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Abstract

Let A be the ABC matrix of graph G. The A-energy EA(G) is the sum of
absolute values of the eigenvalues of matrix A. In this paper, we are interested how
the A-energy of an isolated-free graph changes when a non-leaf edge is deleted. The
aim of this paper is to study graph energy change due to edge deletion. Further,
we present several new results concerning with the A-energy of a graph. Besides,
we compute the energy and energy change due to edge deletion of some classes of
well-known graphs.

1 Introduction

Let G = (V,E) be a simple graph with vertex set V (G) and edge set E(G), whose

adjacency matrix is A(G). A graph is isolate-free if it has no isolated vertex. The

complete graph, the cycle graph and the path graph on n vertices are denoted by Kn,

Cn and Pn, respectively. For each x ∈ V , let NG(x) denote the neighborhood of x. Let

e = xy be an edge of E(G). Then NG(x)∩NG(y) = ∅ if and only if e is not on a cycle C3.

Let M be a real square matrix of order n. The eigenvalues of matrix M are the roots of

characteristic polynomial PM(λ) = det(λIn−M), where In is the identity matrix of order

n. If M has exactly s distinct eigenvalues λ1, λ2, . . . , λs with respectively multiplicities
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t1, t2, . . . , ts, then we use Spec(M) = {[λ1]t1 , [λ2]t2 , . . . , [λs]ts}, for showing the spectrum

of M .

The adjacency energy or briefly the energy of G is a graph invariant which was in-

troduced by Ivan Gutman [18]. The energy EA(G) is defined as the sum of absolute

values of the eigenvalues of A(G). For its basic properties and applications, includ-

ing various lower and upper bounds, see the book [23], a survey [19], the recent pa-

pers [7, 9, 10, 17, 20, 21, 25, 26] and the references cited there in. The energy of a vertex,

as introduced by Arizmendi et al. [4], is defined as EG(vi) = |A|ii, (1 ≤ i ≤ n), where

|A| = (AAt)
1
2 and A is the adjacency matrix of G, see [3, 5, 14] for further properties.

Given EA(G) = Tr(|A|), we can recover the energy of a graph by adding the energies of

the vertices in the graph G,

EA(G) = EG(v1) + · · ·+ EG(vn).

The structure of this paper is as follows. In Section 2, we give some auxiliary results

concerning with the A-energy of a graph. In Section 3, we provide some preparatory

results. Besides, by constructing three examples, we indicate that, in general, by an edge-

deletion operation, the A-energy of a graph increases, decreases or remains unchanged.

The main results are given in Section 4.

2 The auxiliary results

In this section, we give some equations and two upper bounds for the A-energy of a graph.

The matrix A = (Aij) has been defined as Aij =
√

di+dj−2
didj

, if two vertices vi and vj are

adjacent, and Aii = 0 otherwise. The eigenvalues of this matrix are the A-eigenvalues of

G denoted by ν1 ≥ ν2 ≥ · · · ≥ νn. The A-spectral radius of G is the largest eigenvalue of

the A-matrix of G, which is denoted by ν1. The A-energy EA(G) is the sum of absolute

values of the eigenvalues of A, see [6,13]. In [6], Chen conjectured that among all trees of

order n, the star graph Sn has the minimum A-energy and Gao et al. in [15] proved this

conjecture. As usual, the binomial coefficients are defined by
(
n
r

)
= n(n−1)···(n−r+1)

r!
, where

n ≥ r. Ghorbani et al. in [16], proved that for a connected graph G of order n ≥ 3, we

have the following result about the A-energy of a graph.
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Theorem 2.1. [16] Let G be a connected graph of order n ≥ 3. Then

EA(G) = ν1 Tr
∞∑
i=0

(
1
2

i

) ∞∑
j=0

(
i

j

)
(−1)j

(A
ν1

)2j
. (1)

Proof. Let G be a connected graph. Suppose that the A matrix of G is a square,

symmetric matrix with spectral decomposition A = QDQT , where Q = [
−→
ψ 1 · · ·

−→
ψ n]

is the matrix of orthonormalized eigenvectors
−→
ψ j associated with the eigenvalues νj, and

D = diag(ν1, . . . , νn). Since every symmetric positive semidefinite matrix has a unique

positive semidefinite square root, we yield that |A| = Q|D|QT =
√
A2.

