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Abstract

Recently, Gutman defined a new vertex-degree-based graph invariant, named
the Sombor index SO of a graph G, and is defined by

50(G) = Y Vdaw)? +dg(v)?,

wel(G)

where d¢(v) is the degree of the vertex v of G. In this paper, we obtain the sharp
lower and upper bounds on SO(G) of a connected graph, and characterize graphs
for which these bounds are attained.

1 Introduction

Let G be a connected graph with vertex set V(G) and edge set E(G). The order of G
is denoted by n. The degree of the vertex v is denoted by dg(v). For v € V(G), Ng(v)
denotes the set of all neighbors of v. An edge uv of a graph G is called a cut edge if
the graph G — wo is disconnected. For uv € E(G), denote by G — uv the subgraph of
G obtained from G by deleting the edge uv. For two nonadjacent vertices v and v of G,
denote by G+ uv the graph obtained from G by adding the edge uv. The girth of a graph

G is the length of the shortest cycle which is contained in G. The maximum degree of G
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is denoted by A. The complete graph and the cycle of order n are denoted by K, and
C,, respectively. The clique number of a graph G is the maximal order of a complete

subgraph of G.

Gutman [2] defined a new vertex-degree-based graph invariant, named ” Sombor index”

of a graph G, denoted by SO(G) and is defined by

SO(G) = Y Vda(u) + da(v)2.

weE(G)

Mathematical properties and applications of SO index were established in [2].

In this paper, we obtain the sharp lower bounds on SO(G) of a graph of order n with
the maximum degree A and of a graph of order n with girth g. Also, we give the sharp
upper bound on SO(G) of a unicyclic graph of order n with girth g. Very recently, for
the graphs of order n with £ pendent vertices, the graphs were characterized that have
the extremal classical Zagreb indices [1], multiplicative sum Zagreb index [3], and reduced
second Zagreb index [4]. Hence, furthermore, we obtain the sharp upper bound on SO(G)
of a graph of order n with k pendent vertices (r cut edges). Moreover, the corresponding

extremal graphs are characterized for which all the above bounds are attained.

2 Graphs with minimum Sombor index

In this section, we study the graphs with minimum Sombor index. Let P = wujug - - - uy
be a path of length &k in G such that dg(u) > 3, dg(ux) = 1 and dg(u;) = 2 for i =
1,2,...,k — 1. Then it is called a pendent path in G, u and k are called the origin and
the length of P. Let us consider a function 6(t) = v/#2 4+ 4 — v/£2+ 1 and one can casily
see that 6(t) is decreasing on [0, +00).

Lemma 2.1. Let P and Q be two pendent paths with origins u and v in graph G, respec-
tively. Let x be a neighbor vertex of u who lies on P and y be the pendent vertex on Q.

Denote G' = G —ux + xy. Then SO(G) > SO(G").
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Proof. Let z be the neighbor vertex of y in G. Suppose first that v # v. Then
SO(G) — SO(G")

= Y Ve +do(w)? + dg(u)? + d()? + /1 + da(2)?

weENg(u)\z
= Y Vdo(w) = 1) +do(w)? = /22 + dg(2)” — /22 + da(2)?
wENg (u)\z
> Vda(u)? +da(2)? + 1+ da(2)? — /22 + dg(2)2 — /22 + dg(2) (1)

Suppose now that v = v. If the length of @ is equal to one, then u = z and
SO(G) — SO(G)

= Y Vdew)? + de(w)? + Vo (u) + 1+ V/da(u)? + do(x)?

weNG(u)\{z.y}
- > Vda(w) = 12+ da(w)? — /(da(u) = 1)2 + 22 — /22 + dg(x)?
weNG(w)\{z.y}

> da(u)? + da(z)? — /22 + da(z)2 > 0

since dg(u) > 2. If the length of @ is greater than one then let ' be the neighbor of u
on path Q). Hence

S0(G) — SO(G")
= > Ve + do(w)? + Vd(u)? + da(a')?

weNg (w)\{z,z'}

+V/da(u)? + do(z +\/1+d(~)

