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Abstract

Let A be the ABC matrix of graph G. The A-energy £4(G) is the sum of
absolute values of the eigenvalues of matrix A. In this paper, we are interested how
the A-energy of an isolated-free graph changes when a non-leaf edge is deleted. The
aim of this paper is to study graph energy change due to edge deletion. Further,
we present several new results concerning with the A-energy of a graph. Besides,
we compute the energy and energy change due to edge deletion of some classes of
well-known graphs.

1 Introduction

Let G = (V,E) be a simple graph with vertex set V(G) and edge set E(G), whose
adjacency matrix is A(G). A graph is isolate-free if it has no isolated vertex. The
complete graph, the cycle graph and the path graph on n vertices are denoted by K,
C,, and P,, respectively. For each x € V, let Ng(z) denote the neighborhood of z. Let
e = xy be an edge of E(G). Then Ng(z) N Ng(y) = 0 if and only if e is not on a cycle Cs.

Let M be a real square matrix of order n. The eigenvalues of matrix M are the roots of
characteristic polynomial Py(A\) = det(AI,, — M), where I,, is the identity matrix of order

n. If M has exactly s distinct eigenvalues A1, Ag, ..., A; with respectively multiplicities

*Corresponding author
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t1,t2,...,ts, then we use Spec(M) = {[\], [A2]2, ..., [Xs]t}, for showing the spectrum

The adjacency energy or briefly the energy of GG is a graph invariant which was in-
troduced by Ivan Gutman [18]. The energy £4(G) is defined as the sum of absolute
values of the eigenvalues of A(G). For its basic properties and applications, includ-
ing various lower and upper bounds, see the book [23], a survey [19], the recent pa-
pers [7,9,10,17,20,21,25,26] and the references cited there in. The energy of a vertex,
as introduced by Arizmendi et al. [4], is defined as Eq(v;) = |Ali, (1 <@ < n), where
|A] = (AAY)z and A is the adjacency matrix of G, see [3,5,14] for further properties.
Given E4(G) = Tr(|A|), we can recover the energy of a graph by adding the energies of
the vertices in the graph G,

SA(G) = 5(;(’01) + EG(vn)'

The structure of this paper is as follows. In Section 2, we give some auxiliary results
concerning with the A-energy of a graph. In Section 3, we provide some preparatory
results. Besides, by constructing three examples, we indicate that, in general, by an edge-
deletion operation, the A-energy of a graph increases, decreases or remains unchanged.

The main results are given in Section 4.

2 The auxiliary results

In this section, we give some equations and two upper bounds for the A-energy of a graph.

The matrix A = (A;;) has been defined as A;; = dl;’zﬁ, if two vertices v; and v; are
adjacent, and A;; = 0 otherwise. The eigenvalues of this matrix are the A-eigenvalues of
G denoted by vy > vy > -+ > v,. The A-spectral radius of G is the largest eigenvalue of
the A-matrix of G, which is denoted by ;. The A-energy £4(G) is the sum of absolute

values of the eigenvalues of A, see [6,13]. In [6], Chen conjectured that among all trees of

order n, the star graph S, has the minimum A-energy and Gao et al. in [15] proved this

_ n(n=1)-(n—r+1)
- r!

conjecture. As usual, the binomial coefficients are defined by (:L) , where

n > r. Ghorbani et al. in [16], proved that for a connected graph G of order n > 3, we

have the following result about the A-energy of a graph.
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Theorem 2.1. [16] Let G be a connected graph of order n > 3. Then

oS (HEQ0®.

Proof. Let G be a connected graph. Suppose that the A matrix of G is a square,
symmetric matrix with spectral decomposition A = QDQ”, where Q = [ﬁ)l ?n]
is the matrix of orthonormalized eigenvectors ﬁj associated with the eigenvalues v;, and
D = diag(v1,...,v,). Since every symmetric positive semidefinite matrix has a unique
positive semidefinite square root, we yield that |A| = Q|D|QT = v/.A2.

