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Abstract

Let G be a graph of order n. G is said to be L-borderenergetic if its Laplacian
energy is the same as the energy of the complete graph Kn, i.e. LE(G) = 2(n− 1).
In this paper, we construct 36 infinite classes of L-borderenergetic graphs. The
L-borderenergetic graphs we construct are composition of the complete graphs and
the cycle graphs under the operators join, union and complements. They are non-
complete and distinct from the previously known L-borderenergetic graphs.

1 Introduction

A graph G of order n consists of the set of vertices V = {v1, v2, . . . , vn} and edges E.

If there exists an edge between vi and vj for some i, j = 1, 2, . . . , n, it is said that vi is

adjacent to vj. The number of edges connected to vi is called as the degree of vi, and it

is shown as di for i = 1, 2, . . . , n. In this paper, we consider only simple and undirected

graphs. A graph with at most one edge between two distinct vertices vi and vj, and no

edge from vi to vi for any i = 1, 2, . . . , n is called as simple graph. A graph with no

direction associated with its edge is called as undirected graph.

Let G be a graph of order n. The adjacency matrix A(G) of G has the entry aij = 1

if vi is adjacent to vj, and 0 otherwise for i, j = 1, 2, . . . , n. The diagonal matrix D(G)

associated with G is defined as D(G) = diag(d1, d2, . . . , dn), where di is the degree of the

vertex vi of G for i = 1, 2, . . . , n. In this paper, we study the Laplacian matrix associated
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with a graph G. The Laplacian matrix L(G) of G is defined as L(G) = D(G)−A(G). The

Laplacian matrix has been studied by many researchers, see [22] and references therein.

Let M be a real symmetric matrix associated with a graph G of order n. Let

Spec(M) = {λi(M), i = 1, 2, . . . , n} be the set of eigenvalues of M , that is called as

the spectrum of M . Then the M -energy of G is defined as

EM(G) =
n∑

i=1

∣∣∣∣λi(M)− tr(M)

n

∣∣∣∣ . (1)

For further details on the theory of graph energy, see [13, 19, 23], and for its applications

in chemistry, see [18,19].

Similarly, the Laplacian energy of G, introduced by Gutman and Zhou [14], is given

by

LE(G) =
n∑

i=1

∣∣µi − d̄
∣∣ , (2)

where µi are the Laplacian eigenvalues of G and d̄ is the average degree of G. The

Laplacian energy is also studied by [1–3,8–10,24,30,31].

Furthermore, a graph G of order n having energy equal to the energy of a complete

graph of order n is called as borderenergetic graph, introduced by [12] and its properties

are studied by [5,11,16,17,20,25,29]. In particular, Laplacian borderenergetic graphs are

first studied by Tura [27] and then in [4, 6, 7, 15, 21, 26, 28]. In other words, a graph is

called L-borderenergetic if it satisfies LE(G) = LE(Kn), i.e. LE(G) = 2n− 2.

In this paper, we continue in this direction and study L-borderenergetic graphs so

that new L-borderenergetic graphs are constructed and proven. Our graphs are non-

cospectral to complete graphs and distinct than any previously known L-borderenergetic

graphs. We first consider join operator on complete graphs, then construct 8 infinite

classes of L-borderenergetic graphs. Secondly, we consider join operator on cycle graphs

and construct 2 infinite classes of L-borderenergetic graphs. Similarly, 18 infinite classes

of L-borderenergetic graphs are constructed by using union operator. Then, we consider

join, union and complement operators together (i.e. mixed operators) to get 8 new classes

of L-borderenergetic graphs.

The outline of this paper is follows. In Section 2, some previous results on L-

borderenergetic graphs are presented. Then, we present our results on construction of

new infinite classes of L-borderenergetic graphs by using join operator, union operator
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and mixed operators in Sections 3.1, 3.2 and 3.3, respectively. Finally, we give our con-

clusion in Section 4.

2 Previous results

In this section, we give the known results on Laplacian energy and L-borderenergetic

graphs. We begin with two theorems that we use in the proof of our main results in

Section 3.