- Y Ve(w) = 1)? +da(w)? = /(da(u) = 1)? + da(a')?
wENg (u)\{z,z'}
7\/22+dg \/22+dg )
> Vdaw)? +do(x)? + 1+ de(2)? — V2 +de(x)? — /22 + de(2)2. (2

Therefore from the inequalities (1) or (2), it follows that

SO(G) — SO(G") > /9 + da(z)? — /4 + da(z)? — 0(2) (3)

since dg(u) > 3, de(z) > 2 and 6(t) is decreasing. Clearly dg(x) < 2. If dg(z) = 1 then
we have SO(G) > SO(G') from (3). If dg(z) = 2 then we also get SO(G) — SO(G') >
V13 — /8 — 0(2) > 0 from (3). ]

A tree is said to be star-like if it has exactly one vertex of degree greater than two.

Connected graphs of order n with the maximum degree at most two are only P, and C,,.
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In [2], it has been proved that SO(G) > SO(P,) for any connected graph G of order n.

Therefore we consider a graph G which is different from P, and C,,.

Theorem 2.2. Let G be a connected graph of order n with maximum degree A > 3.

(i) If 2A < n —1 then
SO(G) > A(NVAY +4+V5) +2(n — 2A — 1)V2 (4)

with equality if and only if G is isomorphic to a star-like tree of order n with maximum
degree A in which all neighbors of the maximum degree vertex have degree two.
(ii) If 2A > n — 1 then

SO(G) > (n—1-A)(VAZ+4+V5)+ (2A —n+ 1)VAZ + 1 (5)

with equality if and only if G is isomorphic to a star-like tree of order n with maximum

degree A in which the maximum degree vertex has exactly 2A —n + 1 pendent neighbors.

Proof. Let SO(G) be minimum in the class of graphs of order n with maximum degree
A and w be the maximum degree vertex of G. If there is a non-cut edge zy in G such
that  # w and y # w, then SO(G) > SO(G — zy) and it follows that G is a tree. Now,
we prove that G is isomorphic to a star-like tree of order n with maximum degree A. If
not there is a pendent path uu; - - - uy, such that u # w. Clearly there is a pendent vertex
z (# ug) in G. Then SO(G) > SO(G — uuy + uq2) by Lemma 2.1 and it contradicts the
fact that SO(G) is minimum.

Hence G is a star-like tree of order n with maximum degree A. Let k be the number

of pendent neighbors of w. Then
SO(G) = k(0(2) — 0(A)) + A(VAZ + 4+ V5) +2(n — 1 — 2A)V2. (6)
Since 6 is a decreasing function and A > 3, we have 6(2) > 6(A). Therefore we distinguish

the following two cases.

(i) If 2A < n — 1 then there are star-like trees of order n with maximum degree A such

that k& = 0. Hence from (6), we obtain the required result.

(ii) If 2A > n — 1 then £ > 2A —n + 1. Hence from (6), we easily get the inequality
(5) and with equality if and only if G is isomorphic to a star-like tree of order n with
maximum degree A in which the maximum degree vertex has exactly 2A —n + 1 pendent

neighbors. |
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Denote by C,, ; the graph obtained by attaching one pendent edge to a vertex of Cy,_1.

Theorem 2.3. Let SO(G) be minimum in the class of graphs of order n with girth g. If
G is different from C,,, then G is isomorphic to the unicyclic graph with girth g that has

ezactly one pendent path.

Proof. Let C be a cycle of length g and zy ¢ C be a non-cut edge of G. Then SO(G) >
SO(G — zy) and it follows that G is a unicyclic graph. Therefore, if g =n — 1 then G is
isomorphic to C),; and hence the theorem in this case. Let now ¢ < n — 2 and G is not
isomorphic to the unicyclic graph that has exactly one pendent path of length at least

two. Then repeatedly using the transformation in Lemma 2.1, we get the required result.

|
The following result easily follows from Theorem 2.3.

Theorem 2.4. Let G be a unicyclic graph order n which is different from C,. Then
SO(C,) < SO(G).

