Communications in Mathematical and in Computer Chemistry

Edge Deletion, Singular Values and ABC Energy of Graphs

Modjtaba Ghorbani^{1,*}, Mardjan Hakimi–Nezhaad¹, Lihua Feng²

¹Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785 - 136, I. R. Iran mghorbani@sru.ac.ir, m.hakiminezhaad@sru.ac.ir

²School of Mathematics and Statistics, Central South University, New Campus, Changsha, Hunan, 410083, P. R. China fenglh@163.com

(Received March 2, 2020)

Abstract

Let \mathcal{A} be the ABC matrix of graph G. The \mathcal{A} -energy $\mathcal{E}_{\mathcal{A}}(G)$ is the sum of absolute values of the eigenvalues of matrix \mathcal{A} . In this paper, we are interested how the \mathcal{A} -energy of an isolated-free graph changes when a non-leaf edge is deleted. The aim of this paper is to study graph energy change due to edge deletion. Further, we present several new results concerning with the \mathcal{A} -energy of a graph. Besides, we compute the energy and energy change due to edge deletion of some classes of well-known graphs.

1 Introduction

Let G = (V, E) be a simple graph with vertex set V(G) and edge set E(G), whose adjacency matrix is A(G). A graph is isolate-free if it has no isolated vertex. The complete graph, the cycle graph and the path graph on n vertices are denoted by K_n , C_n and P_n , respectively. For each $x \in V$, let $N_G(x)$ denote the neighborhood of x. Let e = xy be an edge of E(G). Then $N_G(x) \cap N_G(y) = \emptyset$ if and only if e is not on a cycle C_3 .

Let M be a real square matrix of order n. The eigenvalues of matrix M are the roots of characteristic polynomial $P_M(\lambda) = \det(\lambda I_n - M)$, where I_n is the identity matrix of order n. If M has exactly s distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_s$ with respectively multiplicities

^{*}Corresponding author

-644-

 t_1, t_2, \ldots, t_s , then we use $\text{Spec}(M) = \{ [\lambda_1]^{t_1}, [\lambda_2]^{t_2}, \ldots, [\lambda_s]^{t_s} \}$, for showing the spectrum of M.

The adjacency energy or briefly the energy of G is a graph invariant which was introduced by Ivan Gutman [18]. The energy $\mathcal{E}_A(G)$ is defined as the sum of absolute values of the eigenvalues of A(G). For its basic properties and applications, including various lower and upper bounds, see the book [23], a survey [19], the recent papers [7,9,10,17,20,21,25,26] and the references cited there in. The energy of a vertex, as introduced by Arizmendi et al. [4], is defined as $\mathcal{E}_G(v_i) = |A|_{ii}$, $(1 \le i \le n)$, where $|A| = (AA^t)^{\frac{1}{2}}$ and A is the adjacency matrix of G, see [3,5,14] for further properties. Given $\mathcal{E}_A(G) = \text{Tr}(|A|)$, we can recover the energy of a graph by adding the energies of the vertices in the graph G,

$$\mathcal{E}_A(G) = \mathcal{E}_G(v_1) + \dots + \mathcal{E}_G(v_n)$$

The structure of this paper is as follows. In Section 2, we give some auxiliary results concerning with the \mathcal{A} -energy of a graph. In Section 3, we provide some preparatory results. Besides, by constructing three examples, we indicate that, in general, by an edge-deletion operation, the \mathcal{A} -energy of a graph increases, decreases or remains unchanged. The main results are given in Section 4.

2 The auxiliary results

In this section, we give some equations and two upper bounds for the \mathcal{A} -energy of a graph. The matrix $\mathcal{A} = (\mathcal{A}_{ij})$ has been defined as $\mathcal{A}_{ij} = \sqrt{\frac{d_i+d_j-2}{d_id_j}}$, if two vertices v_i and v_j are adjacent, and $\mathcal{A}_{ii} = 0$ otherwise. The eigenvalues of this matrix are the \mathcal{A} -eigenvalues of G denoted by $\nu_1 \geq \nu_2 \geq \cdots \geq \nu_n$. The \mathcal{A} -spectral radius of G is the largest eigenvalue of the \mathcal{A} -matrix of G, which is denoted by ν_1 . The \mathcal{A} -energy $\mathcal{E}_{\mathcal{A}}(G)$ is the sum of absolute values of the eigenvalues of \mathcal{A} , see [6,13]. In [6], Chen conjectured that among all trees of order n, the star graph S_n has the minimum \mathcal{A} -energy and Gao et al. in [15] proved this conjecture. As usual, the binomial coefficients are defined by $\binom{n}{r} = \frac{n(n-1)\cdots(n-r+1)}{r!}$, where $n \geq r$. Ghorbani et al. in [16], proved that for a connected graph G of order $n \geq 3$, we have the following result about the \mathcal{A} -energy of a graph. **Theorem 2.1.** [16] Let G be a connected graph of order $n \ge 3$. Then

$$\mathcal{E}_{\mathcal{A}}(G) = \nu_1 \operatorname{Tr} \sum_{i=0}^{\infty} {\binom{1}{2} \choose i} \sum_{j=0}^{\infty} {\binom{i}{j}} (-1)^j {\binom{\mathcal{A}}{\nu_1}}^{2j}.$$
 (1)

Proof. Let G be a connected graph. Suppose that the \mathcal{A} matrix of G is a square, symmetric matrix with spectral decomposition $\mathcal{A} = QDQ^T$, where $Q = [\overrightarrow{\psi}_1 \cdots \overrightarrow{\psi}_n]$ is the matrix of orthonormalized eigenvectors $\overrightarrow{\psi}_j$ associated with the eigenvalues ν_j , and $D = \text{diag}(\nu_1, \dots, \nu_n)$. Since every symmetric positive semidefinite matrix has a unique positive semidefinite square root, we yield that $|\mathcal{A}| = Q|D|Q^T = \sqrt{\mathcal{A}^2}$.

Let $\nu_1 > 0$ be the largest eigenvalue of \mathcal{A} . We note in passing that since G is connected, ν_1 is a simple eigenvalue. Then, $\frac{\mathcal{A}}{\nu_1}$ has spectral radius 1, and the matrix $M = (\frac{\mathcal{A}}{\nu_1})^2 - I$ has all its eigenvalues in the interval [-1, 0]. Hence, M is negative semidefinite and has spectral radius 1. Let us write

$$|\mathcal{A}| = \sqrt{\mathcal{A}^2} = \nu_1 \sqrt{\left(\frac{\mathcal{A}}{\nu_1}\right)^2} = \nu_1 \sqrt{I + \left(\left(\frac{\mathcal{A}}{\nu_1}\right)^2 - I\right)} = \nu_1 (I + M)^{\frac{1}{2}}.$$
 (2)

Since, for $-1 \le x \le 1$, we have

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \cdots, \quad 0 \neq \alpha \in \mathbb{R},$$

