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Abstract

Akbari and Hosseinzadeh [MATCH Commun. Math. Comput. Chem. 83
(2020), 631–633] conjectured that the energy of a non-singular graph G is bounded
from below by the sum of the maximum and the minimum vertex degree of G, with
equality if and only if G is a complete graph. We discuss this conjecture here and
provide a few lower bounds on the energy which prove this conjecture in several
special cases.

1 Introduction

Let G = (V,E), with |V | = n and |E| = m, be a simple graph with adjacency matrix A,

and let λ1 ≥ · · · ≥ λn be the eigenvalues of A. The energy of a graph G is given by

E(G) =
∑n

i=1 |λi|, as defined by Ivan Gutman [10] back in 1978. With some delay for

initial acceptance, graph energy became one of the most studied topological indices since

the 2000s—see, e.g., [15] for an in-depth monograph covering the development of graph

energy and [12,13] for overviews of recent research on graph energies.

IThe second author was supported by the Slovenian Research Agency through the grants P1-0285,
J1-1695, J1-9108 and J1-9110. The third author was supported by the Ministry of Education, Science
and Technological Development of the Republic of Serbia through the Mathematical Institute of SASA.

∗Corresponding author.

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 86 (2021) 577-586
                         

                                          ISSN 0340 - 6253 



Let ∆, δ and d̄ = 2m
n

, respectively, represent the maximum, the minimum and the

average vertex degree of G. Motivated by an unnecessarily lengthy proof of the lower

bound

E(G) ≥ 2δ (1)

from [16], both Oboudi [18] and Akbari and Hosseinzadeh [2] improved this lower bound

to

E(G) ≥ 2λ1 ≥ 2d̄ ≥ 2δ (2)

using very short proofs. For the sake of thoroughness, we shortly rephrase the Oboudi’s

proof [18]: Assume that for some 1 ≤ p < n, we have λp > 0 ≥ λp+1. Then Tr(A) = 0

leads to
∑n

j=p+1 λj = −
∑p

i=1 λi, so that

E(G) =
n∑
i=1

|λi| = 2

p∑
i=1

λi ≥ 2λ1.

The inequality λ1 ≥ d̄ is well-known in spectral graph theory [6], and the cases of equality

can be easily characterized in the above inequalities [2, 18].

However, after obtaining the corollary E(G) ≥ 2δ, Akbari and Hosseinzadeh [2] posed

the following conjecture.

Conjecture 1 ([2]) If the adjacency matrix of G is non-singular then E(G) ≥ ∆ + δ,

with the equality if and only if G is a complete graph.

Apart from an obvious attempt at generalizing the lower bound (1), Akbari and Hos-

seinzadeh [2] did not provide any further motivation or computational evidence for this

conjecture. Moreover, the sudden appearance of the additional condition that (the adja-

cency matrix of) G is non-singular is somewhat frustrating, as there are obvious counterex-

amples for this lower bound among the graphs that have zero eigenvalues. For example,

the complete bipartite graph K∆,δ has the adjacency spectrum [
√

∆δ, 0(∆+δ−2),−
√

∆δ]

(where the exponent (∆ + δ − 2) denotes the multiplicity of the zero eigenvalue), so that

E(K∆,δ) = 2
√

∆δ < ∆ + δ

whenever ∆ > δ.

Nevertheless, the exclusion of singular graphs appears to make Conjecture 1 correct.

In the next section, we build upon some of the existing energy bounds and we addi-

tionally provide a few new lower bounds on energy of non-singular graphs to show that

Conjecture 1 holds in a number of special cases.
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2 Lower bounds on the energy of non-singular graphs

Probably the simplest class of graphs for which Conjecture 1 holds are regular graphs for

which λ1 = ∆ = δ [5]. Hence from (1) and (2) we have E(G) ≥ 2λ1 = ∆ + δ, regardless

of whether the regular graph G is singular or not.

Let us revisit the Gutman’s lower bound on the energy of non-singular graphs [11].

Proposition 2 ([11]) If the adjacency matrix of G is non-singular, then E(G) ≥ n.

This proposition follows easily from the inequality of arithmetic and geometric means.

First note that the adjacency matrix A is integer-valued, so that det(A) = λ1λ2 · · ·λn is

also an integer. Hence if A is non-singular, then | det(A)| ≥ 1. Now we have

E(G) = |λ1|+ |λ2|+ · · ·+ |λn| ≥ n n
√
|λ1||λ2| · · · |λn| = n n

√
| det(A)| ≥ n. (3)

From this proposition we immediately have the following corollary.

