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Abstract

In this note we study the behavior of largest matching root, Hosoya index and

matching energy under two graph structural transformations. As an application we

characterize the extremal graphs with respect to the largest matching root, matching

energy, and Hosoya index, of graphs with cyclomatic number one, two, and three.

We also give numerical bounds for each above graph parameters.

1 Introduction

All graphs considered in this paper are undirected, connected and simple (i.e., loops and

multiple edges are not allowed). Let G = (V (G), E(G)) be a graph with a vertex set

V (G) = {v1, v2, . . . , vn} and an edge set E(G) = {e1, e2, . . . , em}, where e(G) = n is the

order and e(G) = m is the size of G. Let ΓG(v) denote the neighbor set of vertex v of G.

Two edges are called adjacent if they have a common vertex. A matching M is a subset

of E(G) where no two edges of M are adjacent. Let M(G, k) denote matchings have
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k edges, and m(G, k) denote the number of k-matchings of G. Farrell [4], Gutman [8]

denoted the matching polynomial as

MG(x) =

n/2∑
k≥0

(−1)km(G, k)xn−2k. (1.1)

In addition, we set m(G, 0) = 1 by convention. Obviously, m(G, 1) = e(G), and m(G, k) =

0 if k > n/2.

Let θn ≤ θn−1 ≤ . . . ≤ θ2 ≤ θ1 = θ(G) be the roots of matching polynomial of G, and

θ(G) be the largest matching root. It is obvious that the matching roots are symmetric

to 0. Heilmann and Leib [1], I. Gutman [2], and C. D. Godsil [6], proved that the roots of

matching polynomial of graphs are real. Godsil [6] also proved that if G has a Hamilton

path then G has no repeat roots, and the number of distinct matching roots at least

equals to the diameter of G plus one. For all graphs the largest matching root satisfy

θ(Pn) ≤ θ(G) ≤ θ(Kn), (1.2)

where Pn, Kn denote path and complete graph on n vertices, and θ(Pn) = 2 cos(π/(n+1)).

The largest matching root of Kn can not be expressed by radicals.

Hosoya [3] studied the summation of absolute of all coefficients of matching polynomial

of a graph, that is

Z(G) =

n/2∑
k=0

|m(G, k)|. (1.3)

In many literature, Z(G) is called Hosoya index. It is proved that for trees,

n = Z(K1,n) < Z(T ) < Z(Pn) = fn+1, (1.4)

where fn is the n-th Fibonacci number.

Gutman and Wager in [7] proposed the concept of matching energy of a graph, which

is the sum of absolute value of all matching roots of G, also denoted by

ME(G) =
2

π

∫ ∞
0

1

x2
ln(

∑
k≥0

m(G, k)x2k)dx. (1.5)

By this definition, we can deduce that if m(G, k) ≥ m(H, k) for every k ≥ 1, then

ME(G) ≥ME(H).

Gutman and F. J. Zhang [9], also Peter [10], et. al. introduced that if m(G1, k) ≥

m(G2, k) for all k, then G1 is m-greater than G2, written as G1 � G2. If m(G1, k) =
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m(G2, k) then G1 and G2 are matching equivalent, written as G1 ∼ G2. If neither G1 � G2

nor G2 � G1, then G1 and G2 are m-incomparable.

Let Un, Bn, Tn denote unicyclic graphs, bicyclic graphs, and tricyclic graphs of order

n, or graphs with cyclomatic number one, two and three, respectively. If e(G) = n(G)−1,

then we call G a tree, denoted by T . Gutman [2], [8] , Godsil [5], [6], proved that for

trees the largest matching roots and the adjacency spectral radius are the same. H. L.

Zhang [11] studied the largest matching root of unicyclic graphs and characterized the

extremal graph. W. J. Liu et. al. [12] gave the four largest and the two smallest value

for the unicyclic graphs. H. L. Zhang [13] characterized the extremal graph with respect

to the largest matching root among unicyclic graphs with a fixed matching number. S.

Ji, X. Li, and Y. Shi [14] characterized the extremal matching energy of bicyclic graphs.

Lin Chen, Yongtang Shi [15] characterized extremal matching energy of tricyclic Graphs.

Xiaolin Chen and Huishu Lian [16] studied the extremal matching energy and the largest

matching root of complete multipartite graphs. Form above results we found the largest

matching root, Hosoya index and graph matching energy are highly related. Consequently,

we may conjecture that

G1 � G2 ⇔ Z(G1) ≥ Z(G2)⇔ME(G1) ≥ME(G2)⇔ θ(G1) ≤ θ(G2).

