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Abstract

The energy of a graph G, denoted by E(G), is defined as the sum of absolute
values of all eigenvalues of G. In (MATCH Commun. Math. Comput. Chem. 83
(2020) 631–633) it was conjectured that for every graph G with maximum degree
∆(G) and minimum degree δ(G) whose adjacency matrix is non-singular, E(G) ≥
∆(G) + δ(G) and the equality holds if and only if G is a complete graph. Here,
we prove the validity of this conjecture for planar graphs, triangle-free graphs and
quadrangle-free graphs.

1 Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). By order of G, we

mean the number of vertices of G. The minimum and maximum degrees of G are denoted

by δ(G) and ∆(G), or simply by δ and ∆, respectively. For any v ∈ V (G), the open
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neighborhood and the closed neighborhood of v in G are N(v) = {u ∈ V (G) : uv ∈ E(G)}

and N [v] = N(v) ∪ {v}, respectively. Also the degree of v ∈ V (G) is dG(v) = |N(v)| or

simply d(v). Let S ⊆ V (G). By 〈S〉, we mean the subgraph of G induced by S. The

path and the cycle of order n are denoted by Pn and Cn, respectively. A complete graph

of order n is denoted by Kn and a complete bipartite graph with part sizes m and n is

denoted by Km,n. A wheel graph is a graph formed by joining a single vertex to all vertices

of a cycle. We use Wn to denote the wheel graph of order n. A graph is triangle-free and

quadrangle-free if it has no subgraph isomorphic to C3 and C4, respectively. A {1, 2}-

factor is a spanning subgraph of G which is a disjoint union of a matching and a 2-regular

subgraph of G. A subdivision of an edge uv in a graph is the operation of replacing uv

with a path u,w, v through a new vertex w. A subdivision of a graph G, is a graph

obtained from G by successive edge subdivisions. Equivalently, it is a graph obtained

from G by replacing edges with pairwise internally disjoint paths. A graph which can be

drawn in the plane in such a way that edges meet only at points corresponding to their

common ends is called a planar graph, and such a drawing is called a planar embedding

of the graph. A graph is outerplanar if it has a planar embedding in which all vertices lie

on the boundary of its outer face.

Let G be a graph and V (G) = {v1, . . . , vn}. The adjacency matrix of G, A(G) = [aij],

is an n × n matrix, where aij = 1 if vivj ∈ E(G), and aij = 0, otherwise. Thus A(G)

is a symmetric matrix and all eigenvalues of A(G) are real. By eigenvalues of a graph

G, we mean the eigenvalues of A(G). The largest eigenvalue of G is called the spectral

radius of G. For a graph G, let detA(G) 6= 0. Then there exists σ ∈ Sn such that

a1σ(1) = · · · = anσ(n) = 1. This transversal is corresponding to a {1, 2}-factor in G. The

energy of a graph G, E(G), is defined as the sum of absolute values of eigenvalues of G.

The concept of graph energy was first introduced by Gutman in 1978, see [7]. For more

properties of the energy of graphs the reader is referred to [8]. Some lower bounds for

the energy of graphs have been obtained by several authors. For quadrangle-free graphs,

Zhou [11] studied the problem of bounding the graph energy in terms of the minimum

degree together with other parameters. In [9], it was proved that for a connected graph

G, E(G) ≥ 2δ(G) and the equality holds if and only if G is a complete multipartite graph

with the equal size of parts. In [4], this lower bound was improved by showing that if G

is a connected graph with average degree d, then E(G) ≥ 2d and the equality holds if and

only if G is a complete multipartite graph with the equal size of parts. Also in [4] the
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authors proposed the following conjecture.

Conjecture. For every graph G whose adjacency matrix is non-singular, E(G) ≥ ∆(G)+

δ(G) and the equality holds if and only if G is a complete graph.

In this paper, we attempt to establish the validity of the conjecture for three classes

of graphs, triangle-free, quadrangle-free and planar graphs. The following lemmas are

needed in the sequel.

Lemma 1. [2] Let G be a graph of order n. If G has a {1, 2}-factor, then E(G) ≥ n. In

particular, if A(G) is non-singular, then E(G) ≥ n.

Lemma 2. [3] Let G be a graph and H1, . . . , Hk be its k vertex-disjoint induced subgraphs.

Then E(G) ≥
∑k

i=1 E(Hi).