Let 11 > 0 be the largest eigenvalue of A. We note in passing that since G is connected,
v is a simple eigenvalue. Then, f has spectral radius 1, and the matrix M = (;Al)2 -1

has all its eigenvalues in the interval [—1,0]. Hence, M is negative semidefinite and has

AN? 1
I+((=) —-1]|=wn{l+M)z. (2)
V1
Since, for —1 <z < 1, we have

r— 1 (oo —1 —2) .
(14+z2)*=14az+ (1(0/2| )xz + oo 3)'(& );B3 +-e

spectral radius 1. Let us write

Al = VA = v, (“‘})zzm

Eq.(2) can be reformulated as follows:

_ Ly Lapy 3 ap S (Y (AT
\A\—ul(l—&-QM M M )‘Z’lZ(z’ (m) ).

Therefore,

EAG) =Tr|A| = Tr

Equivalently, the Eq.(1), can be rewritten as follows:

-n Z (21) 22i(2i Ml) o (<£)z - I)i‘

The general Randié¢ index or the branching index was defined as R_(G) = vau]
(1/d;d;), see [27].



-646-

Lemma 2.2. [6]. For any graph G of order n > 3 with no isolated vertices, we have

1) z": v; =0,
i=1

2) Z V2 =2(n—2R_,(Q)).

Theorem 2.3. Let G be a graph of order n > 3 with no isolated vertex. Then

EA(G) > \/2(n — 2R, (G) + (g) (det(A))7) .

Proof. Applying Geometric-Arithmetic mean inequality yields that

n 2 n
() =S ks Yl
i—1 i=1 i£,1<i,5<n
1

> 20— 2R4(G) +nn-D( ] Illl) ™
i#5,1<i,5<n

n

n Z(n 1) "("%‘)
ne2(3)( g >
=2(n—2R_1(G)) + 2 (Z)

) (det(A))*.

=2(n—2R_1(G)) +2

H:::

=2(n—2R_1(G)) +2 5

Since E4(G) = Z |vi|, we get
Py

£a(G) > \/ 2(n — 2R () + 2(’;) O/ (det(A)2

This completes the proof. |
Theorem 2.4. [8]. (Maclaurin’s inequality). Let ay,as, ..., a, be positive real numbers.
Then

Slz v SQEZ 1\/’ Sru

where

1
Sk = (n) Z Qi) Ay~~~ Ay -

k/ 1<ij<--<ix<n

Equality holds if and only if a; = ay = --- = a,.
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Theorem 2.5. Let G be a graph of order n > 3 with no isolated vertex and zero A

eigenvalues. Then

£A(G) > \/%pml(a) —n| .

Proof. Consider a; = |v;| > 0 where ;s are A eigenvalues of G, (1 <4 < n). By putting

a;’s that in Theorem 2.4, we get S; = £E4(G). Also

1 2
Sy = m Z villys] > m

2/ 1<i<j<n

E vivji .

1<i<j<n

By using Lemma 2.2, we have

n 2 n
Z viv; = % <zzl: 1/1-) — %ny =2R_1(G) —n.

1<i<j<n i=1

Then Sy > ﬁpR,](G) — n|. We know that S; > v/S>. Thus

£(G) > \/%DPH(G) “n

Equality holds if and only if |1;| = |v;|. By [6, Proposition 3.2], we conclude that all

v;’s are zero which is impossible. |

3 Graph energy change due to edge deletion

Let G — e denote the graph obtained by removing an edge e from G. We introduce three
examples to show that the A-energy of G — e increases, decreases or remains unchanged.
Indeed, we are interested in how the A-energy of a graph changes when an edge is deleted

from a graph. Let us begin with elementary examples.

Example 3.1. Consider the graph G of order 4 as depicted in Figure 1. The A-matriz is

A(G) =

v O ofSpelS,
O wiv w‘&u‘&

NSRS
drfn o o

We have Specy(G) = {[—1.12]4, [0]%, 2]}, [1.79]'} and E4(G) =~ 3.57. If Hy is a graph
obtained from G by deleting the edge e = vsvy. Then Spec4(H1) = {[—v/2]', [0]?, [v'2]'}
and E4(Hy) = 2v/2 < EA(G). Also, if Hy is a graph obtained from G by deleting the edge
e = vvs. Then Specy(Hs) = {[~1.13]",[=2]",[0.26]'", [1.57]'} and Ea(Hz) ~ 3.68 >

EA(G).
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Figure 1. The graph G in Example 3.1.