Eq.(2) can be reformulated as follows:

$$|\mathcal{A}| = \nu_1 \left(I + \frac{1}{2}M - \frac{1}{4 \cdot 2}M^2 + \frac{3}{2 \cdot 4 \cdot 6}M^3 + \cdots \right) = \nu_1 \sum_{i=0}^{\infty} \left(\frac{1}{i} \right) \left(\left(\frac{\mathcal{A}}{\nu_1} \right)^2 - I \right)^i.$$

Therefore,

$$\mathcal{E}_{\mathcal{A}}(G) = \operatorname{Tr}|\mathcal{A}| = \nu_1 \operatorname{Tr}\left[\sum_{i=0}^{\infty} {\binom{1}{2}}_i \left(\left(\frac{\mathcal{A}}{\nu_1}\right)^2 - I\right)^i\right]$$
$$= \nu_1 \operatorname{Tr}\sum_{i=0}^{\infty} {\binom{1}{2}}_i \sum_{j=0}^{\infty} {\binom{i}{j}} (-1)^j {\binom{\mathcal{A}}{\nu_1}}^{2j}.$$

Equivalently, the Eq.(1), can be rewritten as follows:

$$\mathcal{E}_{\mathcal{A}}(G) = \nu_1 \sum_{i=0}^{\infty} {\binom{2i}{i}} \frac{(-1)^{i+1}}{2^{2i}(2i-1)} \operatorname{Tr}\left(\left(\frac{\mathcal{A}}{\nu_1}\right)^2 - I\right)^i$$

The general Randić index or the branching index was defined as $R_{-1}(G) = \sum_{v_i \sim v_j} (1/d_i d_j)$, see [27].

Lemma 2.2. [6]. For any graph G of order $n \ge 3$ with no isolated vertices, we have

1)
$$\sum_{i=1}^{n} \nu_i = 0,$$

2) $\sum_{i=1}^{n} \nu_i^2 = 2(n - 2R_{-1}(G)).$

Theorem 2.3. Let G be a graph of order $n \ge 3$ with no isolated vertex. Then

$$\mathcal{E}_{\mathcal{A}}(G) \ge \sqrt{2\left(n - 2R_{-1}(G) + \binom{n}{2} (\det(\mathcal{A}))^{\frac{2}{n}}\right)}$$

Proof. Applying Geometric-Arithmetic mean inequality yields that

$$\left(\sum_{i=1}^{n} |\nu_i|\right)^2 = \sum_{i=1}^{n} |\nu_i|^2 + \sum_{i \neq j, 1 \le i, j \le n} |\nu_i| |\nu_j|$$

$$\geq 2(n - 2R_{-1}(G)) + n(n-1) \left(\prod_{i \neq j, 1 \le i, j \le n} |\nu_i| |\nu_j|\right)^{\frac{1}{n(n-1)}}$$

$$= 2(n - 2R_{-1}(G)) + 2 \binom{n}{2} \left(\prod_{i=1}^{n} (\nu_i)^{2(n-1)}\right)^{\frac{1}{n(n-1)}}$$

$$= 2(n - 2R_{-1}(G)) + 2 \binom{n}{2} \left(\prod_{i=1}^{n} \nu_i\right)^{\frac{2}{n}}$$

$$= 2(n - 2R_{-1}(G)) + 2 \binom{n}{2} (\det(\mathcal{A}))^{\frac{2}{n}}.$$

Since $\mathcal{E}_{\mathcal{A}}(G) = \sum_{i=1}^{n} |\nu_i|$, we get

$$\mathcal{E}_{\mathcal{A}}(G) \ge \sqrt{2(n - 2R_{-1}(G)) + 2\binom{n}{2}\sqrt[n]{(\det(\mathcal{A}))^2}}$$

This completes the proof.

Theorem 2.4. [8]. (Maclaurin's inequality). Let a_1, a_2, \ldots, a_n be positive real numbers. Then

$$S_1 \ge \sqrt[2]{S_2} \ge \dots \ge \sqrt[n]{S_n},$$

where

$$S_k = \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < \dots < i_k \le n} a_{i_1} a_{i_2} \cdots a_{i_n}.$$

Equality holds if and only if $a_1 = a_2 = \cdots = a_n$.

Theorem 2.5. Let G be a graph of order $n \ge 3$ with no isolated vertex and zero \mathcal{A} eigenvalues. Then

$$\mathcal{E}_{\mathcal{A}}(G) > \sqrt{\frac{2n}{n-1}|2R_{-1}(G) - n|}$$
.

Proof. Consider $a_i = |\nu_i| > 0$ where ν_i 's are \mathcal{A} eigenvalues of G, $(1 \le i \le n)$. By putting a_i 's that in Theorem 2.4, we get $S_1 = \frac{1}{n} \mathcal{E}_{\mathcal{A}}(G)$. Also

$$S_2 = \frac{1}{\binom{n}{2}} \sum_{1 \le i < j \le n} |\nu_i| |\nu_j| \ge \frac{2}{n(n-1)} \left| \sum_{1 \le i < j \le n} \nu_i \nu_j \right|.$$

By using Lemma 2.2, we have

$$\sum_{1 \le i < j \le n} \nu_i \nu_j = \frac{1}{2} \left(\sum_{i=1}^n \nu_i \right)^2 - \frac{1}{2} \sum_{i=1}^n \nu_i^2 = 2R_{-1}(G) - n.$$

Then $S_2 \geq \frac{2}{n(n-1)}|2R_{-1}(G) - n|$. We know that $S_1 \geq \sqrt[2]{S_2}$. Thus

$$\mathcal{E}_{\mathcal{A}}(G) \ge \sqrt{\frac{2n}{n-1}|2R_{-1}(G)-n|}.$$

Equality holds if and only if $|\nu_i| = |\nu_j|$. By [6, Proposition 3.2], we conclude that all ν_i 's are zero which is impossible.

3 Graph energy change due to edge deletion

Let G - e denote the graph obtained by removing an edge e from G. We introduce three examples to show that the \mathcal{A} -energy of G - e increases, decreases or remains unchanged. Indeed, we are interested in how the \mathcal{A} -energy of a graph changes when an edge is deleted from a graph. Let us begin with elementary examples.

Example 3.1. Consider the graph G of order 4 as depicted in Figure 1. The A-matrix is

$$\mathcal{A}(G) = \begin{bmatrix} 0 & 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & \frac{2}{3} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{3} & 0 \end{bmatrix}$$

We have $\operatorname{Spec}_{\mathcal{A}}(G) = \{[-1.12]^1, [0]^1, [\frac{2}{3}]^1, [1.79]^1\} \text{ and } \mathcal{E}_{\mathcal{A}}(G) \approx 3.57.$ If H_1 is a graph obtained from G by deleting the edge $e = v_3 v_4$. Then $\operatorname{Spec}_{\mathcal{A}}(H_1) = \{[-\sqrt{2}]^1, [0]^2, [\sqrt{2}]^1\}$ and $\mathcal{E}_{\mathcal{A}}(H_1) = 2\sqrt{2} < \mathcal{E}_{\mathcal{A}}(G)$. Also, if H_2 is a graph obtained from G by deleting the edge $e = v_2 v_4$. Then $\operatorname{Spec}_{\mathcal{A}}(H_2) = \{[-1.13]^1, [-\frac{\sqrt{2}}{2}]^1, [0.26]^1, [1.57]^1\}$ and $\mathcal{E}_{\mathcal{A}}(H_2) \approx 3.68 > \mathcal{E}_{\mathcal{A}}(G)$.