In this paper, we give two graph transformations related to the matching polynomial

of a graph. We present their application to characteristic extremal graphs with respect

to the largest matching root, Hosoya index, and graph matching energy, among different

classes of graphs. We also give numerical bounds for above graph parameters and partially

prove the above Conjecture also true for these types of graphs.

2 Preliminary

Let G − v be the graph obtained by deleting a vertex v with its incident edges form G.

G − e be the graph obtained by deleting an edge e from G. The following Lemma 2.1,

Lemma 2.2 are often used to calculate the matching polynomial of a graph.

Lemma 2.1 [8] Let G be a graph with u ∈ V (G), and suppose the neighborhood of u is

Γ(u) = {v1, v2, . . . , vk}, uv ∈ E(G). Then

1. MG(x) = MG−e(x)−MG−u−v(x),
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2. MG(x) = xMG−u(x)−
∑

uvi∈E(G)

MG−u−vi(x), vi ∈ Γ(u).

Lemma 2.2 [8] Let G1, G2, . . . , Gk be k components of G. Then

MG(x) =
k∏

i=1

MGi
(x).

Lemma 2.3 (Interlacing Theorem [2], [5]) If v is a vertex of G, then the roots of

G− v and G has the following inequality

θn(G) ≤ . . . ≤ θi+1(G) ≤ θi(G− v) ≤ θi(G) ≤ . . . ≤ θ1(G).

In particular, if G admits a Hamilton path then the above inequality strict.

Lemma 2.4 [8] Let v1, . . . , vn be the vertices of a graph G, Let G− vi be the subgraphs

of G obtained by deleting the vertex vi, then

d

dx
MG(x) =

n∑
i=1

MG−vi(x) =

n/2∑
k=0

(−1)k(n− 2k)m(G, k)xn−2k−1. (2.1)

Lemma 2.5 Let G∗ be a spanning subgraph of G, θ(G) be the largest matching root of

G. If x ≥ θ(G) then MG∗(x) ≥ MG(x). If G∗ is a proper spanning subgraph of G and

x > θ(G), then θ(G∗) > θ(G).

Proof. Let G∗ be spanning subgraph of G if not we can add some isolated vertices,

and V (G) = {v1, v2, . . . , vn} be the vertex set of G. Gi = G − vi, G
∗
i = G∗ − vi. For

x ∈ [θ(G),∞), we have

f(x) = MG∗(x)−MG(x). (2.2)

We need to prove that f(x) ≥ 0, when x ≥ θ(G). By applying differentiation on Equation

(2.2) and with Lemma 2.4 (2.1), we have

f ′(x) = M ′
G∗(x)−M ′

G(x) =
∑
i

MG∗
i
(x)−

∑
i

MGi
(x)

=
∑
i

(MG∗
i
(x)−MGi

(x)). (2.3)

Now, we apply induction on the number of vertices.

Case 1 When n = 1, the result is trivial.

Case 2 When n = 2, G ∼= K2, and G∗ is empty graph of order 2. Obviously, by the

Lemma 2.1 and the Lemma 2.2, we have

MG(x) = x2 − 1, MG∗(x) = x2.
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When x ≥ 1, x2 > x2 − 1 holds, so the Lemma 2.5 holds.

Case 3 Assume that the Lemma 2.5 holds when the order of G is less than n. We will

show that Lemma 2.5 holds when the order of G is n.

When n ≥ 3, |V (Gi)| = n − 1. For every Gi there exists a spanning subgraph G∗i

correspond to it. By our assumption, MG∗
i
(x) ≥MGi

(x) when x ≥ θ(Gi). By the Lemma

2.3, θ(G) ≥ max{θ(G1), . . . , θ(Gn)}. Then for x ≥ θ(G),

f ′(x) = M ′
G∗(x)−M ′

G(x) =
∑
i

(MG∗
i
(x)−MGi

(x)) ≥ 0,

holds. If G∗ is a proper spanning subgraph of G, without loss generality, let G∗j be the

proper spanning subgraph of Gj, (1 ≤ j ≤ n) by our assumption, when x = θ(G) > θ(Gj),

MG∗
j
(x) > MGj

(x).

Therefore,

f ′(x) = M ′
G∗(x)−M ′

G(x) =
∑
i

MG∗(x)−
∑
i

MG(x) > 0.

That is f ′(θ(G)) > 0, and

f(θ(G)) = MG∗(θ(G))−MG(θ(G)) = MG∗(θ(G)) > 0.

It shows that when x ≥ θ(G), f(x) is a monotonic increasing function.

Since for every subgraph H of G we can add some isolated vertices to H let it be a

spanning subgraph of G. Hence, for any subgraph H of G, we have the following Corollary

2.6 and Corollary 2.7.