Lemma 3. [2] If n is an odd positive integer, then E(Cn) ≥ n+ 1.

Lemma 4. [1] If n ≥ 9, then E(Cn) ≥ n+ 2.

2 The validity of conjecture for triangle–free and

quadrangle–free graphs

In this section, it is shown that the conjecture holds for two classes of graphs, triangle-free

and quadrangle-free graphs. First we prove the conjecture for triangle-free graphs.

Theorem 5. Let G be a triangle-free graph which has a {1, 2}-factor. Then for any two

adjacent vertices u and v, E(G) ≥ d(u) + d(v).

Proof. Let u and v be two adjacent vertices of G. Since G is triangle-free, N(u)∩N(v) =

∅. This implies that d(u)+d(v) ≤ n, where n = |V (G)|. Now, since G has a {1, 2}-factor,

by Lemma 1, E(G) ≥ n ≥ d(u) + d(v).

Corollary 1. The conjecture holds for triangle-free graphs. In particular, every bipartite

graph satisfies the conjecture.

Theorem 6. Let G be a quadrangle-free graph which has a {1, 2}-factor. Then E(G) ≥

∆(G) + δ(G).

Proof. The result holds for K2. So, let G be a graph of order n ≥ 3 and u be a vertex of

G with d(u) = ∆. First suppose that d(u) < n− 1. Consider a vertex v not adjacent to
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u. Since G is quadrangle-free, |N(u) ∩ N(v)| ≤ 1. Thus ∆ + δ ≤ d(u) + d(v) ≤ n − 1.

Now, applying Lemma 1 yields the result. Next, assume that d(u) = n − 1. Since G is

quadrangle-free, the degree of each vertex of N(u) is at most 2. If there exists a vertex

w with degree 1, then using Lemma 1, we obtain E(G) ≥ n ≥ ∆(G) + δ(G). Otherwise,

for each w ∈ N(u), d(w) = 2. Therefore, G is a union of some edge-disjoint triangles

having a vertex in common. Hence, G has a {1, 2}-factor, say F , consisting of a triangle

and some P2-components. By considering the components of F as vertex-disjoint induced

subgraphs and applying Lemmas 2 and 3, we have E(G) ≥ n+ 1 ≥ ∆ + δ.

Corollary 2. The conjecture holds for quadrangle-free graphs.

Now, we prove the validity of the conjecture for the class of graphs whose maximum

eigenvalues are integer.

Theorem 7. The conjecture holds for a graph whose spectral radius is integer.

Proof. Let G be a graph of order n with eigenvalues λ1 ≥ · · · ≥ λn. Note that since A(G)

is non-singular, for i = 1, . . . , n, λi 6= 0. Since for every real number x > 0, x− lnx ≥ 1,

we have

E(G) = λ1 +
n∑
i=2

|λi| ≥ λ1 + (n− 1) +
n∑
i=2

ln |λi| = λ1 + (n− 1) + ln
n∏
i=2

|λi|.

By [5, Theorem 3.8], we know that λ1 ≥ δ. Now, since A(G) is non-singular and λ1 is

integer,
∏n

i=2 |λi| =
| detA(G)|

λ1
is a non-zero rational number which is an algebraic integer.

Hence, ln
∏n

i=2 |λi| ≥ 0. This implies that E(G) ≥ δ + ∆. Also the equality holds if

and only if ∆ = n − 1, δ = λ1 and
∏n

i=2 |λi| = 1. In the equality case, since δ = λ1,

by [5, Theorem 3.8], we find that the graph is regular and since ∆ = n− 1, the graph is

complete.

3 The validity of conjecture for planar graphs

In this section, we check the validity of conjecture for planar graphs. In order to prove

the results of this section, we need the following lemmas.

Lemma 8. [6] A graph is planar if and only if it does not contain a subdivision of K5

or K3,3.

Lemma 9. [10, p. 275] A graph is outerplanar if and only if it has neither a subdivision

of K4 nor a subdivision of K2,3 as a subgraph.
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Lemma 10. [10, Proposition 6.1.20] Every outerplanar graph has a vertex of degree at

most 2.

Now, we are ready to prove the next theorem.

Theorem 11. There is no planar graph G of order n with δ(G) ≥ 4 and ∆(G) = n− 1.

