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Abstract

New upper bounds on the distance energy of a graph are presented, in terms of
several graph invariants used as topological indices in chemical graph theory.

1 Introduction

Since 2008, when the concept of distance energy DE was introduced [16], numerous lower

and upper bounds on DE were obtained and communicated in quite a few publications

[4, 5, 9, 10, 13,15,16,20–22,25]. In this paper we report a few more such bounds.

LetG = (V,E) be a graph with vertex set V = {v1, v2, . . . , vn} and edge set E = E(G),

and let |V (G)| = n and |E(G)| = m. If the vertices vi and vj are adjacent, we write vivj ∈

E(G). For i = 1, 2, . . . , n, let dG(vi) be the degree (= number of first neighbors) of the

vertex vi. The distance between vertices vi and vj, denoted by dG(vi, vj), is the length of

a shortest path between vi and vj. The diameter of the graph G, is d = max
1≤i<j≤n

dG(vi, vj).

As usual, by Kn and Pn, we denote the complete graph and the path on n vertices.

A clique of the graph G is a subset of its vertex set in which all vertices are mutually

adjacent. The clique number ω(G) is the size of the largest clique of G.
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By Wn,k we denote the set of connected n-vertex graphs with clique number k. A kite

graph Kin,ω is a graph obtained from a clique Kω and a path Pn−ω by adding an edge

between a vertex from the clique and an endpoint from the path.

For other undefined notations and terminology from graph theory, the readers are

referred to [3].

The distance matrix of a connected graph G, denoted by DI(G), is the real symmetric

matrix of order n whose (i, j)-entry is dG(vi, vj). Its eigenvalues are ρ1 ≥ ρ2 ≥ · · · ≥ ρn,

forming the distance spectrum of G. The distance energy of G is defined as [16]

DE = DE(G) =
n∑

i=1

|ρi| .

For the basic spectral properties of the distance matrix see the survey [2]. For details

of the theory of distance energy see [16,17,19].

In the next few lines we repeat the definitions of certain degree– and distance–based

topological indices, which later will be related with the distance energy. For details on

this matter and additional references see [23,24].

The zeroth–order general Randić index is

0Rα(G) =
∑

vi∈V (G)

dG(vi)
α

where α is a real number. The same quantity is sometimes referred to as the “general

first Zagreb index”. Recall that this index found many useful applications in information

theory and network reliability, and received considerable attentions also in “pure” graph

theory (see [6–8, 12]). In what follows, we shall need the special case of this index for

α = −2, that is,

0R−2(G) =
∑

vi∈V (G)

1

dG(vi)2
.

For α = −1, we have

ID(G) =
n∑

i=1

1

dG(vi)

which is called the inverse degree of the graph G.

The oldest and most popular topological index, the Wiener index, is defined as

W (G) =
∑

{vi,vj}⊆V (G)

dG(vi, vj) .
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The degree distance of G is

DD(G) =
∑

{vi,vj}⊆V (G)

[
dG(vi) + dG(vj)

]
dG(vi, vj) .

In this paper we present upper bounds on the distance energy of graph G in terms

of the above defined graph invariants. In order to achieve this goal, we first need some

preparations.

2 Auxiliary results

We first state here two previously known results that are needed to prove our main results.

Let Mp×q(C) be the set of all p× q dimensional matrices with complex elements. For

p ≤ q, the singular values of a matrix B ∈ Mp×q(C), denoted as s1(B) ≥ s2(B) ≥ · · · ≥

sp(B) ≥ 0, are the square roots of the eigenvalues of BB†.

Lemma 1. [1,18] Let B ∈ Mn×n(C), and let E(B) be the sum of the absolute values of

the eigenvalues of B. Then,

E(B) ≤
n∑

i=1

si(B) .

The equality holds if and only if B is a normal matrix.

Lemma 2. [11] Let X,Y, Z ∈ Mn×n(C), such that X + Y = Z. Then

n∑
i=1

si(Z) ≤
n∑

i=1

si(X) +
n∑

i=1

si(Y ) .

Equality holds if and only if there exists an orthogonal matrix P , such that PX and PY

are both positive semi-definite.