We denote the complete graph of order n with Kn = (VKn , EKn), which is the graph

of n vertices having an edge between all distinct vertices. Let G = (V,E) be a graph

of order n with the set of vertices V and E. Then, the complement of G is defined as

G = (V,EKn\E). Let G1 = (V1, E1) and G2 = (V2, E2) be graphs on n1 and n2 vertices,

respectively. Then, the unionG = G1∪G2 ofG1 andG2 is defined asG = (V1∪V2, E1∪E2).

Similarly, the join G = G1∇G2 of G1 and G2 is defined as G = G1 ∪G2. We note that

Gn represents the join of n-copies of G, i.e. Gn = G∇G∇ · · ·∇G︸ ︷︷ ︸
n-copies

. Similarly, the union of

n-copies of G is shown as nG = G ∪G ∪ · · · ∪G︸ ︷︷ ︸
n-copies

.

The following result gives the Laplacian spectrum of a join of two graphs.

Theorem 1. [27] Let G1 and G2 be graphs on n1 and n2 vertices, respectively. Let L1

and L2 be the Laplacian matrices for G1 and G2, respectively, and let L be the Laplacian

matrix for G1∇G2. If 0 = α1 ≤ α2 ≤ ... ≤ αn1 and 0 = β1 ≤ β2 ≤ ... ≤ βn2 are the

eigenvalues of L1 and L2, respectively. Then the eigenvalues of L are

{0, n2 + α2, n2 + α3, ..., n2 + αn1 , n1 + β2, n1 + β3, ..., n1 + βn2 , n1 + n2}.

Similarly, the Laplacian spectrum of the complement of a graph can be given as in the

following result.

Lemma 2. [27] Let G be a graph on n vertices with Laplacian matrix L. Let 0 = µ1 ≤

µ2 ≤ ... ≤ µn be the eigenvalues of L. Then the eigenvalues of Laplacian matrix of G are

0 ≤ n− µn ≤ n− µn−1 ≤ n− µn−2 ≤ ... ≤ n− µ2

with the same corresponding eigenvectors.

Tura [27] mainly uses the results given above and presents four classes of disconnected

non-complete L-borderenergetic graphs, which are the compositions of complete graphs
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K1 and K2 under the join and union operators. In the next section, we will improve

the results of Tura [27], and give many new classes of L-borderenergetic graphs by using

arbitrary complete and cycle graphs under join, union and complement operators.

3 Results

In this part of the paper, our new classes of L-borderenergetic graphs will be presented.

In this paper, we consider only complete and cycle graphs to get new classes of L-

borderenergetic graphs. We divide our new classes into three subsections. The classes we

obtain only by using join operator are given in Section 3.1. Then, the classes obtained by

using only union operator are given in Section 3.2. Finally, the new classes consisting of

join, union and complement operators are given in Section 3.3.

3.1 Join operator

In this section we construct and prove infinite classes of L-borderenergetic graphs by using

join operator on complete graphs and cycle graphs. We separate into two cases: complete

graphs and cycle graphs. We begin with a lemma which is needed in the main theorems.

We use the notation µm to denote the Laplacian eigenvalue µ with the multiplicity equals

to m.

Lemma 3. Let K1 be the complete graph of order 1 and t, n ∈ Z+. Then (tK1)
n has

Laplacian spectrum

{0, [(n− 1)t](t−1)n, [nt](n−1)}.

Proof. We will prove by induction on n. We start with the case n = 1 and consider the

graph (tK1), which has t many eigenvalues of 0: 0t. On the other hand, the spectrum

{0, [(n − 1)t](t−1)n, [nt](n−1)} for n = 1 simplifies to {0, 0(t−1)}, that is, 0t. Therefore, it

holds for n = 1. We assume that the lemma holds for n = k, and consider the case

n = k + 1. The graph (tK1)
k+1 = (tK1)

k∇(tK1) has the spectrum

{0, [kt](t−1)k, [(k + 1)t](k−1), [kt](t−1), t[k + 1]}

by Theorem 1. Then by rearranging the terms we get the specturm {0, [kt](t−1)(k+1), [(k+

1)t]k}, as desired.
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Theorem 4. Let Kt be the complete graph of order t. Then the graphs of order ni in the

infinite classes Ωi are Laplacian borderenergetic and L-noncospectral graph with Kni
for

i = 1, 2, . . . , 8.