Figure 1. The graph G in Example 3.1.

In what follows, by mG we mean the union of m copies of G, namely $\underbrace{G \cup \cdots \cup G}_{m \text{ times}}$.

Example 3.2. Suppose $G = \frac{n}{2}K_2$. Then $\operatorname{Spec}_{\mathcal{A}}(G) = \{[0]^4\}$ and $\mathcal{E}_{\mathcal{A}}(G) = 0$. If H is a graph obtained from G - e, then \mathcal{A} -energy of G - e remains unchanged.

Question 1. If e is an edge of an isolated-free graph G such that $\mathcal{E}_{\mathcal{A}}(G) = \mathcal{E}_{\mathcal{A}}(G-e)$, then is it true that $G = \frac{n}{2}K_2$?

A vertex-cover of a graph G is a set $S \subseteq V(G)$ such that for each edge $uv \in E(G)$, at least one of u or v is in S.

Theorem 3.3. [6] If G has a vertex-cover consisting of only the vertices of degree 2, then $\mathcal{E}_{\mathcal{A}}(G) = \frac{\sqrt{2}}{2} \mathcal{E}_{\mathcal{A}}(G).$

Example 3.4. Here, we compare the A-energies of C_n with P_n . By [23, p.26] and Theorem 3.3, we have

$$\mathcal{E}_{\mathcal{A}}(P_n) = \begin{cases} \sqrt{2} \csc(\frac{\pi}{2(n+1)} - 1) & n \equiv 0 \pmod{2}, \\ \sqrt{2} \cot(\frac{\pi}{2(n+1)} - 1) & n \equiv 1 \pmod{2}. \end{cases}$$

Then

$$\mathcal{E}_{\mathcal{A}}(C_n) = \begin{cases} 2\sqrt{2}\cot\frac{\pi}{n} & n \equiv 0 \pmod{4}, \\ 2\sqrt{2}\csc\frac{\pi}{n} & n \equiv 2 \pmod{4}, \\ \sqrt{2}\csc\frac{\pi}{2n} & n \equiv 1 \pmod{2}. \end{cases}$$

Therefore

$$\mathcal{E}_{\mathcal{A}}(C_n) - \mathcal{E}_{\mathcal{A}}(P_n) = \begin{cases} \sqrt{2} \left(2 \cot \frac{\pi}{n} - \csc(\frac{\pi}{2(n+1)} - 1) \right) & n \equiv 0 \pmod{4}, \\ \sqrt{2} \left(2 \csc \frac{\pi}{n} - \csc(\frac{\pi}{2(n+1)} - 1) \right) & n \equiv 2 \pmod{4}, \\ \sqrt{2} \left(\csc \frac{\pi}{2n} - \cot(\frac{\pi}{2(n+1)} - 1) \right) & n \equiv 1 \pmod{2}. \end{cases}$$

In Figure 2, the difference between $\mathcal{E}_{\mathcal{A}}(C_n)$ and $\mathcal{E}_{\mathcal{A}}(P_n)$ is shown. One can yields that the difference numbers tend to 0.5, if n is sufficiently large.

Figure 2. The difference between $\mathcal{E}_{\mathcal{A}}(C_n)$ and $\mathcal{E}_{\mathcal{A}}(P_n)$, where $3 \leq n \leq 500$.

4 Main results

Here, we give some upper bounds for the \mathcal{A} -energy of the isolated-free graphs, when a non-leaf edge is deleted. The singular values of a rectangular matrix M with complex entries, are defined to be the square roots of the eigenvalues of the positive semi-definite matrix M^tM , where M^t is the conjugate transpose of M. We denote a singular value by $\sigma_i(M)$, where $1 \leq i \leq n$.

Lemma 4.1. [22] Let M and N be two square matrices of order n. Then

$$\sum_{i=1}^{n} \sigma_i(M+N) \le \sum_{i=1}^{n} \sigma_i(M) + \sum_{i=1}^{n} \sigma_i(N).$$

Lemma 4.2. [22] The singular values of a real symmetric matrix M are the absolute values of the eigenvalues of M.

Energy change relating to the adjacency and normalized Laplacian matrices of a graph has been studied in several papers, see [1, 2, 11, 12] for more details. Here, we investigate the conditions that the \mathcal{A} -energy of an isolated-free graph changes when a non-leaf edge is deleted.

Lemma 4.3. Let G_1 and G_2 be two graphs of order n, and $M = \mathcal{A}(G_1) - \mathcal{A}(G_2)$. Then

$$|\mathcal{E}_{\mathcal{A}}(G_1) - \mathcal{E}_{\mathcal{A}}(G_2)| \le \sum_{i=1}^n \sigma_i(M).$$

-650-

Proof. Since $M + \mathcal{A}(G_2) = \mathcal{A}(G_1)$, by Lemma 4.1, we have

$$\sum_{i=1}^{n} \sigma_i \big(M + \mathcal{A}(G_2) \big) \leq \sum_{i=1}^{n} \sigma_i (M) + \sum_{i=1}^{n} \sigma_i \big(\mathcal{A}(G_2) \big).$$

Lemma 4.2 implies that $\mathcal{E}_{\mathcal{A}}(G_1) - \mathcal{E}_{\mathcal{A}}(G_2) \leq \sum_{i=1}^n \sigma_i(M)$. Also, $-M = \mathcal{A}(G_2) - \mathcal{A}(G_1)$ and thus

$$\sum_{i=1}^{n} \sigma_i \left(\mathcal{A}(G_2) \right) \leq \sum_{i=1}^{n} \sigma_i (-M) + \sum_{i=1}^{n} \sigma_i \left(\mathcal{A}(G_1) \right)$$

Hence, by Lemma 4.1, we get $\mathcal{E}_{\mathcal{A}}(G_2) - \mathcal{E}_{\mathcal{A}}(G_1) \leq \sum_{i=1}^n \sigma_i(-M) \leq \sum_{i=1}^n \sigma_i(M)$. Therefore $|\mathcal{E}_{\mathcal{A}}(G_1) - \mathcal{E}_{\mathcal{A}}(G_2)| \leq \sum_{i=1}^n \sigma_i(M)$. This completes the proof.

Lemma 4.3 enables us to prove the following theorems about the variations of \mathcal{A} -energy due to edge deletion.