Let Q(G) =
∑

1≤i<j≤n

dG(vi, vj)
2. Then

Q(Kin,k) =
1

2
k(k − 1) + (k − 1)

[
4 + 9 + 16 + · · ·+ (n− k + 1)2

]
+

[
1 + 4 + 9 + · · ·+ (n− k)2

]
+Q(Pn−k)

=
1

2

[
(k − 1)(k − 2)

]
+

1

6

[
k (n− k)(n− k + 1)(2n− 2k + 1)

]
+ (k − 1)(n− k + 1)2 +

1

12

[
(n− k)2 (n− k − 1)(n− k + 1)

]
=

1

12

[
n4 − n2(6k2 − 18k + 13) + 4n(2k3 − 9k2 + 13k − 6)

− 3k(k3 − 6k2 + 11k − 6)
]
. (1)
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Theorem 1. Let G ∈ Wn,k. Then

Q(G) ≤ Q(Kin,k) (2)

with equality holding if and only if G ∼= Kin,k.

Proof. Since k is the clique number in G, we have n ≥ k. For n = k, we have G ∼= Kn and

hence the equality holds in (2). For n = k+1, G is isomorphic to a graph, Kn−1 with one

vertex adjacent to some vertices in V (Kn−1), but not all. Suppose vr ∈ V (G)\V (Kn−1)

and the vertex vr is adjacent to dG(vr) vertices in V (Kn−1), such that 1 ≤ dG(vr) < n−1.

Then

Q(G) =
1

2
(n− 1)(n− 2) + dG(vr) + 4(n− 1− dG(vr))

=
1

2
(n− 1)(n+ 6)− 3dG(vr) ≤

1

2
(n2 + 5n− 12) = Q(Kin,n−1),

by (1). Hence the inequality holds in (2). Moreover, the above equality holds if and only

if dG(vr) = 1, that is, G ∼= Kin,n−1. Otherwise, n ≥ k + 2. We have to prove that the

inequality holds in (2). We prove this by mathematical induction on n.

Assume that the inequality in (2) holds for n and prove it for n + 1. For this we

consider a graph H of order n + 1 such that G ∼= H\{vn+1} (that is, the graph G is

obtained from H by deleting the vertex vn+1). Then k ≤ ω(H) ≤ k + 1. Let d be the

diameter of H. Then d ≤ n− k + 2 as H is of order n+ 1.

Let q = max
1≤i≤n

dH(vn+1, vi). Then q ≤ d ≤ n − k + 2. Let ai (1 ≤ i ≤ q) be the

number of vertices at distance i from vertex vn+1 of H. Then
q∑

i=1

ai = n, where ai ≥ 1.

Combining this with q ≤ n− k + 2, we obtain

n∑
i=1

dH(vi, vn+1)
2 = a1 + 4 a2 + 9 a3 + · · ·+ (q − 1)2 aq−1 + q2 aq

≤ 1 + 4 + 9 + · · ·+ (q − 1)2 + (n− q + 1) q2

≤ 1 + 4 + 9 + · · ·+ (n− k + 1)2 + (k − 1) (n− k + 2)2

=
1

6
(n−k+2)(n−k+3)(2n−2k+5) + (k−2)(n−k+2)2. (3)

One can easily see that

∑
1≤i<j≤n+1

dH(vi, vj)
2 −

n∑
i=1

dH(vi, vn+1)
2 ≤

∑
1≤i<j≤n

dG(vi, vj)
2 ,
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that is,

Q(H)−Q(G) ≤
n∑

i=1

dH(vi, vn+1)
2

≤ 1

6
(n− k + 2)(n− k + 3)(2n− 2k + 5) + (k − 2)(n− k + 2)2

by (3). Therefore, by the induction hypothesis with the above result, we obtain

Q(H) ≤ Q(G) +
1

6
(n− k + 2)(n− k + 3)(2n− 2k + 5) + (k − 2)(n− k + 2)2

≤ Q(Kin,k) +
1

6
(n− k + 2)(n− k + 3)(2n− 2k + 5) + (k − 2)(n− k + 2)2

= Q(Kin+1,k)

by (1). The inequality in (2) holds by induction. Moreover, the equality holds if and only

if G ∼= Kin,k, and
n∑

i=1

dH(vi, vn+1)
2 =

1

6
(n− k + 2)(n− k + 3)(2n− 2k + 5) + (k − 2)(n− k + 2)2 ,

that is, if and only if H ∼= Kin+1,k. This completes the proof of the theorem.