1. Ω1 = {Gr = [rK1∇(r + 1)K1]
2, r = 1, 2, . . .} of order n1 = 4r + 2.

2. Ω2 = {Gr = K1∇rK1∇(r + 1)K1, r = 1, 2, . . .} of order n2 = 2r + 2.

3. Ω3 = {Gr = K2
1∇(2K1)

r, r = 1, 2, . . .} of order n3 = 2r + 2.

4. Ω4 = {Gr = (r + 1)K1∇(rK1)
(r+1), r = 1, 2, . . .} of order n4 = (r + 1)2.

5. Ω5 = {Gr = [K1∇(2K1)
r]2, r = 1, 2, . . .} of order n5 = 4r + 2.

6. Ω6 = {Gr,s = [(r + 1)K2∇[(2r + 1)K1]
s]2, r, s = 1, 2, . . .} of order n6 = [4(r + 1) +

2s(2r + 1)].

7. Ω7 = {Gr,s = [(r + 1)K2]
2∇[(2r + 1)K1]

s, r, s = 1, 2, . . .} of order n7 = 4(r + 1) +

s(2r + 1).

8. Ω8 = {Gr = 3Kr+1∇[2(r + 1)K1]
3, r = 0, 1, 2, . . .} of order n8 = 9(r + 1).

Proof. We will prove (1) and (6), the others follows similarly. Let Gr ∈ Ω1 be a graph of

order n1 = 4r + 2. Consider H = [rK1∇(r + 1)K1] such that Gr = H∇H. We see by

using Theorem 1 that the Laplacian spectrum of H is {0, (r + 1)r−1, rr, 2r + 1}. Since H

has order 2r+ 1, the Laplacian spectrum of Gr is obtained by using Theorem 1 as follows

{0, (3r + 2)2r−2, (3r + 1)2r, (4r + 2)3}. (3)

Clearly Gr and K4r+2 are L-noncospectral. Let d̄ be the average degree of Gr. We can

find d̄ as in the following equation array

d̄ =
(2r − 2)(3r + 2) + 2r(3r + 1) + 3(4r + 2)

4r + 2
=

6r2 + 6r + 1

2r + 1
.

By (3), we have LE(Gr) = 3[(4r + 2) − (6r
2+6r+1
2r+1

)] + (2r − 2)[(3r + 2) − (6r
2+6r+1
2r+1

)] −

2r[(3r + 1)− (6r
2+6r+1
2r+1

)] + 6r2+6r+1
2r+1

= 16r2+12r+2
2r+1

= (2r+1)(8r+2)
2r+1

= 8r + 2 = LE(K4r+2).

Next, we give the proof of (6). Let Gr ∈ Ω6 be a graph of order n6 = [4(r + 1) +

2s(2r + 1)]. By Lemma 3.1, the graph [(2r + 1)K1]
s has the spectrum

{0, [(s− 1)(2r + 1)](2r)s, [s(2r + 1)]s−1}.
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As the complete graph K2 has the Laplacian eigenvalues 0 and 2, the spectrum of the

graph H = (r + 1)K2∇[(2r + 1)K1]
s is obtained by Theorem 1 as follows

{0, [s(2r + 1)]r, [s(2r + 1) + 2]r+1, [s(2r + 1) + 1](2r)s, [2(r + 1) + s(2r + 1)]s}.

Note that Gr,s = H∇H. Hence, by applying Theorem 1 to H∇H, we get the Laplacian

spectrum of Gr,s as given below:

{0, [2s(2r + 1) + 2(r + 1)]2r, [2s(2r + 1) + 2r + 4]2r+2,
[2s(2r + 1) + 2r + 3]2s(2r), [2s(2r + 1) + 4(r + 1)]2s+1}. (4)

Clearly, the spectrum of Gr,s shows that it is non-cospectral with a complete graph of

order n6 = [4(r + 1) + 2s(2r + 1)]. On the other hand, in order to find the Laplacian

energy of Gr,s we need to find its average degree d̄, that is

d̄ =
(2r)[2s(2r + 1) + 2(r + 1)] + 2s(2r)[2s(2r + 1) + 2r + 3]

[2s(2r + 1) + 4(r + 1)]

+
2r[2s(2r + 1) + 2r + 4] + (2s+ 1)[2s(2r + 1) + 4(r + 1)]

[2s(2r + 1) + 4(r + 1)]

=
[2s(2r + 1) + 4(r + 1)][4(r + 1)− 2s+ 4s(r + 1)− 1− 2r]

[2s(2r + 1) + 4(r + 1)]

= 2s(2r + 1) + 2r + 3.