In what follows, by mG we mean the union of m copies of G, namely GU ---UG.

m times
Example 3.2. Suppose G = £K5. Then Spec,(G) = {[0]*} and E4(G) = 0. If H is a

graph obtained from G — e, then A-energy of G — e remains unchanged.

Question 1. If e is an edge of an isolated-free graph G such that E4(G) = E4(G — e),
then is it true that G = §K5?
A vertex-cover of a graph G is a set S C V(G) such that for each edge uv € E(G), at

least one of v or v is in S.

Theorem 3.3. [6] If G has a vertex-cover consisting of only the vertices of degree 2, then
Ea(G) = EA(G).

Example 3.4. Here, we compare the A-energies of Cy, with P,,. By [23, p.26] and Theorem
3.3, we have

\/icsc(ﬁfl) n=0 (mod 2),
Ealbn) = { V2 cot( v 1) n=1 (mod 2).

2(n+1)
Then
2v2cot T n=0 (mod 4),
EAlC,) = Qﬂcsc% n=2 (mod 4),
V2escZ  n=1 (mod 2).
Therefore
V2 (2cot T — csc(Z(n’ﬂrl) -1) n=0 (mod 4),
EAC) —EA(P) =4 V2 2csc T — csc(mf“ﬂ) -1) n=2 (mod 4),
V2 (esc & — cot(m - 1)) n=1 (mod 2).

In Figure 2, the difference between E4(Cy) and EA(Py,) is shown. One can yields that

the difference numbers tend to 0.5, if n is sufficiently large.
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Figure 2. The difference between £4(C,) and E4(P,), where 3 < n < 500.

4 Main results

Here, we give some upper bounds for the A-energy of the isolated-free graphs, when a
non-leaf edge is deleted. The singular values of a rectangular matrix M with complex
entries, are defined to be the square roots of the eigenvalues of the positive semi-definite
matrix M*M, where M" is the conjugate transpose of M. We denote a singular value by

o;(M), where 1 < i <n.

Lemma 4.1. [22] Let M and N be two square matrices of order n. Then
STo(M+N) <D ai(M)+ Y ai(N).
i=1 i=1 i=1

Lemma 4.2. [22] The singular values of a real symmetric matriz M are the absolute
values of the eigenvalues of M.

Energy change relating to the adjacency and normalized Laplacian matrices of a graph
has been studied in several papers, see [1,2,11,12] for more details. Here, we investigate
the conditions that the A-energy of an isolated-free graph changes when a non-leaf edge

is deleted.

Lemma 4.3. Let Gy and Gy be two graphs of order n, and M = A(G:1) — A(Gz2). Then

IEA(G) = Ea(Ga)| <D ai(M).

i=1
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Proof. Since M + A(G5) = A(G1), by Lemma 4.1, we have

n

> 0i(M + A(G)) Zaz (M) +Zal

i=1
Lemma 4.2 implies that £4(G1) —E4(G2) < Y 0:(M). Also, =M = A(G2) — A(Gh)
and thus

n n

Zai(A(Gz)) < Zm(—MHZm(A(Gl)),
<

Hence, by Lemma 4.1, we get E4(Ga2) — Ea(G1) < Yo, 0s(=M) < 37 0i(M).
Therefore |E4(G1) — Ea(G2)| < X1, 0i(M). This completes the proof. |

Lemma 4.3 enables us to prove the following theorems about the variations of A-energy

due to edge deletion.

Theorem 4.4. Let G be an isolated-free graph of order n and e = zy be a non-leaf edge
of G. Then

|E4(G) = Ea(G = ) < 2V3.
Proof. Suppose H = A(G)—A(G—e). It is not difficult to see that rank(H) < 4. Suppose
that Spec(H) = {[0]"~%, [A]*, [A2)%, [Na]t, [Aa]t}. Thus

ZUi(H) = |Aul [ Aa] 4 [As] + [l

The Cauchy-Schwartz inequality and Lemmas 4.2, 4.3 imply that

n

EA(C) = Ea(G = ©)| <2( S (A(H))?)” = 2/ Tx(H).

i=1

Since d,,d, > 2 and

2 2
[d, +d, —2 4yt d; = dy+d;—3
2\ x Yy
Tr(H)‘( d,d, ) #UEN()<V d.d; (dy — 1)d >
i#yi€ENg(z

dy+d; — dy+d; — 3
A2, jENG(Y) dyd; (dy = 1)d;

we obtain

as we required. |
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Corollary 4.5. Let G be an d-regular graph of order n and e = zy € E(G). Then

2V2 2d — 2 2d -3
[a(G) = Ea(G =)l < —= | (2d=2) + | <\/ ,/ 1)

In Theorem 4.4, it is shown that if e is not incident to a pendant vertex, then |E4(G) —

EA(G —e)| < 2v/3. In following, we show that if  and y also have no common neighbors,
then the change in A-energy is less than 1/10.