Let ν1 > 0 be the largest eigenvalue ofA. We note in passing that since G is connected,

ν1 is a simple eigenvalue. Then, A
ν1

has spectral radius 1, and the matrix M = (A
ν1

)2 − I

has all its eigenvalues in the interval [−1, 0]. Hence, M is negative semidefinite and has

spectral radius 1. Let us write

|A| =
√
A2 = ν1

√(
A
ν1

)2

= ν1

√√√√I +

((
A
ν1

)2

− I

)
= ν1(I +M)

1
2 . (2)

Since, for −1 ≤ x ≤ 1, we have

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + · · · , 0 6= α ∈ R,

Eq.(2) can be reformulated as follows:

|A| = ν1

(
I +

1

2
M − 1

4 · 2
M2 +

3

2 · 4 · 6
M3 + · · ·

)
= ν1

∞∑
i=0

(
1
2

i

)((A
ν1

)2
− I
)i
.

Therefore,

EA(G) = Tr|A| = ν1Tr

[
∞∑
i=0

(
1
2

i

)((A
ν1

)2
− I
)i]

= ν1Tr
∞∑
i=0

(
1
2

i

) ∞∑
j=0

(
i

j

)
(−1)j

(A
ν1

)2j
.

Equivalently, the Eq.(1), can be rewritten as follows:

EA(G) = ν1

∞∑
i=0

(
2i

i

)
(−1)i+1

22i(2i− 1)
Tr

((A
ν1

)2
− I
)i
.

The general Randić index or the branching index was defined as R−1(G) =
∑

vi∼vj

(1/didj), see [27].
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Lemma 2.2. [6]. For any graph G of order n ≥ 3 with no isolated vertices, we have

1)
n∑
i=1

νi = 0,

2)
n∑
i=1

ν2i = 2(n− 2R−1(G)).

Theorem 2.3. Let G be a graph of order n ≥ 3 with no isolated vertex. Then

EA(G) ≥

√
2
(
n− 2R−1(G) +

(
n

2

)
(det(A))

2
n

)
.

Proof. Applying Geometric-Arithmetic mean inequality yields that( n∑
i=1

|νi|
)2

=
n∑
i=1

|νi|2 +
∑

i 6=j,1≤i,j≤n

|νi||νj|

≥ 2(n− 2R−1(G)) + n(n− 1)
( ∏
i 6=j,1≤i,j≤n

|νi||νj|
) 1

n(n−1)

= 2(n− 2R−1(G)) + 2

(
n

2

)( n∏
i=1

(νi)
2(n−1)

) 1
n(n−1)

= 2(n− 2R−1(G)) + 2

(
n

2

)( n∏
i=1

νi

) 2
n

= 2(n− 2R−1(G)) + 2

(
n

2

)
(det(A))

2
n .

Since EA(G) =
n∑
i=1

|νi|, we get

EA(G) ≥

√
2(n− 2R−1(G)) + 2

(
n

2

)
n
√

(det(A))2 .

This completes the proof.

Theorem 2.4. [8]. (Maclaurin’s inequality). Let a1, a2, . . . , an be positive real numbers.

Then

S1 ≥ 2
√
S2 ≥ · · · ≥ n

√
Sn,

where

Sk =
1(
n
k

) ∑
1≤i1<···<ik≤n

ai1ai2 · · · ain .

Equality holds if and only if a1 = a2 = · · · = an.
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Theorem 2.5. Let G be a graph of order n ≥ 3 with no isolated vertex and zero A

eigenvalues. Then

EA(G) >

√
2n

n− 1
|2R−1(G)− n| .

Proof. Consider ai = |νi| > 0 where νi’s are A eigenvalues of G, (1 ≤ i ≤ n). By putting

ai’s that in Theorem 2.4, we get S1 = 1
n
EA(G). Also

S2 =
1(
n
2

) ∑
1≤i<j≤n

|νi||νj| ≥
2

n(n− 1)

∣∣∣∣∣ ∑
1≤i<j≤n

νiνj

∣∣∣∣∣ .
By using Lemma 2.2, we have

∑
1≤i<j≤n

νiνj =
1

2

(
n∑
i=1

νi

)2

− 1

2

n∑
i=1

ν2i = 2R−1(G)− n.

Then S2 ≥ 2
n(n−1) |2R−1(G)− n|. We know that S1 ≥ 2

√
S2. Thus

EA(G) ≥
√

2n

n− 1
|2R−1(G)− n|.

Equality holds if and only if |νi| = |νj|. By [6, Proposition 3.2], we conclude that all

νi’s are zero which is impossible.