Corollary 2.6 For any subgraph H of G, if x ≥ θ(G) then MH(x) ≥ 0.

Corollary 2.7 For graph G1 and G2. If MG2(x) ≥ MG1(x) for x ∈ [θ(G1),∞), then

θ(G2) ≤ θ(G1).

Definition 2.8 [10] Let u, v be two vertices of the graph G, we obtain the Kelmans

transformation of G as follows: we erase all edges between v and N(v) − (N(u) ∪ {u})

and add all edges between u and N(v)− (N(u)∪{u}). Let us call u and v the beneficiary

and the co-beneficiary of the transformation, respectively. The obtained graph has the

same number of edges as G; in general we will denote it by G∗ without referring to the

vertices u and v.(see Fig.1.).
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Fig.1. Kelmans transformation

Lemma 2.9 [10] Assume that G∗ is a graph obtained from G by some Kelmans trans-

formation, then

m(G∗, k) ≤ m(G, k), 0 ≤ k ≤ n/2 and θ(G) ≤ θ(G∗). (2.4)

Let G be a simple graph. If e = (v1v2) is not an edge of C3 of G, then G � e denotes

the graph obtained by contracting edge e. G∗ denotes the graph obtained by adding a

pendant edge to the contracted vertex u of G � e (see Fig. 2.). For the largest matching

root of G and G∗, we have the following Lemma 2.10. With regard to the perturbation

on the largest matching root also see [13].

r
r

r rH1 H2 H1 H2 H1 H2eu1 u2 u

e

u

G G1 G∗

Fig. 2. G, G � e and G∗

r

Lemma 2.10 Let H1 and H2 be two graphs with distinguished vertices u1, u2 of H1 and

H2, respectively. Let G be the graph connecting u1 and u2 by an edge e. Let H1uH2 be the

graph obtained from H1 and H2 by identifying the vertices of u1 and u2 to a new vertex u

(see G1 in Fig. 2.). Let G∗ be the graph obtained by attaching a pendant to u of G1 (see

G∗ in Fig. 2.). Then

m(G∗, k) ≤ m(G, k), and θ(G) < θ(G∗). (2.5)

Proof. By Lemma 2.1 and Lemma 2.2, we calculate the matching polynomial of G and

G∗ as:
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MG(x) = MH1(x)MH2(x)−MH1−u1(x)MH2−u2(x)

= (xMH1−u1(x)−
∑

u∈ΓH1
(u1)

MH1−u1u(x))

(xMH2−u2(x)−
∑

u∈ΓH2
(u2)

MH2−u2u(x))

−MH1−u1(x)MH2−u2(x), (2.6)

MG∗(x) = x2MH1−u1(x)MH2−u2(x)−MH1−u1(x)MH2−u2(x)

−xMH1−u1(x)
∑

u∈ΓH2
(u2)

MH2−u2u(x)

−xMH2−u2(x)
∑

u∈ΓH1
(u1)

MH1−u1u(x). (2.7)

(2.6)-(2.7)

MG(x)−MG∗(x) =
∑

u∈ΓH2
(u2)

MH2−u2u(x)
∑

u∈ΓH1
(u1)

MH1−u1u(x). (2.8)

In right hand side of equation (2.8) all graph Hi−uiu, i = 1, 2 are subgraphs of G, By

Lemma 2.3 and Corollary 2.7, for all x ≥ θ(G), MHi−uiu(x) > 0. Then MG(x)−MG∗(x) >

0. Hence

M(G) < M(G∗).

In particular, if e is an pendant edge of G then G∗ ∼= G, and

M(G∗) = M(G).

Now we prove that the coefficients of each matching polynomial satisfy

G � G∗, e.g. m(G, k) ≥ m(G∗).

From the structure of G and G∗, we have m(G, k) = m(G∗, k) if a k-matching contains

e both in graph G and G∗. Let us first consider a k-matching M of G.

Case 1. if e ∈M , then

m(G, k) = m(G− {u, v}, k − 1) =
k−1∑
i=0

m(H1 − u1, i)m(H2 − u2, k − 1− i).
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Case 2. If e 6∈M , then m(G, k) =
∑k

i=0m(H1, i)m(H2, k − i). Hence, together we have

m(G, k) =
k−1∑
i=0

m(H1 − u1, i)m(H2 − u2, k − 1− i) +
k∑

i=0

m(H1, i)m(H2, k − i). (2.9)

Similarly, for G∗ we have

m(G∗, k) =
k−1∑
i=0

m(H1 − u1, i)m(H2 − u2, k − 1− i) +m(G � e, k). (2.10)

It is obviously that m(G � e, k) <
∑k

i=0m(H1, i)m(H2, k − i). Therefore, Equation (2.9)-

(2.10),

m(G, k)−m(G∗, k) > 0.