Proof. Let g be the girth of G. Suppose that SO(G) is minimum in the class of graphs of
order n with girth g. Since G is different from C,,, G is isomorphic to the unicyclic graph
with girth g that has exactly one pendent path by Theorem 2.3. If ¢ = n — 1 then G is
isomorphic to C,,; and it follows that SO(C,,1) = 2v/2(n — 3) + 2v/13 + /10 > 2nv/2 =
SO(C,,). If g < n — 2 then G is isomorphic to the unicyclic graph that has exactly one
pendent path of length at least two and it follows that SO(G) = vV5+3v13+2v/2(n—4) >
202 = SO(C,,). [ |

3 Graphs with maximum Sombor index

In this section, we study the graphs with maximum Sombor index. Namely, we obtain
the sharp upper bounds on SO index of a unicyclic graph of order n with girth g and of

a graph of order n with k pendent vertices (r cut edges).

Lemma 3.1. Let G be a connected graph and uv be a non-pendent cut edge in G. Denote
by G' the graph obtained by the contraction of uv onto the vertex u and adding a pendent
vertez v to u. Then SO(G) < SO(G’).
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Proof. Let Ng(u)\{v} = {ur,ug,...,us} and Ng(v)\{u} = {v1,v2,..., v}, then dg(u) =
s+ 1 and dg(v) = t+ 1. Since uv is a non-pendent cut edge of G, we have st > 0. Hence,

by the definition of SO, we obtain

s

50(G") — Z\/s+t+1 )+ da(ui)? = > /(s +1)% + d(u;)?

t
+Z\/€+f+1 +da(v)? =Y\ (t+1)? + de(v;)?
J=1

+\/s+t+1)2+1—\/(s+1)2+(t+1)

> Vs+t+1241—/(s+1)2+ (t+1)2

and it follows that SO(G) < SO(G') since [(s+t+1)2+1] —[(s+1)*+ (t+1)%] = 2st > 0.
|

Proposition 3.2. Let G be a connected graph of order n with k cut edges. If SO(G) is
mazximum in the class of graphs of order n with k cut edges, then all k cut edges of G are
pendent.

Proof. Suppose, on the contrary, that G contains a non-pendent cut edge uv. Let G’
be the graph obtained by the contraction of wv onto the vertex u and adding a pendent
vertex v to u. Then SO(G) < SO(G’) by Lemma 3.1. Therefore, we have a contradiction
to the assumption that SO(G) is maximum in the class of graphs of order n with k cut

edges. |

Let A = (ay,az,...,a,) and B = (by,bs,...,b,) be non-increasing two sequences on
an interval I of real numbers such that a1 +as +---+a, =by + by +---+0b,. If
ay+as+--4a; >by+bo+---+b forall 1<i<n-—1
then we say that A majorizes B.

Now we introduce Karamata’s inequality, named after Jovan Karamata [5], also known

as the majorization inequality.

Lemma 3.3.[5] Let f: I — R be a strictly convex function. Let A = (aq,aq,...,a,) and

B = (b1, by, ...,b,) be non-increasing sequences on I. If A majorizes B then
flar) + flao) + -+ + flan) = f(br) + f(b2) + -+ f(bn)

with equality if and only if a; = b; for all 1 <i <n.
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Theorem 3.4. Let G be a unicyclic graph of order n with girth g. Then

SOG)<2v/(n—g+22+4+(mn—g)vV(n—g+22+1+2V2(9-2) (7)

with equality if and only if G is isomorphic to the graph obtained by attaching n — g
pendent edges to a vertex of C,,.

Proof. Denote by U, , the graph obtained by attaching n — g pendent edges to a vertex
of Cy. If G is isomorphic to U, , then the equality holds in (7). Suppose that G is not
isomorphic to this graph and SO(G) is maximum among all unicyclic graphs of order n
with girth g. Then by Proposition 3.2, G is isomorphic to a graph such that each pendent

edge is attached to the unique cycle.

Denote (in clockwise order) by wuq, us, .. ., ug the vertices on the cycle. Let £ be the

number of pendent edges in G. For simplicity’s sake we denote dg(u;) = d;, i =1,2,...,g.