Theorem 4.4. Let G be an isolated-free graph of order n and e = xy be a non-leaf edge of G. Then

$$|\mathcal{E}_{\mathcal{A}}(G) - \mathcal{E}_{\mathcal{A}}(G-e)| \le 2\sqrt{3}.$$

Proof. Suppose $H = \mathcal{A}(G) - \mathcal{A}(G-e)$. It is not difficult to see that rank $(H) \leq 4$. Suppose that Spec $(H) = \{[0]^{n-4}, [\lambda_1]^1, [\lambda_2]^1, [\lambda_3]^1, [\lambda_4]^1\}$. Thus

$$\sum_{i=1}^{n} \sigma_i(H) = |\lambda_1| + |\lambda_2| + |\lambda_3| + |\lambda_4|.$$

The Cauchy-Schwartz inequality and Lemmas 4.2, 4.3 imply that

$$|\mathcal{E}_{\mathcal{A}}(G) - \mathcal{E}_{\mathcal{A}}(G-e)| \le 2\Big(\sum_{i=1}^{n} (\lambda_i(H))^2\Big)^{\frac{1}{2}} = 2\sqrt{\mathrm{Tr}(H^2)}.$$

Since $d_x, d_y \ge 2$ and

$$\begin{split} \frac{1}{2} \text{Tr}(H^2) &= \left(\sqrt{\frac{d_x + d_y - 2}{d_x d_y}}\right)^2 + \sum_{i \neq y, i \in N_G(x)} \left(\sqrt{\frac{d_x + d_i - 2}{d_x d_i}} - \sqrt{\frac{d_x + d_i - 3}{(d_x - 1)d_i}}\right)^2 \\ &+ \sum_{j \neq x, j \in N_G(y)} \left(\sqrt{\frac{d_y + d_j - 2}{d_y d_j}} - \sqrt{\frac{d_y + d_j - 3}{(d_y - 1)d_j}}\right)^2, \end{split}$$

we obtain

$$|\mathcal{E}_{\mathcal{A}}(G) - \mathcal{E}_{\mathcal{A}}(G-e)| \le 2\sqrt{3},$$

as we required.

Corollary 4.5. Let G be an d-regular graph of order n and $e = xy \in E(G)$. Then

$$|\mathcal{E}_{\mathcal{A}}(G) - \mathcal{E}_{\mathcal{A}}(G-e)| \le \frac{2\sqrt{2}}{d} \sqrt{(2d-2) + \left(\frac{1}{d^2}\left(\sqrt{\frac{2d-2}{d^2}} - \sqrt{\frac{2d-3}{d(d-1)}}\right)^2\right)}$$

In Theorem 4.4, it is shown that if e is not incident to a pendant vertex, then $|\mathcal{E}_{\mathcal{A}}(G) - \mathcal{E}_{\mathcal{A}}(G-e)| \leq 2\sqrt{3}$. In following, we show that if x and y also have no common neighbors, then the change in \mathcal{A} -energy is less than $\sqrt{10}$.

Suppose $M = \mathcal{A}(G) - \mathcal{A}(G - e)$, where e = xy is a non-pendent edge and $N_G(x) \cap N_G(y) = \phi$. The matrix M is symmetric with zero diagonal entries. Suppose we partition $V - \{x, y\}$ into subsets $N_G(x) = \{u_1, \ldots, u_p\}$ and $N_G(y) = \{u_{p+1}, \ldots, u_{p+q}\}$ such that $N_G(x) - \{y\} \subset N_G(x)$ and $N_G(y) - \{x\} \subset N_G(y)$, where n = 2 + p + q, $(p, q \ge 1)$. Then the non-zero entries are the entries of the first two rows or first two columns of M. This means that, the structure of M is

0	w	x_1	• • •	x_p	0	• • •	0]
w	0	0	• • •	0	y_{p+1}	• • •	y_{p+q}
x_1	0	0	• • •	0	0	• • •	0
÷	÷	÷	۰.	÷	÷	۰.	:
x_p	0	0	• • •	0	0	• • •	0
0	y_{p+1}	0	• • •	0	0	• • •	0
÷	÷	÷	۰.	÷	:	۰.	:
0	y_{p+q}	0		0	0		0

where

$$M(x,y) = w = \sqrt{\frac{d_x + d_y - 2}{d_x d_y}},\tag{3}$$

$$M(x, u_i) = x_i = \begin{cases} 0 & u_i \notin N_G(x) \\ \sqrt{\frac{d_x + d_{u_i} - 2}{d_x d_{u_i}}} - \sqrt{\frac{d_x + d_{u_i} - 3}{(d_x - 1)d_{u_i}}} & u_i \in N_G(x) - \{y\} \end{cases},$$
(4)

$$M(y, u_i) = y_i = \begin{cases} 0 & u_i \notin N_G(y) \\ \sqrt{\frac{d_y + d_{u_i} - 2}{d_y d_{u_i}}} - \sqrt{\frac{d_y + d_{u_i} - 3}{(d_y - 1)d_{u_i}}} & u_i \in N_G(y) - \{x\} \end{cases},$$
(5)

and $d_x, d_y \ge 2$ which implies $w \ne 0$. Consider two vectors $X = [x_1, \ldots, x_p]$ and $Y = [y_{p+1}, \ldots, y_{p+q}]$. The Euclidean norm of the vector $z \in \mathbb{R}^n$, is denoted by ||z||. We have the following theorem.

Theorem 4.6. Let G be a graph of order n with no isolated vertex. Let e = xy be an edge where $d_x, d_y \ge 2$ and $N_G(x) \cap N_G(y) = \phi$. Then

$$|\mathcal{E}_{\mathcal{A}}(G) - \mathcal{E}_{\mathcal{A}}(G-e)| \le \frac{2}{d}\sqrt{8d^2(1-d)\sqrt{\frac{d-2}{d}} + 8d^3 - 16d^2 + 6d - 2d^2}$$

- 2) If X = 0, $Y \neq 0$ or $X \neq 0$, Y = 0, then $|\mathcal{E}_{\mathcal{A}}(G) \mathcal{E}_{\mathcal{A}}(G-e)| \leq 2$.
- 3) If X = Y = 0, then $|\mathcal{E}_{\mathcal{A}}(G) \mathcal{E}_{\mathcal{A}}(G-e)| \le \sqrt{2}$. In addition, if $d_x, d_y \ge d \ge 2$, Then

$$|\mathcal{E}_{\mathcal{A}}(G) - \mathcal{E}_{\mathcal{A}}(G-e)| \le \frac{2}{d}\sqrt{2d-2}.$$

Proof. We can distinguish following three cases:

Case 1. Both X and Y have non-zero entries. It is easy to see that in this case rank(M) = 4 and therefore $\operatorname{Spec}(M) = \{[-\lambda_2]^1, [-\lambda_1]^1, [0]^{n-4}, [\lambda_1]^1, [\lambda_2]^1\}$. Let $[\theta, \beta, \rho, \tau]^t$ be an eigenvector corresponding to non-zero eigenvalue λ of M, where $\theta, \beta \in \mathbb{R}, \rho \in \mathbb{R}^p$ and $\tau \in \mathbb{R}^q$. Then

$$M\begin{bmatrix} \alpha\\ \beta\\ \rho\\ \tau \end{bmatrix} = \lambda \begin{bmatrix} \alpha\\ \beta\\ \rho\\ \tau \end{bmatrix}.$$
 (6)

