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Abstract

The resolvent energy of a graph G of order n is defined as ER(G) =
∑n

i=1 (n−
λi)
−1, where λ1, λ2, . . . , λn are the eigenvalues of G. Gutman et al. [Resolvent

energy of graphs, MATCH Commun. Math. Comput. Chem. 75 (2016) 279–290]
proposed a conjecture that ER(Sn) < ER(Cn) holds for all n ≥ 4, where Sn and
Cn are the star and the cycle of order n, respectively. In this note, we confirm this
conjecture.

1 Introduction

Let G be a graph on n vertices. Also let A(G) be the adjacency matrix of G and denote by

λ1 ≥ λ2 ≥ · · · ≥ λn the eigenvalues of A(G). The properties of the adjacency eigenvalues,

especially spectral radius, studied recently in [4] and the reference therein. The resolvent

matrix of A(G) is

RA(z) = (zIn − A(G))−1,

and its eigenvalues are 1
z−λi , i = 1, 2, . . . , n.
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The energy of graphs is one of the most well-known and meaningful topological indices

in theoretical chemistry, which is defined as [8]

E(G) =
n∑
i=1

|λi|.

For its basic properties and applications, including various lower and upper bounds, see

the book [13], the surveys [9,12], the recent papers [3,4] and the references cited therein.

Recently, Gutman et al. [10] proposed a new type of energy, called resolvent energy,

based on the spectrum (eigenvalues) of the resolvent matrix

RG(n) = (n In − A(G)−1.

Notices that the eigenvalues of RG(n) are 1
n−λi , i = 1, 2, . . . , n, thus the resolvent energy

of G is naturally defined as [10,11]

ER(G) =
n∑
i=1

1

n− λi
.

For its basic properties and applications, including various lower and upper bounds, see

the recent papers [2, 5, 7, 16, 17] and the references cited therein. The resolvent energy

belongs to a general class of cumulative vertex centrality measures based on closed walks,

originally put forward by Estrada and Higham in [6].

Let Sn denote the star on n vertices, and Cn the n-vertex cycle, for n ≥ 3. Gutman et

al. [10] proposed the following conjecture:

Conjecture 1. [10] The inequality

ER(Sn) < ER(Cn)

holds for all n ≥ 4. Consequently, any tree has smaller ER-value than any unicyclic graph

of the same order.

Das [2] solved Conjecture 1 when n is even. Now we completely settle Conjecture 1, by a

unified method no matter n is even or odd.

2 Proof for Conjecture 1

In this section we give a proof of Conjecture 1. For this aim, we need the following results.
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Lemma 2. For n ≥ 3,
n√

n2 − 4
− 1

n4
>

2n

n2 − n+ 1
+
n− 2

n
.

Proof. We have to prove that

n√
n2 − 4

>
2n

n2 − n+ 1
+
n− 2

n
+

1

n4
=
n6 − n5 + 3n4 − 2n3 + n2 − n+ 1

n4(n2 − n+ 1)
,

that is,

n10 (n2 − n+ 1)2 > (n2 − 4) (n6 − n5 + 3n4 − 2n3 + n2 − n+ 1)2,

that is,

14n10 − 24n9 + 46n8 − 52n7 + 45n6 − 42n5 + 41n4 − 22n3 + 11n2 − 8n+ 4 > 0,

which is always true as n ≥ 3.

The spectra of stars and cycles are well-known, e.g., see [1, p. 72].

Lemma 3. The eigenvalues of Sn are ±
√
n− 1, and 0 of multiplicity n− 2. The eigen-

values of Cn are 2 cos 2kπ
n

for k = 1, 2, . . . , n.

As a consequence, we obtain the expressions of resolvent energies of stars and cycles:

ER(Sn) =
2n

n2 − n+ 1
+
n− 2

n

and

ER(Cn) =
n∑
k=1

1

n− 2 cos 2kπ
n

.