Suppose M = A(G) — A(G — e), where e = zy is a non-pendent edge and Ng(z) N
Na(y) = ¢. The matrix M is symmetric with zero diagonal entries. Suppose we partition
V — {z,y} into subsets Ng(x) = {u1,...,u,} and Ne(y) = {up+1, ..., Upsq} such that
Ne(z) —{y} C Ng(z) and Ng(y) — {z} C Ng(y), where n =2+ p+¢q, (p,g > 1). Then
the non-zero entries are the entries of the first two rows or first two columns of M. This

means that, the structure of M is

[0 w x z, 0 - 0]
0 0 0 Ypsr1 - Upsg
xy 0 0 o 0 -+ 0
2 0 0 - 0 0 - 0
0 Yp2 0 =~ 0 0O - 0
LO Ypg O -+ 0 0 - 0
where
Ay +d, — 2
Ma,y)=w=,/ Zid (3)
(2,0 : e 0
M(z,u;) =2 = dotdu. —2 Totdu —3 , 4
\/ Ld; - (d;—ﬁd% u; € Ne(z) — {y}
0 u; & Na(y)
M(y,u;) = y; = dytda,—2 dytde,—3 , 5
) { Vi - e Vo) - (o) ?
and d,,d, > 2 which implies w # 0. Consider two vectors X = [z1,...,,) and ¥ =
[Up+1, - - - Yptql. The Euclidean norm of the vector z € R”, is denoted by ||z||. We have

the following theorem.

Theorem 4.6. Let G be a graph of order n with no isolated vertex. Let e = xy be an

edge where dy, d, > 2 and Ng(z) N Ng(y) = ¢. Then
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1) If X #£0,Y #0, then |EA(G) — EA(G — €)| < V10. Moreover, if dy,d, > d > 2,
Then
2 d—2 .
IEA(G) = Ea(G = )] < 2\ [8d2(1 — )| == + 8¢ — 166 + 64 — 2.
2)

IfFX=0,Y#00r X#0,Y =0, then |E4(G) — E4(G —e)| < 2.

3) IfX =Y =0, then |E4(G) — Ea(G — )| < V2. In addition, if d,d, > d > 2, Then

E4(G) — E4(G —€)| < 3\/2(1 3.

Proof. We can distinguish following three cases:

Case 1. Both X and Y have non-zero entries. It is easy to see that in this case
rank(M) = 4 and therefore Spec(M) = {[=Xo]', [ M), [0]"74, [M]Y, [Ao]t ). Let [6, 8, p, 7]

be an eigenvector corresponding to non-zero eigenvalue A of M, where 6,5 € R, p € R?P
and 7 € RY. Then

« a
m| P l=a]? (6)
P p
T T
Hence, Eq.(6) implies that
wB+ Xp = Ao, (7)
wa+ YT =\, (8)
Xta = Ap,
Y3 = Ar.
Since A # 0, we have p = ”ft, T = ”Tyt and Eq.s (7) and (8), yield to obtain
B o= (a—[X]7%), )
a =1(8-|Y|?L). (10)
Now by Eq.s (9) and (10), we get

A= N (w? + [IXP + Y7 + (XY = o

Suppose that B = w? + || X]|2 + ||Y]|? and C = || X||?||Y||*>. Then

B++vB?—4C
Alyzzi ﬁ
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Since d,d, > 2, we yield w? < % with equality if and only if d, = d, = 2. Also,

[X]* < % and [|Y]]* < § with equality if and only if d,, = 1(1 < i < p) and d,,, = 1
(p+1<j<p+q), respectively. Applying Lemma 4.3, we conclude that
[EA(G) — E4(G —e)] < 2(A1 + A2)
9 {(B +vVB?— 4C>% N (B —VB?— 4C)%}