Hence, Eq.(6) implies that

$$w\beta + X\rho = \lambda\alpha,\tag{7}$$

$$w\alpha + Y\tau = \lambda\beta,\tag{8}$$

 $X^t \alpha = \lambda \rho,$ $Y^t \beta = \lambda \tau.$

Since $\lambda \neq 0$, we have $\rho = \frac{\alpha X^t}{\lambda}$, $\tau = \frac{\beta Y^t}{\lambda}$ and Eq.s (7) and (8), yield to obtain

$$\beta = \frac{1}{w} \left(\lambda \alpha - \|X\|^2 \frac{\alpha}{\lambda} \right), \tag{9}$$

$$\alpha = \frac{1}{w} \left(\lambda \beta - \|Y\|^2 \frac{\beta}{\lambda} \right). \tag{10}$$

Now by Eq.s (9) and (10), we get

$$\lambda^4 - \lambda^2 (w^2 + ||X||^2 + ||Y||^2) + ||X||^2 ||Y||^2 = 0.$$

Suppose that $B=w^2+\|X\|^2+\|Y\|^2$ and $C=\|X\|^2\|Y\|^2.$ Then

$$\lambda_{1,2} = \pm \sqrt{\frac{B \pm \sqrt{B^2 - 4C}}{2}}$$

Since $d_x, d_y \ge 2$, we yield $w^2 \le \frac{1}{2}$ with equality if and only if $d_x = d_y = 2$. Also, $\|X\|^2 \le \frac{1}{2}$ and $\|Y\|^2 \le \frac{1}{2}$ with equality if and only if $d_{u_i} = 1(1 \le i \le p)$ and $d_{u_j} = 1$ $(p+1 \le j \le p+q)$, respectively. Applying Lemma 4.3, we conclude that

$$\begin{aligned} |\mathcal{E}_{\mathcal{A}}(G) - \mathcal{E}_{\mathcal{A}}(G - e)| &\leq 2(\lambda_1 + \lambda_2) \\ &= 2\left[\left(\frac{B + \sqrt{B^2 - 4C}}{2}\right)^{\frac{1}{2}} + \left(\frac{B - \sqrt{B^2 - 4C}}{2}\right)^{\frac{1}{2}}\right] \\ &= 2\sqrt{B + 2\sqrt{C}} \\ &= 2\sqrt{w^2 + \|X\|^2 + \|Y\|^2 + 2\|X\|\|Y\|} \leq \sqrt{10} \;. \end{aligned}$$
(11)

Also, if $d_x, d_y \ge d \ge 2$, then $w^2 \le \frac{2d-2}{d^2}$.

Case 2. Suppose either X or Y has a non-zero entry. Let X = 0 and Y has a non-zero entry. Then by Eq.(4), we obtain $d_{u_i} = 2$ $(1 \le i \le p)$. It is not difficult to see that $\operatorname{null}(M) \ge n-2$ and thus $\operatorname{rank}(M) \le 2$ which yields that $\operatorname{rank}(M) = 2$ and so M has exactly two non-zero eigenvalues. Let $\lambda \ne 0$ be an eigenvalue of M and $[\alpha, \beta, \mathbf{0}_p, \tau]^t$ be an eigenvector corresponding to λ , where $\alpha, \beta \in \mathbb{R}$ and $\tau \in \mathbb{R}^q$. Then

$$M\begin{bmatrix}\alpha\\\beta\\\mathbf{0}_p\\\tau\end{bmatrix} = \lambda\begin{bmatrix}\alpha\\\beta\\\mathbf{0}_p\\\tau\end{bmatrix}.$$

Hence,

$$w\beta = \lambda \alpha,$$
 (12)

$$w\alpha + Y\tau = \lambda\beta,\tag{13}$$

$$Y^t \beta = \lambda \tau. \tag{14}$$

Since $\lambda \neq 0$, by Eq.(14) we have $\tau = \frac{Y^t\beta}{\lambda}$ and by Eq.(13) $w\alpha + Y \cdot \frac{Y^t\beta}{\lambda} = w\alpha + ||Y||^2 \frac{\beta}{\lambda} = \lambda\beta$. Hence, $\alpha = \frac{\beta}{w} \left(\lambda - \frac{||Y||^2}{\lambda}\right)$. Since $\beta \neq 0$, Eq.(12) implies that $w\beta = \lambda \left(\frac{\beta}{w} \left(\lambda - \frac{||Y||^2}{\lambda}\right)\right)$. Thus $\lambda^2 - ||Y||^2 - w^2 = 0$ and so $\lambda = \pm \sqrt{w^2 + ||Y||^2}$. On the other hand, since $d_x, d_y \ge 2$, we get $w^2 \le \frac{1}{2}$ and so

$$||Y||^{2} = \sum_{v_{i} \in N_{G}(y) - \{x\}} \left(\sqrt{\frac{d_{y} + d_{v_{i}} - 2}{d_{y}d_{v_{i}}}} - \sqrt{\frac{d_{y} + d_{v_{i}} - 3}{(d_{y} - 1)d_{v_{i}}}} \right)^{2} \le \frac{1}{2}.$$

By applying Lemma 4.3, we have

$$|\mathcal{E}_{\mathcal{A}}(G_1) - \mathcal{E}_{\mathcal{A}}(G_2)| \le 2\sqrt{w^2 + ||Y||^2} \le 2\sqrt{\frac{1}{2} + \frac{1}{2}} = 2.$$

-654-

Case 3. Both X and Y are zero vectors. Then $x_i = 0$ $(1 \le i \le p)$ and $y_j = 0$ $(p+1 \le j \le p+q)$. By Eq.s (4) and (5), we have $d_{u_i} = d_{u_j} = 2$. Also, rank(M) = 2 and $\operatorname{Spec}(M) = \{[-w]^1, [0]^{n-2}, [w]^1\}$. Since $d_x, d_y \ge 2$, we get $w \le \frac{\sqrt{2}}{2}$ with equality if and only if $d_x = d_y = 2$. It is not difficult to see that $\frac{d_x+d_y-2}{d_xd_y} = \frac{1}{2}$ if and only if $2d_x + 2d_y - 4 = d_xd_y$ if and only if $d_x = d_y = 2$. Lemma 4.3 implies that

$$|\mathcal{E}_{\mathcal{A}}(G) - \mathcal{E}_{\mathcal{A}}(G-e)| \le \sum_{i=1}^{n} \sigma_i(M) = \sum_{i=1}^{n} |\lambda_i(M)| = 2w \le \sqrt{2}$$

Here, we determine an upper bound for absolute difference between $\mathcal{E}_{\mathcal{A}}(G)$ and $\mathcal{E}_{\mathcal{A}}(G-e)$, where $e = xy \in E(G)$ is not pendant edge and $|N_G(x) \cap N_G(y)| = k$ $(1 \le k \le n-2)$. If we partition $V - \{x, y\}$ into subsets $N_G(x) = \{u_1, \ldots, u_k, u_{k+1}, \ldots, u_p\}$ and $N_G(y) = \{u_1, \ldots, u_k, u_{p+1}, \ldots, u_{p+q}\}$, such that $N_G(x) - \{y\} \subset N_G(x)$ and $N_G(y) - \{x\} \subset N_G(y)$, where n = 2 + k + p + q $(p, q \ge 0)$, then the structure of M is

$$M = \begin{bmatrix} 0 & w & X_1 & X_2 & \mathbf{0}_q \\ w & 0 & Y_1 & \mathbf{0}_p & Y_2 \\ X_1^t & Y_1^t & \mathbf{0}_k^t & \cdots & \mathbf{0}_k^t \\ X_2^t & \mathbf{0}_p^t & \mathbf{0}_p^t & \cdots & \mathbf{0}_p^t \\ \mathbf{0}_q^t & Y_2^t & \mathbf{0}_q^t & \cdots & \mathbf{0}_q^t \end{bmatrix}.$$