So Conjecture 1 is equivalent to verify the following inequality:
n∑
k=1

1

n− 2 cos 2kπ
n

>
2n

n2 − n+ 1
+
n− 2

n
.

In the following, we will complete this task by establishing two inequalities: For n ≥ 3,
n∑
k=1

1

n− 2 cos 2kπ
n

>
n√

n2 − 4
− 1

n4
>

2n

n2 − n+ 1
+
n− 2

n
.

By Lemma 2, we have the second part. So we have to prove the first inequality:
n∑
k=1

1

n− 2 cos 2kπ
n

>
n√

n2 − 4
− 1

n4

for n ≥ 3.

In order to do that, first let us see why the term n√
n2−4 would occur. In fact, it comes

from an integral.
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Lemma 4. For a fixed integer n ≥ 3, we have∫ 1

0

1

n− 2 cos 2πx
dx =

1√
n2 − 4

.

In [5], Du has shown that

ER(Cn) =
n∑
k=1

1

n− 2 cos 2kπ
n

=
n√

n2 − 4
+ o(1),

and the error is at most 8
n2−4 . For our need here, we would like to improve the error

term (less than 1
n4 ). We resort to the well-known Euler-Maclaurin summation formula,

see [14, p. 181].

Lemma 5 (Euler-Maclaurin summation formula). If h(x) is an infinitely differentiable

function, m is a fixed constant, then∑
0≤k≤n

h

(
k

n

)
= n

∫ 1

0

h(x)dx+
h(0) + h(1)

2
+
∑

1≤i≤m

B2i

(2i)!

1

n2i−1 h
(2i−1)(x)

∣∣1
0
+Rm,

where B2i’s are the Bernoulli numbers and Rm is a remainder term satisfying

|Rm| ≤
|B2m|
(2m)!

1

n2m

∫ 1

0

|h(2m)(x)|dx < 4

(2πn)2m

∫ 1

0

|h(2m)(x)|dx.

Set h(x) =
1

n− 2 cos 2πx
. Applying Euler-Maclaurin summation formula (Lemma 5), it

leads to
n∑
k=0

1

n− 2 cos 2πk
n

= n

∫ 1

0

1

n− 2 cos 2πx
dx+

1

n− 2
+
∑

1≤i≤m

B2i

(2i)!

1

n2i−1 h
(2i−1)(x)

∣∣1
0
+Rm,

for some positive integer m. Together with Lemma 4, the above equation is equivalent to
n∑
k=1

1

n− 2 cos 2πk
n

=
n√

n2 − 4
+
∑

1≤i≤m

B2i

(2i)!

1

n2i−1 h
(2i−1)(x)

∣∣1
0
+Rm.

We still need to calculate the higher derivatives of h(x), aiming to estimate the error

term. Let us take the first three orders of derivatives of h(x) to explore their patterns:

h′(x) = − 4π sin 2πx

(n− 2 cos 2πx)2
,

h′′(x) = − 8π2 cos 2πx

(n− 2 cos 2πx)2
+

32π2(sin 2πx)2

(n− 2 cos 2πx)3

and

h′′′(x) =
16π3 sin 2πx

(n− 2 cos 2πx)2
+

192π3 cos 2πx sin 2πx

(n− 2 cos 2πx)3
− 384π3(sin 2πx)3

(n− 2 cos 2πx)4
.

From these derivative expressions, we have two claims:
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• The denominator of every term of h(2i−1)(x), for i ≥ 1, is of the form (n−2 cos 2πx)s,

for 2 ≤ s ≤ 2i.

• Ignore the constant coefficients, the numerator of every term of h(2i−1)(x) is of the

form (sin 2πx)r(cos 2πx)t, for odd r ≥ 1, and t ≥ 0 (for our need, the key point here

is the exponent r (of sin 2πx) is an odd positive integer).