Then, we have
2<d;<k+2 and dy+do+---+dy=k+29=n+g. (8)

Consider a non-increasing sequence A = {a;} with length n + g as follows:

k+2 k+2 11 1 2 2 2
Tv T7 ) . 27 . LA ‘
e k42" k+2 k+2
2 k+2
Let ¢y, ca,...,¢4 be a permutation of the sequence dy,ds,...,d,. Then, we consider a

non-increasing sequence B = {b;} with length n + ¢ as follows:

C2 Cy C3 C3 Cqg Cqg C1 [&]
Tttt Ty Ty ey Ty ey T gy Ty Ty ey Ty
C1 C1 Co Co Cg—1 Cg—1 Cyg Cg
—_—— — N

c1 c2 Cg—1 Cg

where for all 1 < ¢ < g there exists j such that ¢;/c;_1 = d;/d;—1 with ¢o = ¢; and dy = d.

Now we prove that A majorizes B. Denote A; = a; +as+---+a; and B; = by + by +
<o+ b for 1 <i<n+g. Then, one can easily see that A,y = Byrg=n+g, Ay > By

and Ay > B, from (8) because ¢y, ¢y, .. ., ¢, is a permutation of dy, dy, .. ., d,.

Suppose first that 3 <i < 2g — 2. Then, we have A; =k+2+4+i—2=Fk+ ¢ and

pcs

Cs—1

Bi=cy+cg+--+cs1+

for some positive integers s and p,
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such that ¢; + -+ cs_o +p =1 and p < ¢s_1. Therefore, we get

PCs
— )
Cs—1

On the other hand, for 1 < i < j < g we have d; + d; < k + 4 and it follows that

Ai—Bj:k+C1+p—CS,1—

¢+ <k+4. If p>2 then ¢, 1 + pes/cso1 < cso1+¢s < k+4 < k+ ¢ + p since
p < ¢s—1 and ¢; > 2. Therefore, we have A; > B; from (9). If p = 1, then from (9), we
get

Ai=Bizh+3—coi— 2 =k+3+2—(c1+e) =0 (10)

since ¢1,¢s_1,¢s > 2 and ¢, 1+ ¢, < k+4.
Suppose now that 2g —2 < i <n + g. Then since 4,1, =n+g,

Ai:TL+g*(TL+!}*i)‘m. (11)

Moreover, since B, ., = n + g and the sequence B is non-increasing, we get

Bi<n+g—(n+g—i (12)

Cqg
Therefore, from (11) and (12) we get A; > B; using 2 < ¢, ¢, < k+2. Hence we conclude

that A majorizes B.

Now, we prove that SO(G) < SO(U,,) by using Karamata’s inequality. For this
purpose, let us consider a function f(z) = +/1+ z2 and it is easy to see that this function
is strictly convex for z € [0,+00). By the definition of SO(G) and G is not isomorphic

to U, 4, we obtain

SO(G)

\/df+d§+~-~+\/dg_l+d3+\/d§+d%
+(dy =2/ AT+ 1+ -+ (dg — 2)4/d2 + 1

da\ 2 d, \? di\?
it/ 1 —= s dy_qq/1 g 1 —
< +(d1) -+ +(g 1\/ +(dy,1) +d_q +<dg

ek +2)2+ 1

() () ()

+k/(k+2)24+1 (13)

by (8). Without loss of generality we may assume that

Boby pd o d
dy = d gy = d,
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Then we have proved that A majorizes the sequence

(12 (12 (13 d5 dg dg (l] (]1
d17"'7d17 d2‘,"'7d27 ) d-qil?"'?dgil'/ dg?"'?dg'
——— —— . ——
dq do dg—1 dg

Therefore from (13), we get the required strict inequality in (7) by using Karamata’s
inequality. |
Lemma 3.5. If x>y >0 and a > 1 then
(+D)VE+a)2+1+yv/y+a-12+1>ay/(z+a—-1)2+14+@y+D)V/(y+a)?2+1.

Proof. Let us consider a function

da) =@+ D)V +aP+1-ay/(z+a-12+1, z€l0,+o0).