3 Graph energy change due to edge deletion

Let G− e denote the graph obtained by removing an edge e from G. We introduce three

examples to show that the A-energy of G− e increases, decreases or remains unchanged.

Indeed, we are interested in how the A-energy of a graph changes when an edge is deleted

from a graph. Let us begin with elementary examples.

Example 3.1. Consider the graph G of order 4 as depicted in Figure 1. The A-matrix is

A(G) =


0 0

√
2
2

√
2
2

0 0
√
2
2

√
2
2√

2
2

√
2
2

0 2
3√

2
2

√
2
2

2
3

0

 .
We have SpecA(G) = {[−1.12]1, [0]1, [2

3
]1, [1.79]1} and EA(G) ≈ 3.57. If H1 is a graph

obtained from G by deleting the edge e = v3v4. Then SpecA(H1) = {[−
√

2]1, [0]2, [
√

2]1}

and EA(H1) = 2
√

2 < EA(G). Also, if H2 is a graph obtained from G by deleting the edge

e = v2v4. Then SpecA(H2) = {[−1.13]1, [−
√
2
2

]1, [0.26]1, [1.57]1} and EA(H2) ≈ 3.68 >

EA(G).
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v4v3

v1

v2

Figure 1. The graph G in Example 3.1.

In what follows, by mG we mean the union of m copies of G, namely G ∪ · · · ∪G︸ ︷︷ ︸
m times

.

Example 3.2. Suppose G = n
2
K2. Then SpecA(G) = {[0]4} and EA(G) = 0. If H is a

graph obtained from G− e, then A-energy of G− e remains unchanged.

Question 1. If e is an edge of an isolated-free graph G such that EA(G) = EA(G − e),

then is it true that G = n
2
K2?

A vertex-cover of a graph G is a set S ⊆ V (G) such that for each edge uv ∈ E(G), at

least one of u or v is in S.

Theorem 3.3. [6] If G has a vertex-cover consisting of only the vertices of degree 2, then

EA(G) =
√
2
2
EA(G).

Example 3.4. Here, we compare the A-energies of Cn with Pn. By [23, p.26] and Theorem

3.3, we have

EA(Pn) =

{ √
2 csc( π

2(n+1)
− 1) n ≡ 0 (mod 2),√

2 cot( π
2(n+1)

− 1) n ≡ 1 (mod 2).

Then

EA(Cn) =


2
√

2 cot π
n

n ≡ 0 (mod 4),

2
√

2 csc π
n

n ≡ 2 (mod 4),√
2 csc π

2n
n ≡ 1 (mod 2).

Therefore

EA(Cn)− EA(Pn) =


√

2
(

2 cot π
n
− csc( π

2(n+1)
− 1)

)
n ≡ 0 (mod 4),

√
2
(

2 csc π
n
− csc( π

2(n+1)
− 1)

)
n ≡ 2 (mod 4),

√
2
(

csc π
2n
− cot( π

2(n+1)
− 1)

)
n ≡ 1 (mod 2).

In Figure 2, the difference between EA(Cn) and EA(Pn) is shown. One can yields that

the difference numbers tend to 0.5, if n is sufficiently large.
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Figure 2. The difference between EA(Cn) and EA(Pn), where 3 ≤ n ≤ 500.

4 Main results

Here, we give some upper bounds for the A-energy of the isolated-free graphs, when a

non-leaf edge is deleted. The singular values of a rectangular matrix M with complex

entries, are defined to be the square roots of the eigenvalues of the positive semi-definite

matrix M tM , where M t is the conjugate transpose of M . We denote a singular value by

σi(M), where 1 ≤ i ≤ n.

Lemma 4.1. [22] Let M and N be two square matrices of order n. Then
n∑
i=1

σi(M +N) ≤
n∑
i=1

σi(M) +
n∑
i=1

σi(N).

Lemma 4.2. [22] The singular values of a real symmetric matrix M are the absolute

values of the eigenvalues of M .

Energy change relating to the adjacency and normalized Laplacian matrices of a graph

has been studied in several papers, see [1, 2, 11, 12] for more details. Here, we investigate

the conditions that the A-energy of an isolated-free graph changes when a non-leaf edge

is deleted.

Lemma 4.3. Let G1 and G2 be two graphs of order n, and M = A(G1)−A(G2). Then

|EA(G1)− EA(G2)| ≤
n∑
i=1

σi(M).
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Proof. Since M +A(G2) = A(G1), by Lemma 4.1, we have
n∑
i=1

σi
(
M +A(G2)

)
≤

n∑
i=1

σi(M) +
n∑
i=1

σi
(
A(G2)

)
.