2 2
=2/B+2VC
=2y/w? + [ X2+ [Y]? + 2] X[[IY]| < V10 . (11)

Also, if d;,d, > d > 2, then w? < %

Case 2. Suppose either X or Y has a non-zero entry. Let X = 0 and Y has a non-
zero entry. Then by Eq.(4), we obtain d,, = 2 (1 < i < p). It is not difficult to see that
null(M) > n — 2 and thus rank(M) < 2 which yields that rank(M) = 2 and so M has
exactly two non-zero eigenvalues. Let A # 0 be an eigenvalue of M and [« 3,0, 7]" be

an eigenvector corresponding to A, where o, 5 € R and 7 € R?. Then

Hence,
wh = Aa, (12)
wa+ YT = M3, (13)
Y8 = At (14)

Since A # 0, by Eq.(14) we have 7 = % and by Eq.(13) wa+Y.YTtﬂ = wa+ ||YH2§ = AS.
g()\ - W) Since 8 # 0, Eq.(12) implies that wf = A(g(/\ — @)) Thus
A2 —||Y]|? — w? = 0 and so A = £+/w? + [[Y[]2. On the other hand, since d,d, > 2, we

Hence, a =
2 -1
get w® < 5 and so

2
d, + d,, — 2 dy+d, —3 1
Y|? = Gy Vi _ y i <
H ” Z <\/ dydm, \/(dv - l)dv,, ) —2

vi€NG(y)—{z}

By applying Lemma 4.3, we have

1 1
E4(Gr) = Ea(Go)| < 2w TV < 205+ 5 =2
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Case 3. Both X and Y are zero vectors. Then z; = 0 (1 < i < p) and y; = 0
(p+1<j<p+gq) ByEqs (4) and (5), we have d,, = dy; = 2. Also, rank(M) = 2 and
Spec(M) = {[—w]*, [0]"72, [w]'}. Since d,, d, > 2, we get w < g with equality if and only

if d, = d, = 2. Tt is not difficult to see that d’”;_rﬁ*z = % if and only if 2d, +2d, —4 = d,d,

if and only if d, = d, = 2. Lemma 4.3 implies that
[EA(G) = Ea(G =€) < (M) =D [N(M)| = 2w < V2.
i=1 i=1

Here, we determine an upper bound for absolute difference between E4(G) and E4(G —
e), where e = 2y € E(G) is not pendant edge and |Ng(z) " Ne(y)| =k (1 <k <n-—2).
If we partition V' — {x,y} into subsets Ng(z) = {u1, ..., u, Ugs1, ..., up} and Ng(y) =
{ur, ..., Uy Upt1, .., Uptq}, such that Ne(x) — {y} C Ng(z) and Ng(y) — {z} C Ne(y),
where n =2+ k +p+ ¢ (p,¢ > 0), then the structure of M is

0 w X; Xy 0,
w 0 Y, 0, Y,

M = Xlz Yf OZC 0%
P B
0, Yy 0, - 0
Consider now the vectors 0 = [0,0,...,0], X; = [21,...,zx], Xo = [Tpt1,..., 3], Y1 =

A

(Wi, el Yo = Wpr1s oo o5 Yprg)y Where 2 (1 <i<p)andy; 1 <j<k), (p+1<5<
p+ q) are defined in the Eq.(4) and Eq.(5), respectively.
Theorem 4.7. If X1, X5, Y1, Y, = 0, then |E4(G) — EA(G — e)| < V2.

Proof. Suppose X1, X2,Y7,Ys = 0. Then rank(M) = 2, Spec(M) = {[—w]', [0]"72, [w]'}

and similar to the proof of Theorem 4.6 (1), we have
|EA(G) — E4(G —€)] < 2w = V2,
which completes the proof. |

Theorem 4.8. If X1, X5,Y) = 0 and Yo # 0, or X;,X5,Ys = 0 and Y1 # 0, or
X1, X5, Y1 =0 and Xy #0, or X5,Y1,Y5 =0 and X; # 0, then |E4(G) — EA(G —€)| < 2.