Then, we have

' = T a2 wf x a — 2 7M
o) = Vizrap+ly (r+a)?+1 (wta=1)+1 (r+a—12+1
(z+D(@+a)  z(@ta-1)
Vi+a2+1l (z+a-1)2+1
a+ 2z

(z+a—-1)2+1
and it follows that ¢(x) is an increasing function. Therefore we get the required inequality
since z > y. ||
Theorem 3.6. Let G be a connected graph of order n with k pendent vertices. Then

(n—k—2)(n—k—1)?2 —3 L — 12 12
SO(G) < v +hvVin—124+1+n-k-1D)yV(n—1)2+n—k—1)

with equality if and only if G is isomorphic to a graph obtained by attaching k pendent

edges to a verter of Kp_y.

Proof. If G is isomorphic to a graph obtained by attaching k& pendent edges to a vertex
of K, _, then equality holds in the inequality of the statement of the theorem. Suppose
that G is not isomorphic to this graph and SO(G) is maximum among all graphs of order
n with k& pendent vertices. Then by Proposition 3.2, G is isomorphic to a graph such that

each pendent edge is attached to the clique with n — k vertices.

Denote by wui,us,...,u,— the vertices of the clique. Denote dg(u;) = d;, i =
1,2,...,n — k. Without loss of generality we may assume that d; > dy > -+ > d,,_y.
Then, we have

dy+dy+---+dyy=k+n—k)(n—k—1) and n—k—-1<d; <n-—1. (14)
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Assume that d; = min{d; | n —k — 1 < d; <n —1}. Then there is a pendent edge u;x in
G and consider the graph G' = G —wx + wz. f weset z=dy —n+k+1,a=n—k
and y = d; — n + k in the inequality of the statement of Lemma 3.5, then

(di —n+k+2)\/(di +1)2+1+(d—n+k)\/(d—1)2+1

>(di—n+k+)y/E+1+(d—n+k+1)Vd+ 1. (15)

Therefore, we have

SO(G) = SO(G) =D \J(di + 1>+ d2 + Y \/(dr = 1)2 +d? + \/(dr + 1)> + (d — 1)?
i£1t ALt
H(di—n4+k+2)/(di+1)24+1+(di —n+k)/(d —1)2+1
=B B =D A+ d2 -\ [d o+ d?

i£1,t i£Lt
—(dy—n+k+1) d2+1—(dt—n+k+1 VdF+1

/ d 1 / d
>3 d; 1+ 1+ Sdi 1+ -
i1t l;élt

d d
- 1+ 1 1+ di (16)
i#£Lt 1¢1t

by (15) and \/(d; + 1) + (d; — 1)2 > /d% + d;.

Consider non-increasing two sequences A = {a;} and B = {b;} as follows:

dy+1 dy+1 dy+1 di+1 di+1 di+1 di+1 dy+1

A , , :
dp—t’ doot ' 7 dir T deyr T den T dea ] dy 77 dy
dn_p dit1 di—1 do
di — 1 di — 1 di — 1 di—1 dy—1 di — 1 di — 1 dt—l.
o’ dper T der T der | diey T deer T dy T dy
dn— diy1 di—1 da
B: dl d] d] d] d] d] d] d]
’ Ao’ Tdnk T dipr’ Tdgr dey Tdie] Tda’ 0 T dy)
—_———
dn—k di+1 di—1 do
dy dy dy dy  dy dy di dy
oo’ Tdnok T di’ der de” i’ Tdy) T dy
—_——
dp— dit1 di—1 da

Denote A; = ay+as+---+a; and B; = by +by+---+b; for 1 <i < ZZi#l,tdi' From
the above, it is easy to see that both the summations of all elements of A and B are equal
to (n—k—2)(dy+di),and A; > B; forall 1 <i < QZ#M d;. Hence A majorizes B.

On the other hand, f(z) = v/1 + 22 is a strictly convex function on [0, +00). Therefore,
using Karamata’s inequality in (16), we get SO(G’) > SO(G) and it contradicts the fact

that SO(G) is maximum among all graphs of order n with & pendent vertices. |
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The same argument as in the proof of Theorem 3.6 yields the following result.

Theorem 3.7. If SO(G) is mazimum in the class of connected graphs of order n with r
cut edges, then G is isomorphic to the graph obtained by attaching r pendent edges to a

vertex of K.
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