Lemma 4.2 implies that EA(G1)−EA(G2) ≤
∑n

i=1 σi(M). Also, −M = A(G2)−A(G1)

and thus

n∑
i=1

σi
(
A(G2)

)
≤

n∑
i=1

σi(−M) +
n∑
i=1

σi
(
A(G1)

)
.

Hence, by Lemma 4.1, we get EA(G2) − EA(G1) ≤
∑n

i=1 σi(−M) ≤
∑n

i=1 σi(M).

Therefore |EA(G1)− EA(G2)| ≤
∑n

i=1 σi(M). This completes the proof.

Lemma 4.3 enables us to prove the following theorems about the variations ofA-energy

due to edge deletion.

Theorem 4.4. Let G be an isolated-free graph of order n and e = xy be a non-leaf edge

of G. Then

|EA(G)− EA(G− e)| ≤ 2
√

3.

Proof. Suppose H = A(G)−A(G−e). It is not difficult to see that rank(H) ≤ 4. Suppose

that Spec(H) = {[0]n−4, [λ1]
1, [λ2]

1, [λ3]
1, [λ4]

1}. Thus

n∑
i=1

σi(H) = |λ1|+ |λ2|+ |λ3|+ |λ4|.

The Cauchy-Schwartz inequality and Lemmas 4.2, 4.3 imply that

|EA(G)− EA(G− e)| ≤ 2
( n∑
i=1

(λi(H))2
) 1

2
= 2
√

Tr(H2).

Since dx, dy ≥ 2 and

1

2
Tr(H2) =

(√
dx + dy − 2

dxdy

)2

+
∑

i 6=y,i∈NG(x)

(√
dx + di − 2

dxdi
−

√
dx + di − 3

(dx − 1)di

)2

+
∑

j 6=x,j∈NG(y)

(√
dy + dj − 2

dydj
−

√
dy + dj − 3

(dy − 1)dj

)2

,

we obtain

|EA(G)− EA(G− e)| ≤ 2
√

3,

as we required.
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Corollary 4.5. Let G be an d-regular graph of order n and e = xy ∈ E(G). Then

|EA(G)− EA(G− e)| ≤ 2
√

2

d

√√√√√(2d− 2) +

 1

d2

(√
2d− 2

d2
−

√
2d− 3

d(d− 1)

)2
 .

In Theorem 4.4, it is shown that if e is not incident to a pendant vertex, then |EA(G)−

EA(G− e)| ≤ 2
√

3. In following, we show that if x and y also have no common neighbors,

then the change in A-energy is less than
√

10.

Suppose M = A(G) − A(G − e), where e = xy is a non-pendent edge and NG(x) ∩

NG(y) = φ. The matrix M is symmetric with zero diagonal entries. Suppose we partition

V − {x, y} into subsets NG(x) = {u1, . . . , up} and NG(y) = {up+1, . . . , up+q} such that

NG(x)− {y} ⊂ NG(x) and NG(y)− {x} ⊂ NG(y), where n = 2 + p+ q, (p, q ≥ 1). Then

the non-zero entries are the entries of the first two rows or first two columns of M . This

means that, the structure of M is

0 w x1 · · · xp 0 · · · 0
w 0 0 · · · 0 yp+1 · · · yp+q
x1 0 0 · · · 0 0 · · · 0
...

...
...

. . .
...

...
. . .

...
xp 0 0 · · · 0 0 · · · 0
0 yp+1 0 · · · 0 0 · · · 0
...

...
...

. . .
...

...
. . .

...
0 yp+q 0 · · · 0 0 · · · 0


,

where

M(x, y) = w =

√
dx + dy − 2

dxdy
, (3)

M(x, ui) = xi =

{
0 ui 6∈ NG(x)√

dx+dui−2
dxdui

−
√

dx+dui−3
(dx−1)dui

ui ∈ NG(x)− {y} , (4)

M(y, ui) = yi =

{
0 ui 6∈ NG(y)√

dy+dui−2
dydui

−
√

dy+dui−3
(dy−1)dui

ui ∈ NG(y)− {x} , (5)

and dx, dy ≥ 2 which implies w 6= 0. Consider two vectors X = [x1, . . . , xp] and Y =

[yp+1, . . . , yp+q]. The Euclidean norm of the vector z ∈ Rn, is denoted by ‖z‖. We have

the following theorem.