Proof. Suppose X1, X5,Y; = 0 but Y5 # 0, then rank(M) = 2. Let A # 0 be an eigenvalue

of M corresponded to eigenvector v = [a, 8,7, 0x4p, 7', where a, 8 € R, v € R* and



-655-

7 € R4, Then
wfh = \a, (15)
wa + Yor = A, (16)
YiB = Ar. (17)

By using Eq.s (15) and (17), we get a = % and 7 = Y2Tt@ Since A # 0, Eq.(16) implies
that A? = w? + ||Y2||? and thus Spec(M) = {[0]"~2, [ £ W}l} Knowing that
dy,dy > 2, we conclude that w?, ||Y2||* < . Thus |E4(G) — £4(G — e)] is bounded above
by QW < 2. By a similar argument, we obtain a similar result. This completes
the proof. u
Theorem 4.9. If either X;,Y, = 0 and X5,Y2 # 0, or X1,Y2 = 0 and X5,Y; # 0, or
X0, Y1 =0 and X1,Ys # 0, then |E4(G) — E4(G — €)| < V10.

Proof. Suppose that X7,Y; = 0 and X5, Y5 # 0. Then rank(M) = 4 and
Spec(M) = {[=Aa]", [=M]% [0 [\, o] '

Let X # 0 be an eigenvalue of M with eigenvector v = [a, 3, Oy, p, 7]*, where «, 8 € R,

p € RP and 7 € RY9. Then we have

wh + Xop = Aa, (18)
wa + Yo = AB, (19)
Xta = \p, (20)
Y58 = At (21)
Eq.s (18), (19), (20) and (21) imply that
M= (@ + [ X]* + [V2])A° + | X P[[Y2 ] = 0. (22)

If B=w?+ | Xz]*+||Y2]? and C = || X3||?||Y2|?, then B> —4C > 0 and thus the roots
of Eq.(22) are
Ao = i,/%(B + VB2 - 40).
This yields that
|EA(G) — EA(G —¢)| <24/ B+ 2VC

< 2v/w? + Kl + [ValP + 2[R0Vl < VD -
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Let p,q > 0. The tree Su, of order n = 2p + 1, containing with p pendent vertices,
each attached to a vertex of degree 2, and a vertex of degree p, will be called the p-sun.
The tree Suy, 4 of order n = 2(p+¢+1), obtained from a p-sun and a g-sun, by connecting

their central vertices, will be called a (p, ¢)-double sun, see Figure 3.

T T

T

Sy, Sty 4

Figure 3. Two graphs Su, and Suy 4.

Example 4.10. Concider the (p,q)-double sun. It has an edge e = xy for which d, = p
and d, = q. Also, Suy,, — e is disjoint suns Su, and Su,. According to Theorem 4.6 (3),

we have

[E4(SUpq) — Ea(Supg — €)] = [Ea(Supq) — EalSup) — EalSuy)| < V2.
On the other hand, it is not difficult to see that the A-spectrum of the sun with p > 1 is
Spec(Suy) = {[—v/in + DAL, [-V2/25, [0 [V2/2)"2 [/ (n + D/},
where n =2p+ 1. Then
EalSu,) =V2(p—1)+/2p+2. (23)
Therefore
Ea(Stupg) SV2HV2(p— 1)+ /20 +2+V2(qg— 1) + \/2¢ + 2
:\/§<1+(p—1)(Q—1)+ p+1+ q+1).
Example 4.11. Concider the p-sun, where p > 2. Since Su, — e is disjoint suns Su,_1
and K, see Figure 3. By Eq. (23) and Theorem 4.6 (2), we have
Ea(Sup) — Ea(Sup — €)| = [Ea(Sup) = EalSup-1) — Ea(K)]
= <\/§(p7 1)+ 2p+2> - (\/§(pr)+ 2p — 1)+2)
V2(1- o+ vh+) <2

IN
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In Figure 4, the difference between E4(Suy) and Ea(Su,) — e is shown. One can yields
that the difference numbers tend to /2, if p is sufficiently large.

19 T

| 1 | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

Figure 4. The difference between £4(Su,) and £4(Su,) — e, where 2 < p < 500.

