgf

(
d1
dg

)
+k

√
(k + 2)2 + 1 (13)

by (8). Without loss of generality we may assume that

d2
d1

≥ d3
d2

≥ · · · ≥ dg
dg−1

≥ d1
dg

.
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Then we have proved that A majorizes the sequence

d2
d1

, . . . ,
d2
d1︸ ︷︷ ︸

d1

,
d3
d2

, . . . ,
d3
d2︸ ︷︷ ︸

d2

, . . . ,
dg
dg−1

, . . . ,
dg
dg−1︸ ︷︷ ︸

dg−1

,
d1
dg

, . . . ,
d1
dg︸ ︷︷ ︸

dg

.

Therefore from (13), we get the required strict inequality in (7) by using Karamata’s

inequality.

Lemma 3.5. If x ≥ y ≥ 0 and a ≥ 1 then

(x+ 1)
√

(x+ a)2 + 1 + y
√

(y + a− 1)2 + 1 ≥ x
√

(x+ a− 1)2 + 1 + (y + 1)
√

(y + a)2 + 1.

Proof. Let us consider a function

ϕ(x) = (x+ 1)
√

(x+ a)2 + 1− x
√

(x+ a− 1)2 + 1, x ∈ [0,+∞).

Then, we have

ϕ′(x) =
√

(x+ a)2 + 1 +
(x+ 1)(x+ a)√
(x+ a)2 + 1

−
√

(x+ a− 1)2 + 1− x(x+ a− 1)√
(x+ a− 1)2 + 1

>
(x+ 1)(x+ a)√
(x+ a)2 + 1

− x(x+ a− 1)√
(x+ a− 1)2 + 1

>
a+ 2x√

(x+ a− 1)2 + 1
> 0

and it follows that ϕ(x) is an increasing function. Therefore we get the required inequality

since x ≥ y.

Theorem 3.6. Let G be a connected graph of order n with k pendent vertices. Then

SO(G) ≤ (n− k − 2)(n− k − 1)2√
2

+ k
√

(n− 1)2 + 1 + (n− k − 1)
√

(n− 1)2 + (n− k − 1)2

with equality if and only if G is isomorphic to a graph obtained by attaching k pendent

edges to a vertex of Kn−k.

Proof. If G is isomorphic to a graph obtained by attaching k pendent edges to a vertex

of Kn−k, then equality holds in the inequality of the statement of the theorem. Suppose

that G is not isomorphic to this graph and SO(G) is maximum among all graphs of order

n with k pendent vertices. Then by Proposition 3.2, G is isomorphic to a graph such that

each pendent edge is attached to the clique with n− k vertices.

Denote by u1, u2, . . . , un−k the vertices of the clique. Denote dG(ui) = di, i =

1, 2, . . . , n − k. Without loss of generality we may assume that d1 ≥ d2 ≥ · · · ≥ dn−k.

Then, we have

d1 + d2 + · · ·+ dn−k = k + (n− k)(n− k − 1) and n− k − 1 ≤ di < n− 1. (14)
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Assume that dt = min{di | n− k − 1 < di < n− 1}. Then there is a pendent edge utx in

G and consider the graph G′ = G − utx + u1x. If we set x = d1 − n + k + 1, a = n − k

and y = dt − n+ k in the inequality of the statement of Lemma 3.5, then

(d1 − n+ k + 2)
√

(d1 + 1)2 + 1 + (dt − n+ k)
√

(dt − 1)2 + 1

≥ (d1 − n+ k + 1)
√

d21 + 1 + (dt − n+ k + 1)
√

d2t + 1. (15)

Therefore, we have

SO(G′)− SO(G)=
∑
i ̸=1,t

√
(d1 + 1)2 + d2i +

∑
i ̸=1,t

√
(dt − 1)2 + d2i +

√
(d1 + 1)2 + (dt − 1)2

+(d1 − n+ k + 2)
√

(d1 + 1)2 + 1 + (dt − n+ k)
√

(dt − 1)2 + 1

−
∑
i ̸=1,t

√
d21 + d2i −

∑
i ̸=1,t

√
d2t + d2i −

√
d21 + d2t

−(d1 − n+ k + 1)
√

d21 + 1− (dt − n+ k + 1)
√

d2t + 1

>
∑
i ̸=1,t

di

√
1 +

(
d1 + 1

di

)2

+
∑
i ̸=1,t

di

√
1 +

(
dt − 1

di

)2

−
∑
i ̸=1,t

di

√
1 +

(
d1
di

)2

−
∑
i ̸=1,t

di

√
1 +

(
dt
di

)2

(16)

by (15) and
√

(d1 + 1)2 + (dt − 1)2 ≥
√

d21 + d2t .