Theorem 4.6. Let G be a graph of order n with no isolated vertex. Let e = xy be an

edge where dx, dy ≥ 2 and NG(x) ∩NG(y) = φ. Then
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1) If X 6= 0,Y 6= 0, then |EA(G) − EA(G − e)| ≤
√

10. Moreover, if dx, dy ≥ d ≥ 2,

Then

|EA(G)− EA(G− e)| ≤ 2

d

√
8d2(1− d)

√
d− 2

d
+ 8d3 − 16d2 + 6d− 2.

2) If X = 0, Y 6= 0 or X 6= 0, Y = 0, then |EA(G)− EA(G− e)| ≤ 2.

3) If X = Y = 0, then |EA(G)−EA(G− e)| ≤
√

2. In addition, if dx, dy ≥ d ≥ 2, Then

|EA(G)− EA(G− e)| ≤ 2

d

√
2d− 2.

Proof. We can distinguish following three cases:

Case 1. Both X and Y have non-zero entries. It is easy to see that in this case

rank(M) = 4 and therefore Spec(M) = {[−λ2]1, [−λ1]1, [0]n−4, [λ1]
1, [λ2]

1}. Let [θ, β, ρ, τ ]t

be an eigenvector corresponding to non-zero eigenvalue λ of M , where θ, β ∈ R, ρ ∈ Rp

and τ ∈ Rq. Then

M


α
β
ρ
τ

 = λ


α
β
ρ
τ

 . (6)

Hence, Eq.(6) implies that

wβ +Xρ = λα, (7)

wα + Y τ = λβ, (8)

X tα = λρ,

Y tβ = λτ.

Since λ 6= 0, we have ρ = αXt

λ
, τ = βY t

λ
and Eq.s (7) and (8), yield to obtain

β = 1
w

(
λα− ‖X‖2 α

λ

)
, (9)

α = 1
w

(
λβ − ‖Y ‖2 β

λ

)
. (10)

Now by Eq.s (9) and (10), we get

λ4 − λ2(w2 + ‖X‖2 + ‖Y ‖2) + ‖X‖2‖Y ‖2 = 0.

Suppose that B = w2 + ‖X‖2 + ‖Y ‖2 and C = ‖X‖2‖Y ‖2. Then

λ1,2 = ±

√
B ±

√
B2 − 4C

2
.
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Since dx, dy ≥ 2, we yield w2 ≤ 1
2

with equality if and only if dx = dy = 2. Also,

‖X‖2 ≤ 1
2

and ‖Y ‖2 ≤ 1
2

with equality if and only if dui = 1(1 ≤ i ≤ p) and duj = 1

(p+ 1 ≤ j ≤ p+ q), respectively. Applying Lemma 4.3, we conclude that

|EA(G)− EA(G− e)| ≤ 2(λ1 + λ2)

= 2

[(B +
√
B2 − 4C

2

) 1
2

+
(B −√B2 − 4C

2

) 1
2

]
= 2

√
B + 2

√
C

= 2
√
w2 + ‖X‖2 + ‖Y ‖2 + 2‖X‖‖Y ‖ ≤

√
10 . (11)

Also, if dx, dy ≥ d ≥ 2, then w2 ≤ 2d−2
d2

.

Case 2. Suppose either X or Y has a non-zero entry. Let X = 0 and Y has a non-

zero entry. Then by Eq.(4), we obtain dui = 2 (1 ≤ i ≤ p). It is not difficult to see that

null(M) ≥ n − 2 and thus rank(M) ≤ 2 which yields that rank(M) = 2 and so M has

exactly two non-zero eigenvalues. Let λ 6= 0 be an eigenvalue of M and [α, β,0p, τ ]t be

an eigenvector corresponding to λ, where α, β ∈ R and τ ∈ Rq. Then

M


α
β
0p
τ

 = λ


α
β
0p
τ

 .
Hence,

wβ = λα, (12)

wα + Y τ = λβ, (13)

Y tβ = λτ. (14)

Since λ 6= 0, by Eq.(14) we have τ = Y tβ
λ

and by Eq.(13) wα+Y.Y
tβ
λ

= wα+‖Y ‖2 β
λ

= λβ.

Hence, α = β
w

(
λ− ‖Y ‖

2

λ

)
. Since β 6= 0, Eq.(12) implies that wβ = λ

(
β
w

(
λ− ‖Y ‖

2

λ

))
. Thus

λ2 − ‖Y ‖2 − w2 = 0 and so λ = ±
√
w2 + ‖Y ‖2. On the other hand, since dx, dy ≥ 2, we

get w2 ≤ 1
2

and so

‖Y ‖2 =
∑

vi∈NG(y)−{x}

(√
dy + dvi − 2

dydvi
−

√
dy + dvi − 3

(dy − 1)dvi

)2

≤ 1

2
.