Corollary 3 If G is a non-singular graph with n ≥ ∆ + δ, then E(G) ≥ ∆ + δ.

A particular example of such non-singular graphs are trees with perfect matchings. They

are non-singular by the Sachs’ theorem for the coefficients of the characteristic polynomial

of A [6, Theorem 1.3, Proposition 1.1]. For trees we have n− 1 ≥ ∆ and 1 ≥ δ (including

the 1-vertex tree in the second inequality), so that n ≥ ∆ + δ. As a matter of fact,

Ashraf [4] recently improved Proposition 2 when G is a tree on n vertices with a perfect

matching and maximum vertex degree at most 3, by showing that

E(G) > 1.21n− 3.23.

Another example of graphs that satisfy n ≥ ∆ + δ are triangle-free graphs. Namely, if

G does not contain a triangle, then the sets of neighbors of any two adjacent vertices u

and v are disjoint, so that d(u) +d(v) ≤ n. If we suppose that u has the maximum vertex

degree d(u) = ∆, then d(v) ≥ δ, so that ∆ + δ ≤ n. Hence Corollary 3 is applicable to

non-singular triangle-free graphs as well.

We can tweak the Gutman’s bound (3) in a few ways. For example, we may assume

that we know upfront the number of positive and negative eigenvalues of a non-singular

graph G. Suppose that

λ1 ≥ · · · ≥ λk > 0 > λk+1 ≥ · · · ≥ λn.
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From Tr(A) = 0 = (λ1 + · · ·+ λk) + (λk+1 + · · ·+ λn), we have

E(G)

2
= λ1 + · · ·+ λk = |λk+1|+ · · ·+ |λn|.

Applying the arithmetic-geometric mean inequality separately to the first and the second

sum above, we get

E(G)

2
≥ k k

√
λ1 · · ·λk and

E(G)

2
≥ (n− k) n−k

√
|λk+1| · · · |λn|.

Then
E(G)kE(G)n−k

2n
≥ kk(n− k)n−kλ1 · · ·λk|λk+1| · · · |λn|,

so that after taking the n-th root, we obtain

E(G) ≥ 2 n
√
kk(n− k)n−k n

√
| det(A)|. (4)

The minimum of n
√
kk(n− k)n−k is obtained for k = n/2, in which case (4) reduces to the

Gutman’s lower bound E(G) ≥ n n
√
| det(A)|. However, if we know that, say, the number

of positive eigenvalues k is much smaller than n, i.e., k = o(n), then

lim
n→∞

n
√
kk(n− k)n−k

n
= 1.

In such case, we have that for each ε > 0, there exists n0 such that for all n ≥ n0, we

obtain

E(G) ≥ 2n(1− ε) n
√
| det(A)| ≥ 2n(1− ε),

that satisfies Conjecture 1, unless both ∆ and δ are too close to n.

On the other hand, discarding λ1 when applying the arithmetic-geometric mean in-

equality in the Gutman’s lower bound (3) leads to:

|λ2|+ · · ·+ |λn| ≥ (n− 1) n−1
√
|λ2| · · · |λn| = (n− 1) n−1

√
| det(A)|/λ1.

This inequality leads us to the following proposition.

Proposition 4 If G is a non-singular graph, then E(G) ≥ λ1 + (n− 1) n−1
√
| det(A)|/λ1.

This proposition leads to another case when Conjecture 1 holds.

Corollary 5 If G is a non-singular graph with | det(A)| ≥ λ1, then E(G) ≥ ∆ + δ.
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The assumption | det(A)| ≥ λ1 (as well as a relaxed condition | det(A)| ≥ n − 1) yields

n−1
√
| det(A)|/λ1 ≥ 1, so that from Proposition 4 we have E(G) ≥ λ1 + (n− 1) ≥ ∆ + δ.

Small graphs with up to nine vertices have been classified according to the values of

the determinants of their adjacency matrices by Abdollahi in [1]. From the table in [1,

Proposition 2.5] we can see, for example, that only 12.7% of all non-singular graphs on

eight vertices and only 16.6% of all non-singular graphs on nine vertices satisfy | det(A)| ≥

n − 1. Hence even if it turns out that this percentage continues to grow with increasing

numbers of vertices, it may very well be expected that it will be far from covering all

non-singular graphs.