The first claim is clear, while the second one can be deduced by induction. From the

two claims, we know that ignore the constant coefficients, each term of h(2i−1)(x) is of

the form
(sin 2πx)r(cos 2πx)t

(n− 2 cos 2πx)s
, for s ≥ 2, odd r ≥ 1, and t ≥ 0. When we go ahead from

h(2i−1)(x) to h(2i+1)(x), we would take the second derivative of
(sin 2πx)r(cos 2πx)t

(n− 2 cos 2πx)s
, it is

not hard to see that the factor related to sin 2πx would become (sin 2πx)r, (sin 2πx)r+2,

or (sin 2πx)r−2 (with r ≥ 3), as desired.

As a consequence,
(sin 2πx)r(cos 2πx)t

(n− 2 cos 2πx)s

∣∣∣∣1
0

= 0 since the existence of sin 2πx. Furthermore,

it means that
B2i

(2i)!

1

n2i−1 h
(2i−1)(x)

∣∣1
0
= 0

for any i ≥ 1, thus ∑
1≤i≤m

B2i

(2i)!

1

n2i−1 h
(2i−1)(x)

∣∣1
0
= 0

for any m.

At this stage, we have
n∑
k=1

1

n− 2 cos 2πk
n

=
n√

n2 − 4
+Rm.

Clearly, our desired inequality

n∑
k=1

1

n− 2 cos 2kπ
n

>
n√

n2 − 4
− 1

n4

comes from Rm > − 1
n4 , or equivalently, |Rm| < 1

n4 , for some positive integer m.

Recall that

|Rm| <
4

(2πn)2m

∫ 1

0

|h(2m)(x)|dx.

Set m = 2. It is easy to verify that

h(4)(x) =
32π4 cos 2πx

(n− 2 cos 2πx)2
+

384π4(cos 2πx)2

(n− 2 cos 2πx)3
− 512π4(sin 2πx)2

(n− 2 cos 2πx)3
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−4608π4 cos 2πx(sin 2πx)2

(n− 2 cos 2πx)4
+

6144π4(sin 2πx)4

(n− 2 cos 2πx)5
.

Further,

|h(4)(x)| ≤
∣∣∣∣ 32π4 cos 2πx

(n− 2 cos 2πx)2

∣∣∣∣+ ∣∣∣∣384π4(cos 2πx)2

(n− 2 cos 2πx)3

∣∣∣∣+ ∣∣∣∣ 512π4(sin 2πx)2

(n− 2 cos 2πx)3

∣∣∣∣
+

∣∣∣∣4608π4 cos 2πx(sin 2πx)2

(n− 2 cos 2πx)4

∣∣∣∣+ ∣∣∣∣6144π4(sin 2πx)4

(n− 2 cos 2πx)5

∣∣∣∣
≤ 32π4

(n− 2 cos 2πx)2
+

384π4

(n− 2 cos 2πx)3
+

512π4

(n− 2 cos 2πx)3

+
4608π4

(n− 2 cos 2πx)4
+

6144π4

(n− 2 cos 2πx)5

<
32π4

(n− 2 cos 2πx)2
+

384π4

(n− 2 cos 2πx)2
+

512π4

(n− 2 cos 2πx)2

+
4608π4

(n− 2 cos 2πx)2
+

6144π4

(n− 2 cos 2πx)2

=
11680π4

(n− 2 cos 2πx)2
.

So

|R2| <
4

(2πn)4

∫ 1

0

11680π4

(n− 2 cos 2πx)2
dx =

2920

n3(n2 − 4)
3
2

<
1

n4

for n ≥ 55, here we need to use the integral∫ 1

0

1

(n− 2 cos 2πx)2
dx =

n

(n2 − 4)
3
2

.

It means that
n∑
k=1

1

n− 2 cos 2kπ
n

>
n√

n2 − 4
− 1

n4

holds for n ≥ 55. By Sage [15], one can easily check that the above result holds also for

3 ≤ n ≤ 54. This completes the proof.
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