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Abstract

A graph G of order n is (Laplacian) borderenergetic if it has the same (Laplacian)
energy as the complete graph Kn. Recently, Deng and Li showed that for any
graph G, except for three graphs, at most one of G and its complement G can
be a borderenergetic graph. In this paper, we will show that for any graph G,
except for four graphs, at most one of G and its complement G can be a Laplacian
borderenergetic graph. In addition, several bounds on the Laplacian energy of the
complement of a Laplacian borderenergetic graph are obtained by using Nordhaus-
Gaddum-type results.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. Let G be a graph

of order n and size m. The complement of G is denoted by G. The complete graph of

order n is denoted by Kn. The degree of a vertex vi in G is denoted by di. The maximum
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degree of G is denoted by ∆(G). The auxiliary quantity M(G) of G was defined in [18]

as follows:

M(G) = m+
1

2

n∑
i=1

(
di −

2m

n

)2

.

Let A(G) be the adjacency matrix of G and λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of

the adjacency matrix A(G). Let D(G) denote the diagonal matrix of the vertex-degrees

of G. Then L(G) = D(G)−A(G) is defined as the Laplacian matrix of G. The spectrum

of L(G) is composed of µ1 ≥ µ2 ≥ · · · ≥ µn = 0, which are the eigenvalues of L(G).

The energy of a graph G, denoted by E(G), is defined in [12,13] as

E(G) =
n∑

i=1

|λi|.

For additional information on graph energy and its applications in chemistry, we refer

to [13,16,17,24].

In 2015, Gong et al. [11] proposed the concept of borderenergetic graphs, namely graphs

of order n satisfying E(G) = 2(n− 1). Related results on borderenergetic graphs can be

found in [4, 7–9, 20, 25–27]. Actually, similar topics on the energy of graphs have been

studied in [1, 14,15,21–23,28,29].

Analogously, for the Laplacian energy of a graph G [18], the concept of Laplacian

borderenergetic graphs was proposed by Tura in [29], that is, a graph G of order n is

Laplacian borderenergetic, or L-borderenergetic for short, if LE(G) = LE(Kn), where

LE(G) is the Laplacian energy of G defined as LE(G) =
∑n

i=1 |µi−d| and d is the average

degree of G. Some classes of L-borderenergetic graphs of order n = 4r + 4 (r ≥ 1) and a

kind of threshold L-borderenergetic graphs were obtained in [29] and [5], respectively. So

far, there are few results on the structures of L-borderenergetic graphs.

Recently, Deng and Li in [6] showed that for any graph G, except for three graphs

(one of order 9 and two of order 11), at most one of G and its complement G can be a

borderenergetic graph. Interestingly, in this paper, we can show that for any graph G,

except for four graphs, at most one ofG and its complementG can be an L-borderenergetic

graph. The four graphs (one of order 5, two of order 6 and one of order 9) are depicted

in Figure 1. One can check that each of the four graphs possesses the property that both

itself and its complement are L-borderenergetic. The corresponding complements are

presented in Figure 2. The Laplacian spectra of the four graphs and their complements
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are given, respectively, as follows.

LSp(G
1
5) = {5, 3, 1, 1, 0};

LSp(G
2
6) = {6, 4, 3, 2, 1, 0};

LSp(G
3
6) = {6, 5, 3, 3, 1, 0};

LSp(G
4
9) = {6, 6, 6, 5, 5, 3, 3, 2, 0};

LSp(G
1

5) = {4, 4, 2, 0, 0};

LSp(G
2

6) = {5, 4, 3, 2, 0, 0};

LSp(G
3

6) = {5, 3, 3, 1, 0, 0};

LSp(G
4

9) = {6, 6, 6, 5, 5, 3, 3, 2, 0}.

Especially, we can easily check that the graph G4
9 is self-complementary, that is, G4

9
∼=

G
4

9. In addition, several bounds on the Laplacian energy of the complement of an L-

borderenergetic graph are obtained by using Nordhaus-Gaddum-type results.

G1
5 G2

6 G3
6 G4

9

Figure 1. The L-borderenergetic graphs: G1
5, G

2
6, G

3
6 and G4

9.

G
1
5 G

2
6

G
3
6

Figure 2. The complements of graphs G1
5, G

2
6 and G3

6.

2 L-borderenergetic graphs and their complements

Our main result of this section is presented below.