Consider now the vectors $\mathbf{0} = [0, 0, \dots, 0]$, $X_1 = [x_1, \dots, x_k]$, $X_2 = [x_{k+1}, \dots, x_p]$, $Y_1 = [y_1, \dots, y_k]$, $Y_2 = [y_{p+1}, \dots, y_{p+q}]$, where x_i $(1 \le i \le p)$ and y_j $(1 \le j \le k)$, $(p+1 \le j \le p+q)$ are defined in the Eq.(4) and Eq.(5), respectively.

Theorem 4.7. If $X_1, X_2, Y_1, Y_2 = 0$, then $|\mathcal{E}_{\mathcal{A}}(G) - \mathcal{E}_{\mathcal{A}}(G-e)| \le \sqrt{2}$.

Proof. Suppose $X_1, X_2, Y_1, Y_2 = 0$. Then rank(M) = 2, Spec $(M) = \{[-w]^1, [0]^{n-2}, [w]^1\}$ and similar to the proof of Theorem 4.6 (1), we have

$$|\mathcal{E}_{\mathcal{A}}(G) - \mathcal{E}_{\mathcal{A}}(G-e)| \le 2w = \sqrt{2},$$

which completes the proof.

Theorem 4.8. If $X_1, X_2, Y_1 = 0$ and $Y_2 \neq 0$, or $X_1, X_2, Y_2 = 0$ and $Y_1 \neq 0$, or $X_1, X_2, Y_1 = 0$ and $X_2 \neq 0$, or $X_2, Y_1, Y_2 = 0$ and $X_1 \neq 0$, then $|\mathcal{E}_{\mathcal{A}}(G) - \mathcal{E}_{\mathcal{A}}(G - e)| \leq 2$.

Proof. Suppose $X_1, X_2, Y_1 = 0$ but $Y_2 \neq 0$, then rank(M) = 2. Let $\lambda \neq 0$ be an eigenvalue of M corresponded to eigenvector $\mathbf{v} = [\alpha, \beta, \gamma, \mathbf{0}_{k+p}, \tau]^t$, where $\alpha, \beta \in \mathbb{R}, \gamma \in \mathbb{R}^k$ and

 $\tau \in \mathbb{R}^q.$ Then

$$w\beta = \lambda \alpha,$$
 (15)

$$w\alpha + Y_2\tau = \lambda\beta,\tag{16}$$

$$Y_2^t \beta = \lambda \tau. \tag{17}$$

By using Eq.s (15) and (17), we get $\alpha = \frac{w\beta}{\lambda}$ and $\tau = \frac{Y_2^t\beta}{\lambda}$. Since $\lambda \neq 0$, Eq.(16) implies that $\lambda^2 = w^2 + ||Y_2||^2$ and thus $\operatorname{Spec}(M) = \{[0]^{n-2}, [\pm \sqrt{w^2 + ||Y_2||^2}]^1\}$. Knowing that $d_x, d_y \geq 2$, we conclude that $w^2, ||Y_2||^2 \leq \frac{1}{2}$. Thus $|\mathcal{E}_{\mathcal{A}}(G) - \mathcal{E}_{\mathcal{A}}(G - e)|$ is bounded above by $2\sqrt{w^2 + ||Y_2||^2} \leq 2$. By a similar argument, we obtain a similar result. This completes the proof.

Theorem 4.9. If either $X_1, Y_1 = 0$ and $X_2, Y_2 \neq 0$, or $X_1, Y_2 = 0$ and $X_2, Y_1 \neq 0$, or $X_2, Y_1 = 0$ and $X_1, Y_2 \neq 0$, then $|\mathcal{E}_{\mathcal{A}}(G) - \mathcal{E}_{\mathcal{A}}(G - e)| \leq \sqrt{10}$.

Proof. Suppose that $X_1, Y_1 = 0$ and $X_2, Y_2 \neq 0$. Then rank(M) = 4 and

Spec(M) = { [
$$-\lambda_2$$
]¹, [$-\lambda_1$]¹, [0]ⁿ⁻⁴, [λ_1]¹, [λ_2]¹}

Let $\lambda \neq 0$ be an eigenvalue of M with eigenvector $\mathbf{v} = [\alpha, \beta, \mathbf{0}_k, \rho, \tau]^t$, where $\alpha, \beta \in \mathbb{R}$, $\rho \in \mathbb{R}^p$ and $\tau \in \mathbb{R}^q$. Then we have

$$w\beta + X_2\rho = \lambda\alpha,\tag{18}$$

$$w\alpha + Y_2\tau = \lambda\beta,\tag{19}$$

$$X_2^t \alpha = \lambda \rho,$$
 (20)

$$Y_2^t \beta = \lambda \tau. \tag{21}$$

Eq.s (18), (19), (20) and (21) imply that

$$\lambda^{4} - (w^{2} + ||X_{2}||^{2} + ||Y_{2}||^{2})\lambda^{2} + ||X_{2}||^{2}||Y_{2}||^{2} = 0.$$
(22)

If $B = w^2 + ||X_2||^2 + ||Y_2||^2$ and $C = ||X_2||^2 ||Y_2||^2$, then $B^2 - 4C \ge 0$ and thus the roots of Eq.(22) are

$$\lambda_{1,2} = \pm \sqrt{\frac{1}{2}(B \pm \sqrt{B^2 - 4C})}.$$

This yields that

$$\begin{aligned} |\mathcal{E}_{\mathcal{A}}(G) - \mathcal{E}_{\mathcal{A}}(G-e)| &\leq 2\sqrt{B + 2\sqrt{C}} \\ &\leq 2\sqrt{w^2 + \|X_2\|^2 + \|Y_2\|^2 + 2\|X_2\|\|Y_2\|} \leq \sqrt{10} \;. \end{aligned}$$

-656-

Let $p, q \ge 0$. The tree Su_p of order n = 2p + 1, containing with p pendent vertices, each attached to a vertex of degree 2, and a vertex of degree p, will be called the p-sun. The tree $Su_{p,q}$ of order n = 2(p+q+1), obtained from a p-sun and a q-sun, by connecting their central vertices, will be called a (p,q)-double sun, see Figure 3.

Figure 3. Two graphs Su_p and $Su_{p,q}$.