Lemma is proved.

3 Main results of this paper

In this section we present the extremal graphs with respect to largest matching root,

Hosoya index, and matching energy of graphs in Un,Bn and Tn. Let n be sufficiently

large that we can have a desired different kind of graphs. By using the Lammas obtained

in Section 2, we characterize the extremal graphs in each kind of graphs. We begin with

an Observation 3.1.

Observation 3.1 Let α′(G) be the maximum size of matching. If

α′(G1) ≥ α′(G2),

then

m(G1, k) ≥ m(G2, k),

for 0 ≤ k ≤ min{α′(G1), α′(G2)}.

For trees we take non-pendant edges and by applying the Lemma 2.9 and Lemma 2.10

on corresponding edges, we can easily prove the following results for the largest matching

roots

2 cos(π/(n+ 1)) = θ(Pn) ≤ θ(T ) ≤ θ(K1,n−1) =
√
n− 1

and for Hosoya index,

n = Z(K1,n−1) ≤ T ≤ Z(Pn) = fn+1,
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and for matching energy

2
√
n− 1 = ME(K1,n−1) < ME(T ) < ME(Pn) = 2

n∑
i=1

| cos(π/(n+ 1))|.

The following we focus on the matching properties of the unicyclic graphs, bicyclic

graphs and tricyclic graphs.q q
q

qq
q

q q q q
q

q
q q

q
q

qq q
q

q
q q

q
q q q q q q q q

q
G1 G2 G3 G4

n− 3

qq
n− 5 n− 4 n− 4

Fig. 3. Graphs in Theorem 3.2 and Theorem 3.3

For the matching energy of unicyclic graphs, Gutman and Wager (Theorem 6 [7])

obtain that ME(S+
n ) ≤ (ME(G)) ≤ ME(Cn), as an application of our transformations,

we present a proof and also give the bounds for each graph index among unicyclic graphs.

In the Theorem 3.2, where S+
n
∼= G1.

Theorem 3.2 [11] Let Un be the unicyclic graphs. Then G ∈ Un, we have

θ(G) < θ(G1) =

√
n+

√
n2 − 4(n− 3)

2
, (3.1)

and the Hosoya index

Z(G) ≥ Z(G1) = 2n− 2, (3.2)

and the matching energy M(G) ≥M(G1), and

ME(G1) = 2[

√
n−

√
n2 − 4(n− 3)

2
+

√
n+

√
n2 − 4(n− 3)

2
]. (3.3)

Proof. We take edges on the cycle (the length of cycle is great than three), and the edges

which are not pendant edges, by using the transformations in Lemma 2.9 and Lemma

2.10. After finite times, we get the extremal graph with respect to largest matching root

and Hosoya index, which is shown in Fig.3. G1. The matching polynomial of G1 is

MG1(x) = xn − nxn−2 + (n− 3)xn−4 = xn−4(x4 − nx2 + n− 3).

By calculating the largest matching root, Hosoya index, and the matching energy, the

proof is complete.
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Theorem 3.3 Let Bn be the bicyclic graphs on n vertices. Then for any G ∈ Bn, the

following hold.

θ(G) < θ(G3) =

√
n+ 1 +

√
(n+ 1)2 − 8(n− 3)

2
, (3.4)

and the Hosoya index

3n− 4 = Z(G3) ≤ Z(G), (3.5)

and the matching energy ME(G3) ≤ME(G), and

ME(G3) = 2[

√
n+ 1 +

√
n2 − 6n+ 25

2
+

√
n+ 1−

√
n2 − 6n+ 25

2
]. (3.6)

Proof. We take the edges on the cycles (the length of cycles are greater than three) and

non-pendant edges on the trees. By applying Lemma 2.9 and Lemma 2.10 finite times, we

get the extremal graphs with respect to largest matching root, Hosoya index, matching

energy, which are graphs G2, G3 and G4 shown in Fig.3. It is easily see that the matching

number of them satisfy

2 = α′(G3) = α′(G4) < α′(G2) = 3.

Hence, by Observation 3.1, the graph G3 maximize the largest matching root and minimize

the Hosoya index, and matching energy. By Lemma 2.1 and Lemma 2.2 we calculate the

matching polynomial of G2, G3, G4.

MG2(x) = xn − (n+ 1)xn−2 + (2n− 5)xn−4 − (n− 5)xn−6.