Theorem 2.1. For any connected noncomplete graph G, except for the four graphs

G1
5, G

2
6, G

3
6 and G4

9, at most one of G and its complement G can be L-borderenergetic.
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Proof. For the cases of 4 ≤ n ≤ 11, all the L-borderenergetic graphs have been found in

[5,28]. Let G be an L-borderenergetic graph with order n ≥ 12. By contradiction, suppose

G is also an L-borderenergetic graph, i.e., LE(G) = 2(n − 1). By LE(G) ≥ 2
√
M(G),

we have 2(n− 1) ≥ 2
√
M(G) and

(n− 1)2 ≥M(G). (1)

Let m be the size of G. The degree of a vertex vi in G is denoted by di. By investigating
the quality M(G), we obtain

M(G) = m +
1

2

n∑
i=1

(
di −

2m

n

)2

= m +
1

2

n∑
i=1

(
di

2 − 4m

n
di +

4m2

n2

)

= m +
1

2

n∑
i=1

di
2 − 2m

n

n∑
i=1

di +
2m2

n

= m +
1

2

n∑
i=1

(n− 1− di)
2 − 2m

n

n∑
i=1

(n− 1− di) +
2m2

n

= m +
1

2

n∑
i=1

[
(n− 1)2 − 2(n− 1)di + d2i

]
− 2m(n− 1) +

2m

n

n∑
i=1

di +
2m2

n

=
1

2
n(n− 1)−m +

1

2
n(n− 1)2 − 2m(n− 1) +

1

2

n∑
i=1

d2i − 2(n− 1)

[
1

2
n(n− 1)−m

]

+
4m

n

[
1

2
n(n− 1)−m

]
+

2

n

[
1

2
n(n− 1)−m

]2
= − 2

n
m2 −m +

1

2

n∑
i=1

d2i +
1

2
n(n− 1).

Assume
∑n

i=1 d
2
i = x. Then

M(G) = − 2

n
m2 −m+

1

2
x+

1

2
n(n− 1). (2)

Combining (1) with (2), it arrives at

(n− 1)2 −M(G) = n2 − 2n+ 1 +
2

n
m2 +m− 1

2
x− 1

2
n2 +

1

2
n

=
2

n
m2 +m− 1

2
x+

1

2
n2 − 3

2
n+ 1 ≥ 0. (3)

Since
∑n

i=1 di = 2m, we get(
n∑

i=1

di

)2

= 4m2 =
n∑

i=1

d2i + 2
∑
i 6=j

didj ≤ x+ n(n− 1)3 = x+ n4 − 3n3 + 3n2 − n.

Thus,

m ≤
√

1

4
x+

n4 − 3n3 + 3n2 − n
4

.
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By (3), we obtain

2

n

(
1

4
x +

n4 − 3n3 + 3n2 − n

4

)
+

√
1

4
x +

n4 − 3n3 + 3n2 − n

4
− 1

2
x +

1

2
n2 − 3

2
n + 1 ≥ 0.

So,

(n− 1)2

4n2
x2 − 2n4 − 6n3 + 4n2 + 3n− 2

4n
x

+
n6 − 4n5 + 3n4 + 5n3 − 7n2 + n+ 1

4
≤ 0.

The left expression of the above inequality can be seen as a function with variable x, i.e.,

f(x). Then the above inequality can be written as

f(x) ≤ 0.

Obviously, we can see that the discriminant ∆ of the quadratic equation f(x) = 0 satisfies

∆ =
4n6 − 16n5 + 28n4 − 32n3 + 25n2 − 8n

16n2
> 0,

which implies that there are solutions for the inequality f(x) ≤ 0. Let x1 < x2 be two

roots of the equation f(x) = 0, possessing that x1 ≤ x ≤ x2. It is not hard to find that

x1 =
2n5 − 6n4 + 4n3 + 3n2 − 2n

2(n− 1)2
− 2n2

(n− 1)2

√
∆,

x2 =
2n5 − 6n4 + 4n3 + 3n2 − 2n

2(n− 1)2
+

2n2

(n− 1)2

√
∆.

If ∆(G) ≤ n− 2, then x ≤ n(n− 2)2. As n ≥ 12, we have

x1 − n(n− 2)2 =
2n5 − 6n4 + 4n3 + 3n2 − 2n

2(n− 1)2
− 2n2

(n− 1)2

√
∆− n(n− 2)2

=
n
(
−10 + 27n− 22n2 + 6n3 − 4n

√
∆
)

2(n− 1)2
> 0,

which is a contradiction with x1 ≤ x ≤ n(n− 2)2.

Next, we consider the case of ∆(G) = n − 1. Note that the number of vertices with

degree equal to n − 1 is at most n − 2. Thus, we have x ≤ (n − 2)(n − 1)2 + 2(n − 2)2.

Combining (n− 2)(n− 1)2 + 2(n− 2)2 < x2, we get

x ≤ (n− 2)(n− 1)2 + 2(n− 2)2 < x2,

and

f((n− 2)(n− 1)2 + 2(n− 2)2) ≤ 0. (4)
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But for n ≥ 12, it holds that

f((n− 2)(n− 1)2 + 2(n− 2)2) =
2n5 − 8n4 + 35n2 − 48n+ 18

2n2
> 0,

which creates a contradiction with (4). The proof is thus complete.