Hence, by using (4), the Laplacian energy of Gr,s is

LE(Gr,s) = (2s+ 1)[2s(2r + 1) + 4(r + 1)− 2s(2r + 1)− 2r − 3]
+2(r + 1)[2s(2r + 1) + 2r + 4− 2s(2r + 1)− 2r − 3]
+2s(2r)[2s(2r + 1) + 2r + 3− 2s(2r + 1)− 2r − 3]
+(2r)[2s(2r + 1) + 2r + 3− 2s(2r + 1)− 2(r + 1)]
+[2s(2r + 1) + 2r + 3− 0]

= (2s+ 1)(2r + 1) + 2(r + 1) + 0 + 2r + 2s(2r + 1) + 2r + 3
= 4s(2r + 1) + 8r + 6
= LE(K[4(r+1)+2s(2r+1)]).

Therefore, it is proven that any graph in Ω6 is L-borderenergetic.

Remark 5. In the following we give two examples of certain L-borderenergetic graphs

consisting of complete graphs:

1. G1 = 3K2∇3K1 of order n1 = 9.

2. G2 = 2K2∇2K1∇3K1∇3K1 of order n2 = 12.

We note that these 2 graphs are not included into any of the classes given in Theorem 4.
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In the remaining part of this section we study borderenergetic graphs consisting of the

cycle graph C4.

Lemma 6. Let Gr = Cr
4 be a graph of order n = 4r. Cr

4 = C4∇C4∇ · · ·∇C4. Then the

Laplacian spectrum of Cr
4 is given by

0, [4r](2r−1), [4r − 2]2r.

Proof. We will prove by induction. For r = 1 that is G = C4, we have spec(G) =

{41, 22, 0}. We see that the lemma holds for r = 1. Assume that the lemma holds for

r = k. We assume that

spec(Ck
4 ) = {0, [4k](2k−1), [4k − 2]2k}

holds. Now consider r = k + 1. We get the spectrum of Ck
4∇C4 by [27, Theorem 1] and

n1 = 4k, n2 = 4 as follows:

{0, [4k + 4](2k−1), [4k + 2]2k, [4k + 4], [4k + 2], [4k + 2], [4k + 4]}

= {0, [4k + 4](2k+1), [4k + 2](2k+2)}.

We see that the lemma holds for r = k + 1. Therefore, we are done.

We now give some classes of L-borderenergetic graphs by using cycle graph C4.

Theorem 7. Let Ct be the cycle graph of order t. Then the graphs of order ni in the

infinite classes Γi are Laplacian borderenergetic and L-noncospectral graph with Kni
for

i = 1, 2.

1. Γ1 = {Gr,s = Cr
4∇K2∇(2K1)

s, r, s = 0, 1, 2, . . .} of order n1 = 4r + 2s+ 2.

2. Γ2 = {Gr,s = [Cr
4∇K1∇(2K1)

s]2, r, s = 0, 1, 2, . . .} of order n2 = 8r + 4s+ 2.

Proof. We will prove only (1). Proof of (2) can be done similarly. The Laplacian spectrum

of Cr
4 is given by Lemma 6 as

0, [4r](2r−1), [4r − 2]2r.

Then, by [27, Theorem 1] we get

spec(Cr
4∇K2) = {0, [4r + 2](2r−1), [4r]2r, [4r + 2], [4r + 2]}.
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Using Lemma 3.1, we know that the Laplacian spectrum of (2K1)
s is given by

0, [2(s− 1)]s, [2s](s−1).