Proof. By the contrary, suppose that G is a planar graph of order n such that ∆(G) = n−1

and δ(G) ≥ 4. Let d(u) = n− 1. By Lemma 8, G does not contain a subdivision of K5 or

K3,3, and so G−u has neither a subdivision of K4 nor a subdivision of K2,3 as a subgraph.

Thus by Lemma 9, G−u is outerplanar and so by Lemma 10, δ(G−u) ≤ 2. This implies

that δ(G) ≤ 3, a contradiction.

Theorem 12. Let G be a planar graph of order n which has a {1, 2}-factor. Then

E(G) ≥ ∆(G) + δ(G), where δ ≤ i+ 1 and ∆ = n− i, for i = 1, 2, 3, 4.

Proof. Since G is planar, by [10, p. 243], δ ≤ 5. First note that if δ ≤ i, for i = 1, 2, 3, 4,

then δ + ∆ ≤ n ≤ E(G) and we are done. Hence we may assume that δ = i + 1. Let F

be a {1, 2}-factor of G which consists of cycles C(1), . . . , C(l) and t copies of P2. We may

consider two cases:

Case 1. If n is odd, then F contains at least one odd cycle. One may assume that

every odd cycle in F is an induced odd cycle, because if we have an odd cycle with a

chord, then there is a chord which partitions the vertices of odd cycle into an induced

odd cycle and some matchings. Now, by Lemma 2 we obtain,

E(G) ≥
l∑

i=1

E(C(i)) + tE(P2) =
l∑

i=1

E(C(i)) + 2t.

Note that by Lemma 1, if C(j) is an even cycle, for some j, then E(C(j)) ≥ |V (C(j))|.

Now, since n is odd, at least one of the components of F is an odd cycle and so Lemma

3 implies that

E(G) ≥ n+ 1 = (n− i) + (i+ 1) ≥ ∆ + δ.

Case 2. If n is even and F contains an odd cycle, then by a similar argument as

previous case, we find that E(G) ≥ ∆+δ. Also, one can assume that F has no even cycle,

because the vertex set of every even cycle can be partitioned into disjoint copies of P2.

Thus we may assume that F is a perfect matching. Let d(u) = ∆ = n − i and uw be a

P2-component of F . We have d(w) ≥ δ = i+1. Let S = V (G)\N [u] = {v1, . . . , vi−1} and
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k be the number of P2-components of F such that w is adjacent to both vertices of each of

these P2-components. Then the number of P2-components of F , such that w is adjacent

to exactly one of its vertices is at least i− 2k. We claim that there are four vertices of G

such that the induced subgraph on these vertices is K4 or K4 \ e, for some edge e. If there

exists one of k, P2-components of F , say ab, such that |{a, b} ∩ S| ≤ 1, then 〈u,w, a, b〉

is either K4 or K4 \ e. Thus we may assume that for every P2-component xy in which w

is adjacent to both vertices, {x, y} ⊆ S. If there exists one of i− 2k, P2-components, say

ab, such that {a, b}∩S = ∅, then 〈u,w, a, b〉 is K4 \ e. Otherwise, |S| ≥ 2k+ i−2k = i, a

contradiction and the claim is proved. Now, since E(K4) = 6 and E(K4 \ e) ≥ 5, we find

that

E(G) ≥ n+ 1 = (n− i) + (i+ 1) ≥ ∆ + δ,

and the proof is complete.

Remark 13. A computer search shows that if G is a graph of order 5 such that δ ≥ 2,

∆ = 4 and E(G) < 7, then G is one of the following graphs:

(a) (b)

Remark 14. By a computer search, we noted that, if G is a graph of order 6 such that

δ ≥ 2, ∆ = 5 and E(G) < 8, then G is one of the following graphs. Note that the Graph

(b) is not planar.

(a) (b)

Remark 15. Let Gk, 3 ≤ k ≤ 7, be the following graph. Among all graphs which are

obtained by joining the vertex w to an arbitrary number of vertices vi, i = 1, . . . , k, the

graph Gk has the minimum energy. Moreover, E(G3) = 7.028, E(G4) = 7.362, E(G5) =

10.158, E(G6) = 12 and E(G7) = 13.290. These are obtained by a computer search.
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The graph Gk.

Remark 16. Using a computer search, one can find that for each planar graph G of order

at most 9 which contains a {1, 2}-factor, except W5, E(G) ≥ ∆(G) + δ(G).

Theorem 17. Let G be a planar graph of order n with δ = 3 and ∆ = n− 1. If G has a

{1, 2}-factor, then E(G) ≥ ∆(G) + δ(G).