Z(G2) = 4n− 8,

and

MG3(x) = xn − (n+ 1)xn−2 + 2(n− 3)xn−4.

Z(G3) = 3n− 4,

and the matching polynomial of G4 is

MG4(x) = xn − (n+ 1)xn−2 + (2n− 10)xn−4.

Z(G4) = 4n− 8.

Form above we saw that G3 has the largest matching root and minimum Hosoya index.

θ(G3) =

√
n+ 1 +

√
(n+ 1)2 − 8(n− 3)

2
, Z(G3) = 3n− 4.
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The minimum matching energy is

ME(G3) = 2[

√
n+ 1 +

√
(n+ 1)2 − 8(n− 3)

2
+

√
n+ 1−

√
(n+ 1)2 − 8(n− 3)

2
].

q
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q qq
qq
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q
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n− 7

n− 6 n− 6

n− 5

n− 5

qq̀
n− 5 n− 5 n− 4

G5 G6 G7 G8

G9 G10 G11 G12

Fig.4. Graphs in Theorem 3.4

q q

Theorem 3.4 Let Tn be the set of tricyclic graphs. For any graph G ∈ Tn, the largest

matching root

θ(G) < θ(G12) =

√
n+ 2 +

√
n2 − 8n+ 40

2
, (3.7)

The minimum Hosoya index

Z(G) > Z(G12) = 4n− 6, (3.8)

and the minimal matching energy, ME(G) > ME(G12), and

ME(G12) = 2[

√
n+ 2 +

√
n2 − 8n+ 40

2
+

√
n+ 2−

√
n2 − 8n+ 40

2
]. (3.9)

Where G12 is the graph in Fig.4.

Proof. For a tree G ∈ Tn, we apply Lemma 2.9 and Lemma 2.10 on the edges of the

cycles (the length of cycle is greater than three) and on non-pendant of trees. After finite

times the graph which has the minimum matching number and the largest matching roots

are the graphs shown in Fig.4. α′(G5) = 4, α′(G6) = . . . = α′(G11) = 3, and α′(G12) =

α′(G13) = 2. Hence, with Observation 3.1, graph G12 has the largest matching root and

minimum Hosoya index and minimum matching energy. The matching polynomial of G12

is

MG12(x) = xn − (n+ 2)xn−2 + 3(n− 3)xn−4.
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The Hosoya index is

Z(G12) = 4n− 6.

The largest matching root is a root of the following polynomial,

θ(G12) =

√
n+ 2 +

√
(n+ 2)2 − 12(n− 3)

2
.

The matching energy,

ME(G5) = 2[

√
n+ 2 +

√
n2 − 8n+ 40

2
+

√
n+ 2−

√
n2 − 8n+ 40

2
].

Form the above discuss we find that for a connected graph, the graph has small Hosoya

index and the graph will have larger largest matching root and has less matching energy.

r rr
r

r
r

r
r

r
r r

r
r

r r
r
r
rr
r
n− 5

G13

Fig. 4. Matching equivalent graph G13

Graph G and H are matching equivalent, written as G ∼ H if MG1(x) = MG2(x). In the

following remark we point out that in Tn, G12 has a matching equivalent graph G13, also

see in [15].

Remark 3.5 There exists another graph G13 in Tn has minimum matching energy, fur-

thermore they are matching equivalent, e.g. G12 ∼ G13 .
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thanks to the authors.

References

[1] O. J. Heilmann, E. H. Lieb, Monomers and dimers, Phys. Rev Lett. 24 (1970) 1412–

1414.

[2] I. Gutman, The matching polynomial, MATCH Commun. Math. Comput. Chem. 6

(1979) 75–91.

-632-



[3] H. Hosoya, Topological index, a newly proposed quantity characterizing the topolog-

ical nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn.

44 (1971) 2332–2339.

[4] E. J. Farrell, An introduction to matching polynomial, J. Comb. Theory B 27 (1979)

75–86.

[5] C. D. Godsil, I. Gutman, On the theory of the matching polynomial, J. Graph Theory

5 (1981) 137–144.

[6] C. D. Godsil, Matchings and walks in graphs, J. Graph Theory 5 (1981) 285–297.

[7] I. Gutman, S. Wagner, The matching energy of a graph, Discr. Appl. Math. 160

(2012) 2177–2187.

[8] I. Gutman, A note on analogies between the characteristic and the matching poly-

nomial of a graph, Publ. L’Inst. Math. (Belgrade) 31(45) (1982) 27–31.

[9] I. Gutman, F. Zhang, On the ordering of graphs with respect to their matching

numbers, Discr. Appl. Math. 15 (1986) 25–33.
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