Then, by [27, Theorem 1] we similarly get

spec(Cr
4∇K2∇(2K1)

s) = {0, [4r+2+2s](2r−1), [4r+2s]2r, [4r+2+2s]2, [2(s−1)+4r+2]s,

[2s+ 4r + 2](s−1), [4r + 2 + 2s]}

= {0, [4r + 2s+ 2](2r+s+1), [4r + 2s](2r+s)}.

Since that d̄ is equal to average of Laplacian eigenvalues of Gr,s then

d̄ =
(2r + s+ 1)(4r + 2s+ 2) + (2r + s)(4r + 2s)

4r + 2s+ 2

=
(2r + s+ 1)2 + (2r + s)2

2r + s+ 1
.

Using the spectrum of Gr,s, we get

LE(Gr,s) =
(2r + s+ 1)2 + (2r + s)2

2r + s+ 1

+(2r + s+ 1)[4r + 2s+ 2− (2r + s+ 1)2 + (2r + s)2

2r + s+ 1
]

+(2r + s)[
(2r + s+ 1)2 + (2r + s)2

2r + s+ 1
− (4r + 2s)]

=
(2r + s+ 1)2 + (2r + s)2

2r + s+ 1
+2(2r + s+ 1)2 − (2r + s+ 1)2 − (2r + s)2

+(2r + s)[
(2r + s+ 1)2 + (2r + s)2

2r + s+ 1
− 2(2r + s)2]

=
(2r + s+ 1)2 + (2r + s)2

2r + s+ 1
(2r + s+ 1)

+(2r + s+ 1)2 − 3(2r + s)2

= (2r + s+ 1)2 + (2r + s)2 + (2r + s+ 1)2 − 3(2r + s)2

= 2(2r + s+ 1)2 − 2(2r + s)2

= 2(4r + 2s+ 1)
= 8r + 4s+ 2
= LE(K4r+2s+2).

Therefore we prove that Γ1 is an infinite class of L-borderenergetic graphs.

Remark 8. In the following we give two examples of cycles that are L-borderenergetic

graph.

1. G1 = C4∇3K1∇3K1 of order n1 = 10.

2. G2 = C4∇3K1∇2K1 of order n2 = 9.

We note that these 2 graphs are not included into any of the classes given in Theorem 7.
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3.2 Union operator

In this section, we give new infinite classes of L-borderenergetic graphs consisting of

complete and cycle graphs under union operator. We only consider the graphs in the

form r1G1 ∪ r2G2 ∪ r3G3 for some graphs G1, G2, G3 and non-negative integers r1, r2, r3.

In other words, the union of 4 or more distinct graphs is not considered in this paper.

We note that the Laplacian spectrum of the complete graph Kt of order t is {0, tt−1}.

Theorem 9. Let Kt be the complete graph of order t. Then the graphs of order ni in the

infinite classes Φi are Laplacian borderenergetic and L-noncospectral graph with Kni
for

i = 1, 2, . . . , 18.

1. Φ1 = {Gr = r(3r−1)
2

K4 ∪ r(3r + 2)K1, r = 1, 2, . . .} of order n1 = 9r2.

2. Φ2 = {Gr = r(3r+1)
2

K4 ∪ (r + 1)(3r + 1)K1, r = 1, 2, . . .} of order n2 = (3r + 1)2.

3. Φ3 = {Gr = r(3r − 2)K1 ∪ r(3r+1)
2

K4, r = 1, 2, . . .} of order n3 = 9r2.

4. Φ4 = {Gr = r(3r + 2)K1 ∪ (r+1)(3r+2)
2

K4, r = 1, 2, . . .} of order n4 = (3r + 2)2.

5. Φ5 = {Gr = (2r − 1)Kr+1 ∪K2r+2, r = 1, 2, . . .} of order n5 = (r + 1)(2r + 1).

6. Φ6 = {Gr = Kr ∪Kr+2, r = 1, 2, . . .} of order n6 = 2r + 2.

7. Φ7 = {Gr = (2r + 1)Kr−1 ∪K2r, r = 1, 2, . . .} of order n7 = r(2r + 1)− 1.

8. Φ8 = {Gr = rK2(r+1) ∪ (r + 1)K2(r+2), r = 1, 2, . . .} of order n8 = 4(r + 1)2.