Example 4.10. Concider the (p,q)-double sun. It has an edge e = xy for which $d_x = p$ and $d_y = q$. Also, $Su_{p,q} - e$ is disjoint suns Su_p and Su_q . According to Theorem 4.6 (3), we have

$$|\mathcal{E}_{\mathcal{A}}(Su_{p,q}) - \mathcal{E}_{\mathcal{A}}(Su_{p,q} - e)| = |\mathcal{E}_{\mathcal{A}}(Su_{p,q}) - \mathcal{E}_{\mathcal{A}}(Su_{p}) - \mathcal{E}_{\mathcal{A}}(Su_{q})| \le \sqrt{2}$$

On the other hand, it is not difficult to see that the A-spectrum of the sun with $p \ge 1$ is

$$\operatorname{Spec}_{\mathcal{A}}(Su_p) = \{ [-\sqrt{(n+1)/4}]^1, [-\sqrt{2}/2]^{\frac{n-3}{2}}, [0]^1, [\sqrt{2}/2]^{\frac{n-3}{2}}, [\sqrt{(n+1)/4}]^1 \}$$

where n = 2p + 1. Then

$$\mathcal{E}_{\mathcal{A}}(Su_p) = \sqrt{2}(p-1) + \sqrt{2p+2}.$$
(23)

Therefore

$$\mathcal{E}_{\mathcal{A}}(Su_{p,q}) \le \sqrt{2} + \sqrt{2}(p-1) + \sqrt{2p+2} + \sqrt{2}(q-1) + \sqrt{2q+2}$$
$$= \sqrt{2} \left(1 + (p-1)(q-1) + \sqrt{p+1} + \sqrt{q+1} \right).$$

Example 4.11. Concider the p-sun, where $p \ge 2$. Since $Su_p - e$ is disjoint suns Su_{p-1} and K_2 , see Figure 3. By Eq. (23) and Theorem 4.6 (2), we have

$$\begin{aligned} |\mathcal{E}_{\mathcal{A}}(Su_p) - \mathcal{E}_{\mathcal{A}}(Su_p - e)| &= |\mathcal{E}_{\mathcal{A}}(Su_p) - \mathcal{E}_{\mathcal{A}}(Su_{p-1}) - \mathcal{E}_{\mathcal{A}}(K_2)| \\ &= \left(\sqrt{2}(p-1) + \sqrt{2p+2}\right) - \left(\sqrt{2}(p-2) + \sqrt{2(p-1)+2}\right) \\ &\leq \sqrt{2}\left(1 - \sqrt{p} + \sqrt{p+1}\right) < 2. \end{aligned}$$

-657-

In Figure 4, the difference between $\mathcal{E}_{\mathcal{A}}(Su_p)$ and $\mathcal{E}_{\mathcal{A}}(Su_p) - e$ is shown. One can yields that the difference numbers tend to $\sqrt{2}$, if p is sufficiently large.

Figure 4. The difference between $\mathcal{E}_{\mathcal{A}}(Su_p)$ and $\mathcal{E}_{\mathcal{A}}(Su_p) - e$, where $2 \le p \le 500$.

A complete bipartite graph of order n with a bipartition of sizes n_1 and n_2 is denoted by K_{n_1,n_2} , where $n_1 + n_2 = n$. The double star S(p,q), where $p \ge q \ge 0$, is the graph consisting of the union of two stars $K_{1,p}$ and $K_{1,q}$ together with a line joining their centers.

Example 4.12. Consider the graph G of order n in Figure 5.

1) Suppose k = 0 and $n \ge 4$. If n = 4, then

$$M = \mathcal{A}(P_4) - \mathcal{A}(P_4 - e) = \begin{bmatrix} 0 & \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} & 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 & 0 & 0 \end{bmatrix},$$

the path graph P_4 is satisfied in conditions of Theorem 4.6(1). We know

$$Spec_{\mathcal{A}}(P_4) = \{ [-1.1441]^1, [-0.4370]^1, [0.4370]^1, [1.1441]^1 \}$$
$$Spec_{\mathcal{A}}(P_4 - e) = \{ [0]^4 \}.$$

Therefore $|\mathcal{E}_{\mathcal{A}}(P_4) - \mathcal{E}_{\mathcal{A}}(P_4 - e)| = \sqrt{10}$ and the bound in Eq.(11) is sharp. Now, suppose $n \ge 5$. Then G = S(p,q) is satisfied in conditions of Theorem 4.6(1). Thus we have

$$|\mathcal{E}_{\mathcal{A}}(S(p,q)) - \mathcal{E}_{\mathcal{A}}(K_{1,p}) - \mathcal{E}_{\mathcal{A}}(K_{1,q})| \le \sqrt{10}.$$

Since Spec_{\$\mathcal{A}\$}(K_{1,p}) = {[$-\sqrt{p-1}$]¹, [0]^{p-1}, [$\sqrt{p-1}$]¹}. Therefore
 $\mathcal{E}_{\mathcal{A}}(S(p,q)) \le \sqrt{10} + 2(\sqrt{p-1} + \sqrt{q-1}).$

2) Suppose k ≠ 0. If graph H₁ is obtained from the graph G with p,q = 0, then H₁ = K₂,n-2+e is satisfied in conditions of Theorem 4.7. Thus we have |𝔅_A(K₂,n-2+e) - 𝔅_A(K₂,n-2)| ≤ √2. Since by [6, Proposition 4.2], 𝔅_A(K₂,n-2) = 2√n-2, we may obtain

$$\mathcal{E}_{\mathcal{A}}(K_{2,n-2}+e) \le \sqrt{2} + 2\sqrt{n-2}$$

Also, if graph H_2 is obtained from the graph G with p = 0 and $q \neq 0$, then this graph is satisfied in conditions of Theorem 4.8. Thus we have $|\mathcal{E}_{\mathcal{A}}(H_2) - \mathcal{E}_{\mathcal{A}}(H_2 - e)| \leq 2$. Moreover, if graph H_3 is obtained from the graph G with $p, q \neq 0$, then this graph is satisfied in conditions of Theorem 4.9. Thus we have $|\mathcal{E}_{\mathcal{A}}(H_3) - \mathcal{E}_{\mathcal{A}}(H_3 - e)| \leq \sqrt{10}$.

Figure 5. The graph G in Example 4.12.

Here, we determine the \mathcal{A} -eigenvalues and $\mathcal{E}_{\mathcal{A}}$ of probabilistic neural networks. In general, a probabilistic neural network or briefly a PNN is a neural network which is widely used in classification and pattern recognition. In graph approach, some problems such as G = PNN(n, k, m) can be constructed as follows: There are three types of vertices of degrees respectively km, n + 1 and m. Thus, we have

$$V_{1} = \{ v \in V(G) \mid d_{v} = km \},$$

$$V_{2} = \{ v \in V(G) \mid d_{v} = n+1 \},$$

$$V_{3} = \{ v \in V(G) \mid d_{v} = m \},$$

where $|V_1| = n$, $|V_2| = km$ and $|V_3| = k$ and $V(G) = V_1 \cup V_2 \cup V_3$. Consequently, $|V(G)| = |V_1| + |V_2| + |V_3| = n + k(m + 1)$. The set of edges can be divided as following subsets:

$$E_1 = E_{km,n+1} = \{uv \in E(G) \mid d_u = km, d_v = n+1\}$$
$$E_2 = E_{n+1,m} = \{uv \in E(G) \mid d_u = n+1, d_v = m\},$$

where $|E_{km,n+1}| = kmn$ and $|E_{n+1,m}| = km$. Consequently, $|E(G)| = |E_1| + |E_2| = km(n+1)$. The probabilistic neural network G for n = 4, k = 2 and m = 3 is depicted in Figure 6.