By applying Lemma 4.3, we have

|EA(G1)− EA(G2)| ≤ 2
√
w2 + ‖Y ‖2 ≤ 2

√
1

2
+

1

2
= 2.
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Case 3. Both X and Y are zero vectors. Then xi = 0 (1 ≤ i ≤ p) and yj = 0

(p+ 1 ≤ j ≤ p+ q). By Eq.s (4) and (5), we have dui = duj = 2. Also, rank(M) = 2 and

Spec(M) = {[−w]1, [0]n−2, [w]1}. Since dx, dy ≥ 2, we get w ≤
√
2
2

with equality if and only

if dx = dy = 2. It is not difficult to see that dx+dy−2
dxdy

= 1
2

if and only if 2dx+2dy−4 = dxdy

if and only if dx = dy = 2. Lemma 4.3 implies that

|EA(G)− EA(G− e)| ≤
n∑
i=1

σi(M) =
n∑
i=1

|λi(M)| = 2w ≤
√

2 .

Here, we determine an upper bound for absolute difference between EA(G) and EA(G−

e), where e = xy ∈ E(G) is not pendant edge and |NG(x) ∩NG(y)| = k (1 ≤ k ≤ n− 2).

If we partition V − {x, y} into subsets NG(x) = {u1, . . . , uk, uk+1, . . . , up} and NG(y) =

{u1, . . . , uk, up+1, . . . , up+q}, such that NG(x)− {y} ⊂ NG(x) and NG(y)− {x} ⊂ NG(y),

where n = 2 + k + p+ q (p, q ≥ 0), then the structure of M is

M =


0 w X1 X2 0q
w 0 Y1 0p Y2
X t

1 Y t
1 0tk · · · 0tk

X t
2 0tp 0tp · · · 0tp

0tq Y t
2 0tq · · · 0tq

 .
Consider now the vectors 0 = [0, 0, . . . , 0], X1 = [x1, . . . , xk], X2 = [xk+1, . . . , xp], Y1 =

[y1, . . . , yk], Y2 = [yp+1, . . . , yp+q], where xi (1 ≤ i ≤ p) and yj (1 ≤ j ≤ k), (p + 1 ≤ j ≤

p+ q) are defined in the Eq.(4) and Eq.(5), respectively.

Theorem 4.7. If X1, X2, Y1, Y2 = 0, then |EA(G)− EA(G− e)| ≤
√

2.

Proof. Suppose X1, X2, Y1, Y2 = 0. Then rank(M) = 2, Spec(M) = {[−w]1, [0]n−2, [w]1}

and similar to the proof of Theorem 4.6 (1), we have

|EA(G)− EA(G− e)| ≤ 2w =
√

2 ,

which completes the proof.

Theorem 4.8. If X1, X2, Y1 = 0 and Y2 6= 0, or X1, X2, Y2 = 0 and Y1 6= 0, or

X1, X2, Y1 = 0 and X2 6= 0, or X2, Y1, Y2 = 0 and X1 6= 0, then |EA(G)− EA(G− e)| ≤ 2.

Proof. Suppose X1, X2, Y1 = 0 but Y2 6= 0, then rank(M) = 2. Let λ 6= 0 be an eigenvalue

of M corresponded to eigenvector v = [α, β, γ,0k+p, τ ]t, where α, β ∈ R, γ ∈ Rk and
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τ ∈ Rq. Then

wβ = λα, (15)

wα + Y2τ = λβ, (16)

Y t
2β = λτ. (17)

By using Eq.s (15) and (17), we get α = wβ
λ

and τ =
Y t
2 β

λ
. Since λ 6= 0, Eq.(16) implies

that λ2 = w2 + ‖Y2‖2 and thus Spec(M) =
{

[0]n−2,
[
±
√
w2 + ‖Y2‖2

]1}
. Knowing that

dx, dy ≥ 2, we conclude that w2, ‖Y2‖2 ≤ 1
2
. Thus |EA(G)− EA(G− e)| is bounded above

by 2
√
w2 + ‖Y2‖2 ≤ 2. By a similar argument, we obtain a similar result. This completes

the proof.