Corollary 3. [14] Let G be a connected graph of order n. Then

Q(G) =
∑

1≤i<j≤n

dG(vi, vj)
2 ≤ n2(n2 − 1)

12

with equality holding if and only if G ∼= Pn.

Proof. Bearing in mind Eq. (1), one can easily check that

Q(Kin,k) ≤
n2(n2 − 1)

12
= Q(Pn)

with equality holding if and only if Kin,k ∼= Pn. By Theorem 1, we get the required

result.

Corollary 4. Let G be a connected graph of order n. Then
n∑

i=1

ρ2i (G) ≤ n2(n2 − 1)

6
(4)

with equality holding if and only if G ∼= Pn.

Proof. The left–hand side of inequality (4) is equal to the trace of DI(G)2. Bearing this

in mind, one can easily verify that
n∑

i=1

ρ2i (G) = 2
∑

1≤i<j≤n

dG(vi, vj)
2 .

Corollary 4 follows by combining the above result with Corollary 3.
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3 Main results

Theorem 2. Let G be a connected graph of order n with diameter d. Then

DE(G) ≤
√
2n

[
(2−

√
2) d+ (

√
2− 1)W (G)

]
, (5)

where W (G) is a Wiener index. Equality holds if and only if G ∼= K2.

Proof. For n = 2, we have G ∼= K2. It is easy to check that both sides of (5) are equal to

2. Assume therefore that n > 2.

Let Ω = diag(w1, w2, . . . , wn) be the diagonal matrix of order n, in which wi , 1 ≤

i ≤ n, are real numbers. The (i, j)-th entry of Ω−1DI(G)Ω is
0 if i = j,

wj

wi

dG(vi, vj) otherwise.

We can write

Ω−1DI(G)Ω = B1(G) +B2(G) + · · ·+Bn(G) ,

where Bi(G) is the n× n matrix whose i-th row is same as the i-th row of Ω−1DI(G)Ω

whereas the other rows are zero. Since for any matrix M, the non-zero eigenvalues of

MTM and MMT are same, we obtain

n∑
k=1

sk(Bi(G)) =
n∑

k=1

√
µk(Bi(G)TBi(G)) =

n∑
k=1

√
µk(Bi(G)Bi(G)T )

=
√

µ1(Bi(G)Bi(G)T ) =

√√√√ n∑
j=1,j ̸=i

w2
j

w2
i

dG(vi, vj)2 ,

where µk(Bi(G)Bi(G)T ) is the k-th largest eigenvalue ofBi(G)Bi(G)T . Recalling that the

spectra of DI(G) and Ω−1DI(G)Ω coincide, combining the above results with Lemmas

1 and 2, we obtain

DE(G) = E(DI(G)) = E(Ω−1DI(G)Ω) ≤
n∑

i=1

si(Ω
−1DI(G)Ω)

≤
n∑

i=1

si(B1(G)) +
n∑

i=1

si(B2(G)) + · · ·+
n∑

i=1

si(Bn(G))

=
n∑

i=1

√√√√ n∑
j=1, j ̸=i

w2
j

w2
i

dG(vi, vj)2 . (6)
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Using the Cauchy–Schwarz inequality, from the above, we have

DE(G) ≤

√√√√n
n∑

i=1

n∑
j=1,j ̸=i

w2
j

w2
i

dG(vi, vj)2

=

√√√√n
∑

1≤i<j≤n

(
w2

j

w2
i

+
w2

i

w2
j

)
dG(vi, vj)2. (7)

Since d is the diameter of G, without loss of generality, we can assume that d =

dG(v1, vd+1), where Pd+1 : v1v2 . . . vdvd+1 is a diametral path of G. Then for n ≥ 3, we

obtain d+ (
√
2− 1)

∑
1≤i<j≤n

(i,j) ̸=(1,d+1)

dG(vi, vj)


2

= d2 + (3− 2
√
2)

 ∑
1≤i<j≤n

(i,j) ̸=(1,d+1)

dG(vi, vj)


2

+ 2(
√
2− 1)d

∑
1≤i<j≤n

(i,j) ̸=(1,d+1)

dG(vi, vj) > d2 + (3− 2
√
2)

∑
1≤i<j≤n

(i,j) ̸=(1,d+1)

dG(vi, vj)
2

+ (2
√
2− 2)