Consider non-increasing two sequences A = {ai} and B = {bi} as follows:

A :
d1 + 1

dn−k
, · · · , d1 + 1

dn−k︸ ︷︷ ︸
dn−k

, · · · , d1 + 1

dt+1
, · · · , d1 + 1

dt+1︸ ︷︷ ︸
dt+1

,
d1 + 1

dt−1
, · · · , d1 + 1

dt−1︸ ︷︷ ︸
dt−1

, · · · , d1 + 1

d2
, · · · , d1 + 1

d2︸ ︷︷ ︸
d2

,

dt − 1

dn−k
, · · · , dt − 1

dn−k︸ ︷︷ ︸
dn−k

, · · · , dt − 1

dt+1
, · · · , dt − 1

dt+1︸ ︷︷ ︸
dt+1

,
dt − 1

dt−1
, · · · , dt − 1

dt−1︸ ︷︷ ︸
dt−1

, · · · , dt − 1

d2
, · · · , dt − 1

d2︸ ︷︷ ︸
d2

;

B :
d1

dn−k
, · · · , d1

dn−k︸ ︷︷ ︸
dn−k

, · · · , d1
dt+1

, · · · , d1
dt+1︸ ︷︷ ︸

dt+1

,
d1
dt−1

, · · · , d1
dt−1︸ ︷︷ ︸

dt−1

, · · · , d1
d2

, · · · , d1
d2︸ ︷︷ ︸

d2

,

dt
dn−k

, · · · , dt
dn−k︸ ︷︷ ︸

dn−k

, · · · , dt
dt+1

, · · · , dt
dt+1︸ ︷︷ ︸

dt+1

,
dt
dt−1

, · · · , dt
dt−1︸ ︷︷ ︸

dt−1

, · · · , dt
d2

, · · · , dt
d2︸ ︷︷ ︸

d2

.

Denote Ai = a1+ a2+ · · ·+ ai and Bi = b1+ b2+ · · ·+ bi for 1 ≤ i ≤ 2
∑

i ̸=1,t di. From

the above, it is easy to see that both the summations of all elements of A and B are equal

to (n− k − 2)(d1 + dt), and Ai ≥ Bi for all 1 ≤ i ≤ 2
∑

i ̸=1,t di. Hence A majorizes B.

On the other hand, f(x) =
√
1 + x2 is a strictly convex function on [0,+∞). Therefore,

using Karamata’s inequality in (16), we get SO(G′) > SO(G) and it contradicts the fact

that SO(G) is maximum among all graphs of order n with k pendent vertices.
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The same argument as in the proof of Theorem 3.6 yields the following result.

Theorem 3.7. If SO(G) is maximum in the class of connected graphs of order n with r

cut edges, then G is isomorphic to the graph obtained by attaching r pendent edges to a

vertex of Kn−r.

Acknowledgment: The authors would like to express our very great appreciation to

Prof. Ivan Gutman for introducing this new graph invariant and sending the paper [2].

The second author was supported by Project of Inner Mongolia University for Nationalities

Research Funded Project (NMDYB17155).

References

[1] M. Enteshari, B. Taeri, Extremal Zagreb indices of graphs of order n with p pendent
vertices, MATCH Commun. Math. Comput. Chem. 86 (2021) 17–28.

[2] I. Gutman, Geometric approach to degree–based topological indices: Sombor indices,
MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.

[3] B. Horoldagva, C. Xu, L. Buyantogtokh, S. Dorjsembe, Extremal graphs with respect
to the multiplicative sum Zagreb index, MATCH Commun. Math. Comput. Chem.
84 (2020) 773–786.

[4] B. Horoldagva, T. Selenge, L. Buyantogtokh, S. Dorjsembe, Upper bounds for the
reduced second Zagreb index of graphs, Trans. Comb., in press.
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