9. Φ9 = {Gr,s = [(s + 2)r − 1]K1 ∪ [ s(s+3)
2

r + 1]K2 ∪ rKs+4, r, s = 1, 2, . . .} of order

n9 = r(s+ 2)(s+ 3) + 1.

10. Φ10 = {Gr,s = [(s + 2)r]K1 ∪ [ s(s+3)
2

r + 1]K2 ∪ rKs+4, r, s = 1, 2, . . .} of order

n10 = r(s+ 2)(s+ 3) + 2.

11. Φ11 = {Gr,s = [ (s+1)(s+4)
2

r]K1 ∪ [ s(s+3)
2

r + 1]K3 ∪ rKs+4, r, s = 1, 2, . . .} of order

n11 = 2r(s+ 1)(s+ 3) + 3.

12. Φ12 = {Gr = 4rK1 ∪ (5r + 1)K4 ∪ rK6, r = 1, 2, . . .} of order n12 = 30r + 4.

13. Φ13 = {Gr = (4r + 1)K1 ∪ (5r + 2)K4 ∪ rK1, r = 1, 2, . . .} of order n13 = 25r + 9.

14. Φ14 = {Gr = 5rK1 ∪ (4r + 1)K4 ∪ 3rK5, r = 1, 2, . . .} of order n14 = 36r + 4.
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15. Φ15 = {Gr = (5r + 1)K1 ∪ (4r + 2)K4 ∪ 3rK5, r = 1, 2, . . .} of order n15 = 36r + 9.

16. Φ16 = {Gr = 2rK1 ∪ (5r + 1)K4 ∪ 2rK7, r = 1, 2, . . .} of order n16 = 36r + 4.

17. Φ17 = {Gr = 7rK1 ∪ (10r + 1)K4 ∪ rK7, r = 1, 2, . . .} of order n17 = 54r + 4.

18. Φ18 = {Gr = (7r + 1)K1 ∪ (10r + 2)K4 ∪ rK7, r = 1, 2, . . .} of order n18 = 54r + 9.

Proof. We will prove only (1). Proof of others can be done similarly. Let Gr ∈ Φ1 be a

graph of order n1 = 9r2. Then the Laplacian spectrum of Gr is given by

4
3r(3r−1)

2 , 0
r(3r−1)+2r(3r+2)

2 .

Let d̄ be the average degree of Gr. Since d̄ is equal to the average of Laplacian eigenvalues

of Gr, we have

d̄ =
3r(3r−1)4

2
+ 0[r(3r−1)+2r(3r+2)]

2

9r2
=

6r − 2

3r
.

Using the spectrum of Gr, we get

LE(Gr) = 3r(3r−1)
2

(4− 6r−2
3r

) + r(3r−1)+2r(3r+2)
2

6r−2
3r

= (3r−1)(6r+2)
2

+ (9r+3)(3r−1)
3

= 2(3r + 1)(3r − 1)
= 18r2 − 2
= LE(K9r2).

Therefore we prove that Φ1 is an infinite class of L-borderenergetic graphs.

3.3 Mixed operators

In this section, we consider join, union and complement operators to get new infinite

classes of L-borderenergetic graphs consisting of complete and cycle graph.

Theorem 10. Let Kt be the complete graph of order t. Then the graphs of order ni in

the infinite classes Λi are Laplacian borderenergetic and L-noncospectral graph with Kni

for i = 1, 2, 3, 4.

1. Λ1 = {Gr = [rK1 ∪ (rK1∇K1)]
2, r = 1, 2, . . .} of order n1 = 4r + 2.

2. Λ2 = {Gr = [rK2 ∪ (K1∇2K1)]
2, r = 1, 2, . . .} of order n2 = 4r + 6.

3. Λ3 = {Gr = [Kr+1 ∪ (rK1∇rK1)]
2, r = 1, 2, . . .} of order n3 = 6r + 2.