∑
1≤i<j≤n

(i,j) ̸=(1,d+1)

dG(vi, vj)
2 = d2 +

∑
1≤i<j≤n

(i,j) ̸=(1,d+1)

dG(vi, vj)
2 =

∑
1≤i<j≤n

dG(vi, vj)
2

as d ≥ dG(vi, vj) for any vi, vj, and d = dG(v1, vd+1), that is,√ ∑
1≤i<j≤n

dG(vi, vj)2 < d+ (
√
2− 1)

∑
1≤i<j≤n

(i,j)̸=(1,d+1)

dG(vi, vj)

= (2−
√
2) d+ (

√
2− 1)

∑
1≤i<j≤n

dG(vi, vj)

= (2−
√
2) d+ (

√
2− 1)W (G) . (8)

From now on we set wi = 1 , 1 ≤ i ≤ n. Then from (7) and (8) we obtain

DE(G) ≤
√
2n

∑
1≤i<j≤n

dG(vi, vj)2 <
√
2n

[
(2−

√
2) d+ (

√
2− 1)W (G)

]
. (9)

This completes the proof of the theorem.

Corollary 5. Let G be a graph of order n with clique number k. Then

DE(G) ≤
√
2nQ(Kin,k) ,

where Q(Kin,k) is given by Eq. (1).
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Proof. By Theorem 1, from (9), we obtain

DE(G) ≤
√
2n

∑
1≤i<j≤n

dG(vi, vj)2 ≤
√

2nQ(Kin,k) .

Using Corollary 3, from (9), we have

Corollary 6. [21] Let G be a connected graph of order n > 2. Then

DE(G) < n2

√
1

6

(
n− 1

n

)
.

Corollary 7. Let G be a graph of diameter d. Then

DE(G) ≤
√
d ID(G)DD(G) ,

where ID(G) and DD(G) are the inverse degree and the degree distance of G. Moreover,

equality holds if and only if G ∼= K2.

Proof. If d = 1, then G ∼= Kn and thus

DE(G) = 2(n− 1) ≤ n
√
n− 1 =

√
d ID(G)DD(G)

with equality holding if and only if G ∼= K2. Therefore, in what follows we assume that

d ≥ 2.

Using the Cauchy–Schwarz inequality, from (6), we get

DE(G) ≤
n∑

i=1

1

wi

√√√√ n∑
j=1,j ̸=i

w2
j dG(vi, vj)

2

≤

√√√√ n∑
i=1

1

w2
i

n∑
i=1

n∑
j=1,j ̸=i

w2
j dG(vi, vj)

2 . (10)

Setting wi =
√
dG(vi) in (10), we obtain

DE(G) ≤

√√√√ n∑
i=1

1

dG(vi)

n∑
i=1

n∑
j=1,j ̸=i

dG(vj) dG(vi, vj)2

=

√
ID(G)

∑
1≤i<j≤n

[
dG(vi) + dG(vj)

]
dG(vi, vj)2 <

√
d ID(G)DD(G)

as dG(vi, vj) ≤ d and dG(vi, vj) < d for at least one vertex pair vi, vj.
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Corollary 8. Let G be a graph of maximum degree ∆ with diameter d. Then

DE(G) ≤
√
d∆ 0R−2(G)DD(G) ,

where 0R−2(G) and DD(G) are the zeroth-order general Randić index and the degree

distance. Moreover, equality holds if and only if G ∼= K2.

Proof. If d = 1, then G ∼= Kn and thus

DE(G) = 2(n− 1) ≤ n
√
n− 1 =

√
d∆ 0R−2(G)DD(G)

with equality holding if and only if G ∼= K2. Therefore, in what follows we assume that

d ≥ 2.

Setting wi = dG(vi) in (10), we obtain

DE(G) ≤

√√√√ n∑
i=1

1

dG(vi)2

n∑
i=1

n∑
j=1,j ̸=i

dG(vj)2 dG(vi, vj)2

=

√
0R−2(G)

∑
1≤i<j≤n

[
dG(vi)2 + dG(vj)2

]
dG(vi, vj)2 <

√
d∆ 0R−2(G)DD(G)

as dG(vi, vj) ≤ d and dG(vi, vj) < d for at least one vertex pair vi, vj, as well as dG(vi) ≤ ∆.
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