On the other hand, Deift and Tomei [9] proved that det(A) ∈ {−1, 0,+1} for any

simply connected, finite subgraph G of the lattice Z × Z. By [9], the vertex v ∈ Z × Z

is not enclosed by G if, for any integer n, there exists a sequence of distinct vertices

v0, v1, . . . , vn, where v0 = v, vi /∈ G, and each segment vivi+1 is either a horizontal or

vertical line of (Euclidean) length one, or a diagonal line of (Euclidean) length
√

2. Then,

G is simply connected in Z×Z if each vertex v /∈ G is not enclosed by G. Particular cases

of such graphs are polyominos (finite, 2-connected plane graphs, with each interior face a

quadrangle) whose inner dual is a tree. For nonsingular polyominos we have | det(A)| = 1,

so that for these graphs we have

|λ2| · · · |λn| =
1

λ1

.

Building upon the results of Deift and Tomei [9], Huang and Yan [14] provided further

examples of plane graphs with det(A) ∈ {−1, 0,+1}.

As a short digression and a quick excursion into the graphs satisfying | det(A)| = 1,

we prove here a slight improvement of the McClelland’s upper bound [17] E(G) ≤
√

2mn

for such graphs.

Proposition 6 If G is a graph with | det(A)| = 1, then

E(G) ≤ 1 +
√

(2m− 1)(n− 1). (5)

Proof. Assume for the purpose of this proof that the eigenvalues of A are now ordered

by their absolute values:

|λ1| ≥ |λ2| ≥ . . . ≥ |λn| > 0.

-581-



The inequality (5) is equivalent to

(E(G)− 1)2 ≤ (2m− 1)(n− 1),

which is equivalent to

(|λ1|+ |λ2|+ . . .+ |λn| − 1)2 ≤ (n− 1)(λ2
1 + λ2

2 + . . .+ λ2
n − 1),

because 2m = Tr(A2) =
∑n

i=1 λ
2
i .

Since | det(A)| = 1, we have |λ1| ≥ 1 ≥ |λn|, so that we can set µ1 =
√
λ2

1 + λ2
n − 1.

The inequality between arithmetic and quadratic means applied to |µ1|, |λ2|, . . . , |λn−1|

yields

(|µ1|+ |λ2|+ . . .+ |λn−1|)2 ≤ (n−1)(µ2
1 +λ2

2 + . . .+λ2
n−1) = (n−1)(λ2

1 +λ2
2 + . . .+λ2

n−1).

It remains to show that |λ1|+ |λn| − 1 ≤ µ1, i.e., (|λ1|+ |λn| − 1)2 ≤ λ2
1 +λ2

n− 1. But this

is equivalent to (|λ1| − 1)(|λn| − 1) ≤ 0, which holds because of |λ1| ≥ 1 ≥ |λn|. �

It is easy to verify that the bound (5) is slightly stronger than the McClelland’s bound

E(G) ≤
√

2mn. Squaring the inequality

1 +
√

(2m− 1)(n− 1) ≤
√

2mn

we conclude that it is equivalent to 2
√

(2m− 1)(n− 1) ≤ (2m − 1) + (n − 1), which is

correct by the arithmetic-geometric mean inequality.

Back to discussing Conjecture 1, we can obtain corollaries analogous to Corollaries 3

and 5 from other familiar lower bounds on energy. Consider, for example, the McClelland’s

lower bound [17]:

E(G) ≥
√

2m+ n(n− 1)| det(A)|2/n.

In the case of non-singular graphs with | det(A)| ≥ 1, the McClelland’s bound reduces to

E(G) ≥
√

2m+ n(n− 1).

Hence we have the following corollary.

Corollary 7 If G is a non-singular graph with 2m+ n(n− 1) ≥ (∆ + δ)2, then E(G) ≥

∆ + δ.
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However, one should note that many graphs actually satisfy the opposite inequality 2m+

n(n− 1) < (∆ + δ)2. Prominent examples of such graphs are the complete graphs Kn for

which m = n(n− 1)/2 and ∆ = δ = n− 1, so that whenever n ≥ 3, we have

2m+ n(n− 1) = 2n(n− 1) < 4(n− 1)2 = (∆ + δ)2.