4. Λ4 = {Gr = [Kr ∪ (rK1∇(r + 1)K1)]
2, r = 1, 2, . . .} of order n4 = 6r + 2.
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Proof. We will prove only (1), others can be done similarly. Let Gr ∈ Λ1 be a graph of

order n1 = 4r + 2. Consider H = [rK1 ∪ (rK1∇K1)] such that Gr = H∇H. We see by

using Theorem 1 that the Laplacian spectrum of H is {0r+1, 1r−1, r + 1}. Since H has

order 2r + 1, the Laplacian spectrum of Gr is obtained by using Theorem 1 as follows

{0, (2r + 1)2r, (2r + 2)2r−2, (3r + 2)2, 4r + 2}. (5)

Clearly Gr and K4r+2 are L-noncospectral. Let d̄ be the average degree of Gr. We can

find d̄ as in the following equation array

d̄ =
2r(2r + 1) + (2r − 2)(2r + 2) + 2(3r + 2) + 4r + 2

4r + 2
=

4r2 + 6r + 1

2r + 1
.

By (5), we have LE(Gr) = 4r2+6r+1
2r+1

+2r[4r
2+6r+1
2r+1

−(2r+1)]+(2r−2)[2r+2−(4r
2+6r+1
2r+1

)]+

2[3r+2−(4r
2+6r+1
2r+1

)]+[4r+2−(4r
2+6r+1
2r+1

)] = 16r2+12r+2
2r+1

= (2r+1)(8r+2)
2r+1

= 8r+2 = LE(K4r+2).

Next theorem presents new Laplacian borderenergetic graphs based on cycle graph C4

and complete graphs K1 and K2.

Theorem 11. Let C4 be the cycle graph of order 4. Then the graphs of order ni in the

infinite classes Υi are Laplacian borderenergetic and L-noncospectral graph with Kni
for

i = 1, 2, 3, 4.

1. Υ1 = {Gr = (r + 1)C4∇(2K2 ∪ rC4), r = 0, 1, 2, . . .} of order n1 = 8r + 8.

2. Υ2 = {Gr = C4∇K1∇(K1 ∪ rK2), r = 0, 1, 2, . . .} of order n2 = 2r + 6.

3. Υ3 = {Gr = C4∇K1∇(2K1 ∪ rK2), r = 0, 1, 2, . . .} of order n3 = 2r + 7.

4. Υ4 = {Gr = C4∇C4∇(2K1 ∪ rK2), r = 0, 1, 2, . . .} of order n4 = 2r + 10.

Proof. We will prove only (1), others follow similarly. Let Gr = [(r+1)C4∇(2K2∪rC4)] ∈

Υ1 be a graph of order n1 = 8r + 8. Let H1 and H2 be graphs such that H1 = (r + 1)C4

and H2 = (2K2 ∪ rC4). Then we have Gr = H1∇H2. Note that {0r+1, 22r+2, 4r+1} and

{0r+2, 22r+2, 4r} are the Laplacian spectrums of H1 and H2, respectively. Since Gr has

order 8r + 8, the Laplacian spectrum of Gr is obtained by using Theorem 1 as follows

{0, (4r + 4)2r+1, (4r + 6)4r+4, (4r + 8)2r+1, 8r + 8}. (6)
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Clearly, Gr and K8r+8 are L-noncospectral. Let d̄ be the average degree of Gr. We can

find d̄ as in the following equation array

d̄ =
(2r + 1)(4r + 8) + (4r + 4)(4r + 6) + (2r + 1)(4r + 4) + 8r + 8

8r + 8

=
8r2 + 20r + 11

2r + 2
.

By (6), we have LE(Gr) = 8r2+20r+11
2r+2

+ (2r + 1)[4r + 8 − (8r
2+20r+11
2r+2

)] + (4r + 4)[4r +

6− (8r
2+20r+11
2r+2

)] + (2r + 1)[8r
2+20r+11
2r+2

− (4r + 4)] + [8r + 8− (8r
2+20r+11
2r+2

)] = 16r2+30r+14
r+1

=

(16r+14)(r+1)
r+1

= 16r + 14 = LE(K8r+8).

4 Conclusion

In this paper, we presented new classes of L-borderenergetic graphs. Our classes are non-

cospectral with a complete graph and distinct from any known graphs in the literature.

We constructed totally 36 classes, each of which consist of infinitely many graphs. Our

classes are composition of complete graphs and cycle graphs under the operators union,

join and complement. It would be a good future work to find new infinite classes by using

different operators on different graph families.
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