Theorem 4.9. If either X1, Y1 = 0 and X2, Y2 6= 0, or X1, Y2 = 0 and X2, Y1 6= 0, or

X2, Y1 = 0 and X1, Y2 6= 0, then |EA(G)− EA(G− e)| ≤
√

10.

Proof. Suppose that X1, Y1 = 0 and X2, Y2 6= 0. Then rank(M) = 4 and

Spec(M) = {[−λ2]1, [−λ1]1, [0]n−4, [λ1]
1, [λ2]

1}.

Let λ 6= 0 be an eigenvalue of M with eigenvector v = [α, β,0k, ρ, τ ]t, where α, β ∈ R,

ρ ∈ Rp and τ ∈ Rq. Then we have

wβ +X2ρ = λα, (18)

wα + Y2τ = λβ, (19)

X t
2α = λρ, (20)

Y t
2β = λτ. (21)

Eq.s (18), (19), (20) and (21) imply that

λ4 − (w2 + ‖X2‖2 + ‖Y2‖2)λ2 + ‖X2‖2‖Y2‖2 = 0. (22)

If B = w2 + ‖X2‖2 + ‖Y2‖2 and C = ‖X2‖2‖Y2‖2, then B2 − 4C ≥ 0 and thus the roots

of Eq.(22) are

λ1,2 = ±
√

1

2
(B ±

√
B2 − 4C).

This yields that

|EA(G)− EA(G− e)| ≤ 2

√
B + 2

√
C

≤ 2
√
w2 + ‖X2‖2 + ‖Y2‖2 + 2‖X2‖‖Y2‖ ≤

√
10 .
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Let p, q ≥ 0. The tree Sup of order n = 2p + 1, containing with p pendent vertices,

each attached to a vertex of degree 2, and a vertex of degree p, will be called the p-sun.

The tree Sup,q of order n = 2(p+q+1), obtained from a p-sun and a q-sun, by connecting

their central vertices, will be called a (p, q)-double sun, see Figure 3.

Sup,qSup

p
e

p qe

Figure 3. Two graphs Sup and Sup,q.

Example 4.10. Concider the (p, q)-double sun. It has an edge e = xy for which dx = p

and dy = q. Also, Sup,q − e is disjoint suns Sup and Suq. According to Theorem 4.6 (3),

we have

|EA(Sup,q)− EA(Sup,q − e)| = |EA(Sup,q)− EA(Sup)− EA(Suq)| ≤
√

2.

On the other hand, it is not difficult to see that the A-spectrum of the sun with p ≥ 1 is

SpecA(Sup) = {[−
√

(n+ 1)/4]1, [−
√

2/2]
n−3
2 , [0]1, [

√
2/2]

n−3
2 , [

√
(n+ 1)/4]1},

where n = 2p+ 1. Then

EA(Sup) =
√

2(p− 1) +
√

2p+ 2. (23)

Therefore

EA(Sup,q) ≤
√

2 +
√

2(p− 1) +
√

2p+ 2 +
√

2(q − 1) +
√

2q + 2

=
√

2
(

1 + (p− 1)(q − 1) +
√
p+ 1 +

√
q + 1

)
.

Example 4.11. Concider the p-sun, where p ≥ 2. Since Sup − e is disjoint suns Sup−1

and K2, see Figure 3. By Eq. (23) and Theorem 4.6 (2), we have

|EA(Sup)− EA(Sup − e)| = |EA(Sup)− EA(Sup−1)− EA(K2)|

=
(√

2(p− 1) +
√

2p+ 2
)
−
(√

2(p− 2) +
√

2(p− 1) + 2
)

≤
√

2
(

1−√p+
√
p+ 1

)
< 2.

-656-



In Figure 4, the difference between EA(Sup) and EA(Sup)− e is shown. One can yields

that the difference numbers tend to
√

2, if p is sufficiently large.

Figure 4. The difference between EA(Sup) and EA(Sup)− e, where 2 ≤ p ≤ 500.

A complete bipartite graph of order n with a bipartition of sizes n1 and n2 is denoted

by Kn1,n2 , where n1 + n2 = n. The double star S(p, q), where p ≥ q ≥ 0, is the graph

consisting of the union of two stars K1,p and K1,q together with a line joining their centers.

Example 4.12. Consider the graph G of order n in Figure 5.

1) Supppse k = 0 and n ≥ 4. If n = 4, then

M = A(P4)−A(P4 − e) =


0

√
2
2

0
√
2
2√

2
2

0
√
2
2

0

0
√
2
2

0 0√
2
2

0 0 0

 ,
the path graph P4 is satisfied in conditions of Theorem 4.6(1). We know

SpecA(P4) = {[−1.1441]1, [−0.4370]1, [0.4370]1, [1.1441]1},

SpecA(P4 − e) = {[0]4}.