Das, Mojallal, and Gutman [8] provided another lower bound on energy of non-singular

graphs:

E(G) ≥ 2m

n
+ n− 1 + ln | det(A)| − ln

2m

n
. (6)

Within their proof, they relied on the monotonicity of the function f(x) = x − 1 − lnx

for x ≥ 1, and their interim result is as follows

E(G) ≥ λ1 + n− 1 + ln | det(A)| − lnλ1. (7)

Since ln | det(A)| ≥ 0 and n − 1 ≥ ∆, this further reduces to E(G) ≥ λ1 − lnλ1 + ∆.

Hence we obtain the following corollary.

Corollary 8 If G is a non-singular graph with λ1 − lnλ1 ≥ δ, then E(G) ≥ ∆ + δ.

Since λ1 ≥ d̄ = 2m
n

, a more relaxed condition for this corollary to be valid is when δ is

sufficiently smaller than the average vertex degree 2m
n

, i.e., if 2m
n
− ln 2m

n
≥ δ. However,

we note that there exist nonsingular graphs for which

∆ + δ > λ1 + n− 1 + ln | det(A)| − lnλ1,

so that neither Corollary 8 nor the lower bound (7) implies Conjecture 1 for them. One

example of such a graph is shown in Fig. 1.

It is worth mentioning here that the lower bound (6) was further improved both by

Das and Gutman [7] and by Andrade et al. [3]. However, the expressions obtained in [3,7]

do not lend themselves to easy corollaries that would imply the validity of Conjecture 1,

so we skip them here.

Another case in which Conjecture 1 holds can be obtained from Proposition 4 by using

the condition | det(A)| ≥ 1 for non-singular graphs. In such a case, Proposition 4 implies

E(G) ≥ λ1 +
n− 1
n−1
√
λ1

,
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Figure 1. A non-singular graph with ∆ + δ > λ1 + n − 1 + ln | det(A)| −
lnλ1. It has ∆ = 6, δ = 4, and its adjacency eigenvalues
are [4.6619, 0.8019, 0.2124,−0.5550,−1.2240,−1.6502,−2.2470], so that
det(A) = 2, while E(G) ≈ 11.3524.

so that Conjecture 1 holds if
n− 1
n−1
√
λ1

≥ ∆, i.e., if

λ1 ≤
(
n− 1

∆

)n−1

. (8)

Having in mind that λ1 ≤ ∆ [5], the condition (8) necessarily holds if ∆ ≤
(
n− 1

∆

)(n−1)

,

i.e., if

∆ ≤ (n− 1)1− 1
n .

This gives rise to the following corollary.

Corollary 9 If G is a non-singular graph with ∆ ≤ (n− 1)1− 1
n , then E(G) ≥ ∆ + δ.

Figure 2. Graph of the function f(n) = (n− 1)1− 1
n for 1 ≤ n ≤ 100.
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This corollary covers a much larger spectrum of non-singular graphs, simply because

lim
n→∞

(n− 1)1− 1
n

n− 1
= lim

n→∞

1
n
√
n− 1

= 1,

which is also clearly visible from the graph of (n − 1)1− 1
n depicted in Fig. 2. Hence the

validity of Conjecture 1 remains to be studied only for non-singular graphs with high

values of the maximum vertex degree ∆ that satisfy

(n− 1)1− 1
n < ∆ ≤ n− 1.

3 Conclusion

We have seen from the previous section that Conjecture 1 is valid for a number of non-

singular graphs, in particular, for those that satisfy either n ≥ ∆ + δ (Corollary 3) or

| det(A)| ≥ λ1 (Corollary 5) or
√

2m+ n(n− 1) ≥ ∆ + δ (Corollary 7) or λ1 − lnλ1 ≥ δ

(Corollary 8) or ∆ ≤ (n− 1)1− 1
n (Corollary 9). While these corollaries cover the majority

of small non-singular graphs, there exist non-singular graphs that do not satisfy either of

these corollaries, yet they still satisfy E(G) ≥ ∆ + δ. In addition to the 7-vertex graph

shown in Fig. 1, further examples of such graphs on 8 vertices are shown in Fig. 3.

Figure 3. Examples of graphs on 8 vertices that satisfy Conjecture 1, but do not
satisfy any of Corollaries 3, 5, 7, 8 and 9.

To conclude, the main problem with Conjecture 1 appears to be the absence of results

in the literature which relate det(A), λ1, and ∆ for non-singular graphs. As a result, we

cordially invite fellow researchers to investigate such relations.
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