3 Bounds on the Laplacian energy of the complement

of an L-borderenergetic graph

In this section, several upper bounds on the Laplacian energy of the complement of an

L-borderenergetic graph are given.

Theorem 3.1. [30] Let G be a graph with n vertices. Then

LE(G) + LE(G) < n
√
n2 − 1.

Immediately, we get

Corollary 3.2. If G is an L-borderenergetic graph with n vertices. Then

LE(G) < n(
√
n2 − 1− 2) + 2.

Proof. If G is an L-borderenergetic graph with n vertices, then LE(G) = 2(n − 1). By

Theorem 3.1, the result follows directly.

Lemma 3.3. [3] Let G be a bipartite graph of order n and size m. Then

LE(G) ≤ 4m

n
+

√
(n− 2)

(
2M(G)− 8m2

n2

)
.

Suppose ∆0 = max{∆(G),∆(G). By Lemma 3.3, a Nordhaus-Gaddum-Type bound

for the Laplacian energy is obtained.

Theorem 3.4. Let G be a bipartite graph of order n and size m. Then

LE(G) + LE(G) < 2(n− 1) +
√

2
√
n− 2

√
n (n− 1 + 2∆2

0)− 2n− 2 +
4

n
.
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Proof. By calculating M(G) +M(G), we obtain

M(G) +M(G) = m+
1

2

n∑
i=1

d2i −
2m2

n
+m+

1

2

n∑
i=1

di
2 − 2m2

n

= m+m+
1

2

n∑
i=1

d2i +
1

2

n∑
i=1

di
2 − 2

n
(m2 +m2)

≤ 1

2
n(n− 1) +

1

2
n(∆2 + ∆

2
)− 2

n
(m2 +m2)

<
1

2
n(n− 1) +

1

2
n(∆2 + ∆

2
)− 2

n
(m+m)

<
1

2
n(n− 1 + 2∆2

0)− n+ 1.

Then by Lemma 3.3, we have

LE(G) + LE(G) ≤ 4m

n
+

√
(n− 2)

(
2M(G)− 8m2

n2

)
+

4m

n
+

√
(n− 2)

(
2M(G)− 8m2

n2

)

= 2(n− 1) +
√
n− 2

(√
2M(G)− 8m2

n2
+

√
2M(G)− 8m2

n2

)

≤ 2(n− 1) +
√

2
√
n− 2

√
2M(G) + 2M(G)− 8(m2 + m2)

n2

≤ 2(n− 1) +
√

2
√
n− 2

√
2M(G) + 2M(G)− 8(m + m)

n2

= 2(n− 1) +
√

2
√
n− 2

√
2M(G) + 2M(G)− 4(n− 1)

n

< 2(n− 1) +
√

2
√
n− 2

√
n(n− 1 + 2∆2

0)− 2n− 2 +
4

n
.

From Theorem 3.4, we can directly get

Corollary 3.5. If G is an L-borderenergetic bipartite graph of order n and size m, then

LE(G) <
√

2
√
n− 2

√
n(n− 1 + 2∆2

0)− 2n− 2 +
4

n
.

In the case of regular graphs, the upper bounds in Theory 3.1 and Corollary 3.2 can

be improved.

Theorem 3.6. Let G be an r-regular graph with n vertices. Then

LE(G) + LE(G) ≤
√

2n2(n− 1).
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Proof. Denote by d1, d2, · · · , dn the vertex-degrees of G. Then di = r (i = 1, 2, · · · , n)
and

M(G) + M(G) = m +
1

2

n∑
i=1

(
di −

2m

n

)2

+ m +
1

2

n∑
i=1

(
di −

2m

n

)2

=
1

2
n(n− 1) +

1

2

n∑
i=1

d2i −
2m

n

n∑
i=1

di +
2m2

n
+

1

2

n∑
i=1

di
2 − 2m

n

n∑
i=1

di +
2m2

n

=
1

2
n(n− 1) +

1

2
nr2 − 2m

n
nr +

2m2

n
+

1

2
n(n− 1− r)2

− 2

n

[
1

2
n(n− 1)−m

]
n(n− 1− r) +

2

n

[
1

2
n(n− 1)−m

]2
=

4m2

n
+ nr2 +

1

2
n(n− 1)− 4mr.

Due to m = nr
2

, we have

M(G) +M(G) =
4m2

n
+ nr2 +

1

2
n(n− 1)− 4mr =

1

2
n(n− 1).

As LE(G) ≤
√

2nM , we obtain

LE(G) + LE(G) ≤
√

2nM(G) +

√
2nM(G)

=
√

2n(
√
M(G) +

√
M(G))

≤
√

2
√

2n

√
M(G) +M(G)

=
√

2n2(n− 1).

From Theorem 3.6, we get

Theorem 3.7. Let G be an r-regular L-borderenergetic graph with n vertices. Then

LE(G) ≤
√

2n2(n− 1)− 2(n− 1).
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