Therefore |EA(P4) − EA(P4 − e)| =
√

10 and the bound in Eq.(11) is sharp. Now,

suppose n ≥ 5. Then G = S(p, q) is satisfied in conditions of Theorem 4.6(1). Thus

we have

|EA(S(p, q))− EA(K1,p)− EA(K1,q)| ≤
√

10.

Since SpecA(K1,p) = {[−
√
p− 1]1, [0]p−1, [

√
p− 1]1}. Therefore

EA(S(p, q)) ≤
√

10 + 2(
√
p− 1 +

√
q − 1).
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2) Suppose k 6= 0. If graph H1 is obtained from the graph G with p, q = 0, then

H1 = K2,n−2+e is satisfied in conditions of Theorem 4.7. Thus we have |EA(K2,n−2+

e) − EA(K2,n−2)| ≤
√

2. Since by [6, Proposition 4.2], EA(K2,n−2) = 2
√
n− 2, we

may obtain

EA(K2,n−2 + e) ≤
√

2 + 2
√
n− 2.

Also, if graph H2 is obtained from the graph G with p = 0 and q 6= 0, then this graph

is satisfied in conditions of Theorem 4.8. Thus we have |EA(H2)−EA(H2− e)| ≤ 2.

Moreover, if graph H3 is obtained from the graph G with p, q 6= 0, then this graph is

satisfied in conditions of Theorem 4.9. Thus we have |EA(H3)−EA(H3− e)| ≤
√

10.

k

e

q p

Figure 5. The graph G in Example 4.12.

Here, we determine the A-eigenvalues and EA of probabilistic neural networks. In

general, a probabilistic neural network or briefly a PNN is a neural network which is

widely used in classification and pattern recognition. In graph approach, some problems

such as G = PNN(n, k,m) can be constructed as follows: There are three types of vertices

of degrees respectively km, n+ 1 and m. Thus, we have

V1 = {v ∈ V (G) | dv = km},

V2 = {v ∈ V (G) | dv = n+ 1},

V3 = {v ∈ V (G) | dv = m},

where |V1| = n, |V2| = km and |V3| = k and V (G) = V1 ∪ V2 ∪ V3. Consequently,

|V (G)| = |V1| + |V2| + |V3| = n + k(m + 1). The set of edges can be divided as following

subsets:

E1 = Ekm,n+1 = {uv ∈ E(G) | du = km, dv = n+ 1},

E2 = En+1,m = {uv ∈ E(G) | du = n+ 1, dv = m},
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where |Ekm,n+1| = kmn and |En+1,m| = km. Consequently, |E(G)| = |E1| + |E2| =

km(n + 1). The probabilistic neural network G for n = 4, k = 2 and m = 3 is depicted

in Figure 6.

Figure 6. Probabilistic neural network PNN(4, 2, 3).

Example 4.13. Take G = PNN(n, k,m) graph on n+ k(m+ 1) vertices. One can easily

prove that the A-matrix is as follows:

A(G) =

 0n×n
Mmk×k
0k×n

Mn×mk
0mk×mk
Nk×mk

0n×k
NT
mk×k

0k×k

 ,
where

N =


k︷ ︸︸ ︷

α . . . α
0 . . . 0

...
0 . . . 0

0 . . . 0
k︷ ︸︸ ︷

α . . . α
...

0 . . . 0

. . .

. . .

. . .

. . .

0 . . . 0
0 . . . 0

...
k︷ ︸︸ ︷

α . . . α

 ,

and M = βJ , α =
√

m+n−1
m(n+1)

, β =
√

km(n+1)−2
km+n+1

. Suppose that det(νI − A(G)) = 0. Then

we have

P (G, ν) = νkm+n−k
(
ν2 − m+ n− 1

n+ 1

)k−1(
ν2 − m+ n− 1

n+ 1
+ n

(
mk + n− 1

n+ 1

))
.

This yields that

SpecA(G) =


[
±
√

m + n− 1

n + 1

]k−1
, [0]km+n−k,

[
±

√
m + n− 1

n + 1
+ n

(
mk + n− 1

n + 1

)]1 .

Thus

EA(G) = (2k − 2)

√
m+ n− 1

n+ 1
+ 2

√
m+ n− 1

n+ 1
+ n

(
mk + n− 1

n+ 1

)
.
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