Figure 6. Probabilistic neural network PNN(4, 2, 3).

Example 4.13. Take G = PNN(n, k, m) graph on n + k(m + 1) vertices. One can easily prove that the A-matrix is as follows:

$$\mathcal{A}(G) = \begin{bmatrix} 0_{n \times n} & M_{n \times mk} & 0_{n \times k} \\ M_{mk \times k} & 0_{mk \times mk} & N_{mk \times k}^T \\ 0_{k \times n} & N_{k \times mk} & 0_{k \times k} \end{bmatrix}$$

where

$$N = \left[\begin{array}{ccccccc} k & 0 \dots 0 & \dots & 0 \dots 0 \\ \hline \alpha \dots \alpha & k & \dots & 0 \dots 0 \\ 0 \dots 0 & \alpha \dots \alpha & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 \dots 0 & 0 \dots 0 & \dots & \alpha \dots \alpha \end{array} \right]$$

and $M = \beta J$, $\alpha = \sqrt{\frac{m+n-1}{m(n+1)}}$, $\beta = \sqrt{\frac{km(n+1)-2}{km+n+1}}$. Suppose that $\det(\nu I - \mathcal{A}(G)) = 0$. Then we have

$$P(G,\nu) = \nu^{km+n-k} \left(\nu^2 - \frac{m+n-1}{n+1}\right)^{k-1} \left(\nu^2 - \frac{m+n-1}{n+1} + n\left(\frac{mk+n-1}{n+1}\right)\right)$$

This yields that

$$\operatorname{Spec}_{\mathcal{A}}(G) = \left\{ \left[\pm \sqrt{\frac{m+n-1}{n+1}} \right]^{k-1}, [0]^{km+n-k}, \left[\pm \sqrt{\frac{m+n-1}{n+1} + n\left(\frac{mk+n-1}{n+1}\right)} \right]^1 \right\}.$$

Thus

$$\mathcal{E}_{\mathcal{A}}(G) = (2k-2)\sqrt{\frac{m+n-1}{n+1}} + 2\sqrt{\frac{m+n-1}{n+1}} + n\left(\frac{mk+n-1}{n+1}\right) \,.$$

Acknowledgment: L. Feng was supported by NSFC (Nos. 11671402, 11871479), Hunan Provincial Natural Science Foundation (2016JJ2138, 2018JJ2479) and Mathematics and Interdisciplinary Sciences Project of CSU.

References

- S. Akbari, E. Ghorbani, M. R. Oboudi, Edge addition, singular values, and energy of graphs and matrices, *Lin. Algebra Appl.* 430 (2009) 2192–2199.
- [2] L. E. Allemy, D. P. Jacobsz, V. Trevisan, Normalized Laplacian energy change and edge deletion, MATCH Commun. Math. Comput. Chem. 75 (2016) 343–353.
- [3] O. Arizmendi, J. Fernandez, O. Juarez–Romero, Energy of a vertex, *Lin. Algebra Appl.* 557 (2018) 464–495.
- [4] O. Arizmendi, O. Juarez-Romero, On bounds for the energy of graphs and digraphs, in: F. Galaz-García, J. Carlos, P. Millán, P. Solórzano (Eds.), *Contributions of Mexican Mathematicians Abroad in Pure and Applied Mathematics*, Am. Math. Soc., Providence, 2018.
- [5] O. Arizmendi, B. C. Luna–Olivera, M. Ramírez Ibáñez, Coulson integral formula for the vertex energy of a graph, *Lin. Algebra Appl.* 580 (2019) 166–183.
- [6] X. Chen, On ABC eigenvalues and ABC energy, Lin. Algebra Appl. 544 (2018) 141–157.
- [7] Z. Cui, B. Liu, On Harary matrix, Harary energy, MATCH Commun. Math. Comput. Chem. 68 (2012) 815–823.
- [8] Z. Cvetkovski, Inequalities: Theorems, Techniques and Selected Problems, Springer, Heidelberg, 2012.
- [9] K. C. Das, S. A. Mojallal, I. Gutman, Improving McClelland's lower bound for energy, MATCH Commun. Math. Comput. Chem. 70 (2013) 663–668.
- [10] K. C. Das, S. A. Mojallal, I. Gutman, On energy and Laplacian energy of bipartite graphs, *Appl. Math. Comput.* 273 (2016) 759–766.
- [11] J. Day, W. So, Singular value inequality and graph energy change, *El. J. Lin. Algebra* 16 (2007) 291–299.
- [12] J. Day, W. So, Graph energy change due to edge deletion, *Lin. Algebra Appl.* 428 (2008) 2070–2078.
- [13] E. Estrada, The ABC matrix, J. Math. Chem. 55 (4) (2017) 1021–1033.

- [14] E. Estrada, M. Benzi, What is the meaning of the graph energy after all?, Discr. Appl. Math. 230 (2017) 71–77.
- [15] Y. Gao, Y. Shao, The minimum ABC energy of trees, Lin. Algebra Appl. 577 (2019) 186–203.
- [16] M. Ghorbani, X. Li, M. Hakimi–Nezhaad, J. Wang, Bounds on the ABC spectral radius and ABC energy of graphs, Lin. Algebra Appl. 598 (2020) 145–164.
- [17] I. Gutman, The energy of a graph, Ber. Math Statist. Sekt. Forschungsz. Graz. 103 (1978) 1–22.
- [18] I. Gutman, The energy of a graph: old and new results, in: A. Betten, A. Kohner, R. Laue, A. Wassermann (Eds.), *Algebraic Combinatorics and Applications*, Springer, Berlin, 2001, pp. 196–211.
- [19] I. Gutman, K. C. Das, Estimating the total π-electron energy, J. Serb. Chem. Soc. 78 (2013) 1925–1933.
- [20] I. Gutman, D. Kiani, M. Mirzakhah, B. Zhou, On incidence energy of a graph, *Lin. Algebra Appl.* 431 (2009) 1223–1233.
- [21] I. Gutman, D. Kiani, M. Mirzakhah, On incidence energy of a graphs, MATCH Commun. Math.Comput, Chem. 62 (2009) 573–580.
- [22] R. A. Horn, C. R. Johnson, *Topics in Matrix Analysis*, Cambridge Univ. Press, Cambridge, 1991.
- [23] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
- [24] Maplesoft, a division of Waterloo Maple Inc. 2020. http://www.maplesoft.com.
- [25] B. J. McClelland, Properties of the latent roots of a matrix: The estimation of πelectron energies, J. Chem. Phys. 54 (1971) 640–643.
- [26] I. Z. Milovanović, E. I. Milovanović, A. Zakić, A short note on graph energy, MATCH Commun. Math. Comput. Chem. 72 (2014) 179–182.
- [27] M. Randić, On the characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615.