A complete bipartite graph of order n with a bipartition of sizes n; and ns is denoted
by Ky, e, Where ny 4+ ny = n. The double star S(p,q), where p > ¢ > 0, is the graph

consisting of the union of two stars K, and K, , together with a line joining their centers.
Example 4.12. Consider the graph G of order n in Figure 5.

1) Supppse k=0 andn > 4. If n =4, then

0 3 0 %

ARy 4 20 40
M= A(P) — AP, —¢) = :

(Py) — APy —e) 0 2 0 o

2 0 0 0

the path graph Py is satisfied in conditions of Theorem 4.6(1). We know
Speca(Py) = {[—1.1441]", [-0.4370]", [0.4370]", [1.1441]"},
Speca(Py —e) = {[0]*}.

Therefore |Ea(Py) — E4(Py — €)| = V10 and the bound in Eq.(11) is sharp. Now,

suppose n > 5. Then G = S(p, q) is satisfied in conditions of Theorem 4.6(1). Thus

we have
E4(S(p,4)) — Ea(K1p) = Ea(K1)| < V0.
Since Spec 4 (K1) = {[—vp — 1} [0]P7Y, [v/p — 1]*}. Therefore
EA(S(p,q)) < VI0+2(/p—1+/q—1).
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2) Suppose k # 0. If graph H; is obtained from the graph G with p,q = 0, then
Hy = Ky ,_o+e is satisfied in conditions of Theorem 4.7. Thus we have |E (K p—o+
) — Ea(Kana)| < V2. Since by [6, Proposition 4.2], E4(Ka,_2) = 2¢/n — 2, we
may obtain

Ea(Kops+€) <V2+2vn—2.

Also, if graph Hs is obtained from the graph G with p =0 and q # 0, then this graph
is satisfied in conditions of Theorem 4.8. Thus we have |E4(Hs) — Ea(Hy — €)] < 2.
Moreover, if graph Hj is obtained from the graph G with p,q # 0, then this graph is
satisfied in conditions of Theorem 4.9. Thus we have |E4(Hs) —Ea(Hs —€)] < V10.

. I/

Figure 5. The graph G in Example 4.12.

Here, we determine the A-eigenvalues and €4 of probabilistic neural networks. In
general, a probabilistic neural network or briefly a PNN is a neural network which is
widely used in classification and pattern recognition. In graph approach, some problems
such as G = PNN(n, k,m) can be constructed as follows: There are three types of vertices
of degrees respectively km, n + 1 and m. Thus, we have

Vi={veV(G)|d, = km},
Vo={veV(G)|d,=n+1},
Vs ={veV(Q)|d,=m},
where |Vi| = n, |Vo| = km and |V3] = k and V(G) = V; UV, U V5. Consequently,
[V(G)| = [Vi| + |Va| + |V3] = n+ k(m + 1). The set of edges can be divided as following
subsets:
Ei = By = {uww € E(G) | dy = km,d, =n+ 1},

Ey=FE 1 ={we EG)|d,=n+1,d, =m},
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where |Eppni1| = kmn and |E, i1, = km. Consequently, |E(G)| = |Ei| + |Es] =
km(n + 1). The probabilistic neural network G for n = 4, k = 2 and m = 3 is depicted

in Figure 6.

——

Reddmiiad

Figure 6. Probabilistic neural network PNN(4, 2, 3).

Example 4.13. Take G = PNN(n,k,m) graph on n+ k(m + 1) vertices. One can easily
prove that the A-matriz is as follows:

O xn Mysmk Onxk

T
A(G) = ]\/fmkxk Omkxmk Nmkx k ’
Okxcn Nismic Okxk

where
A -
0...0 0...0
«...a k 0...0
0...0 «...a
N = .. ,
: : k
0...0 0...0 «...a

and M = BJ, a = 2&1’1]), 8= \/%. Suppose that det(vl — A(G)) = 0. Then

we have

k-t -1 c+n—1
P(G7y):ykm+n7k<y27m+n ) (V27m+n Jrn(karn ))

n+1 n+1 n+1

1
I m+n—1+n mk+n—1 .
n-+1 n+1

This yields that

/ -1
4 m-+n
n+1

k-1
, [0] k:ernfk:7

Specy(G) = {

Thus

m+n—1 m+mn-—1 mk+mn—1
£alG) = 2k =2) n+1 +2\/ n+1 +n( n+1 )
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