Proof. By Remark 16, we may suppose that n ≥ 10. Let F be a {1, 2}-factor of G. We

consider two cases:

Case 1. Assume that n is even. If F has at least two induced odd cycles, then by

Lemmas 2 and 3, E(G) ≥ n+2 = ∆+ δ and we are done. Note that since n is even, if one

of the components of F is an induced odd cycle, then F contains at least two induced odd

cycles. Hence, we may assume that F is a perfect matching. Let d(u) = n−1 and uw be a

P2-component of F . Since d(w) ≥ 3, there exist two vertices v and z such that v ∈ N(w)

and vz is a P2-component of F . Let H = 〈u, v, w, z〉. If H = K4, then E(K4) = 6 and

we are done. Otherwise, let xy be a P2-component of F which is different from uw and

vz. Let K = 〈x, y, u, v, w, z〉. We have dK(u) = 5 and δ(K) ≥ 2. If E(K) ≥ 8, then there

is nothing to prove. If E(K) < 8, then by Remark 14, G is one of the Graphs (a) or (b).

The Graph (a) has no perfect matching and the Graph (b) is not planar, a contradiction.

Case 2. Suppose that n is odd. Clearly, one of the components of F is an induced

odd cycle. If F contains at least two induced odd cycles, then Lemmas 1, 2 and 3 give

the result. Let d(u) = n − 1. First, assume that u ∈ V (C), where C is an odd cycle

which is a component of F . Since u is adjacent to all vertices of C, u lies on a triangle.

Hence, one can assume that F is a disjoint union of one C3 and n−3
2

, P2-components.

Let V (C3) = {u, v, w} and ab be a P2-component of F . Let K = 〈u, v, w, a, b〉. We have

∆(K) = 4 and δ(K) ≥ 2. If E(K) ≥ 7, then we are done. Otherwise, K is one the

Graphs (a) and (b) in Remark 13. It is easy to see that this happens only if a is adjacent
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to exactly one of the vertices v and w, and b is adjacent to the other one. Now, consider

〈u, v, w, a, b, c, d, r, s〉, where cd and rs are P2-components of F (since n ≥ 11, cd and rs

exist). Note that the situation of cd and rs are the same as ab, that is c is adjacent to

one of the v and w, and d is adjacent to another one and this holds for r and s, too. This

graph contains a subdivision of K3,3 with parts {u, v, w} and {a, c, r}, which contradicts

Lemma 8. Next, suppose that u ∈ V (P2), where P2 = uw is a P2-component of F . If

one of the components of F is an induced odd cycle of order at least 9, then Lemma 4

yields the result. Hence, assume that every induced odd cycle component of F has order

at most 7. Now, consider the subgraph induced by the P2-component uw and an induced

odd cycle of order at most 7. Using Remark 15, we obtain that E(G) ≥ n + 2 = ∆ + δ.

This completes the proof.

Theorem 18. Let G be a planar graph of order n with δ ≥ 4 and ∆ = n− 2. If G has a

{1, 2}-factor, then E(G) ≥ ∆(G) + δ(G).

Proof. By Remark 16, we can assume that n ≥ 10. Let F be a {1, 2}-factor of G. We

consider two cases:

Case 1. Assume that n is even. If F has at least two induced odd cycles, then by

Lemmas 2 and 3, E(G) ≥ n + 2 = ∆ + δ and we are done. Note that since n is even, if

one of the components of F is an induced odd cycle, then F contains at least two induced

odd cycles. Hence, we may assume that F is a perfect matching. Let d(u) = n − 2

and uw be a P2-component of F . Since d(w) ≥ 4 and n ≥ 10, there exist vertices

x ∈ N(w)∩N(u) and a, b, y ∈ N(u) \ {w, x} such that xy and ab are two P2-components

of F . Let K = 〈u,w, x, y, a, b〉. We have ∆(K) = 5 and δ(K) ≥ 2. If K contains

the subgraph K4, then as E(K4) = 6, by Lemma 2 we are done. Otherwise, since the

Graph (a) in Remark 14 has four independent vertices of degree 2 and the Graph (b) in

Remark 14 is not planar, one can see that K is different from the Graphs (a) and (b).

Thus E(K) ≥ 8. Now, by considering the vertex-disjoint induced subgraphs K and the

components of F \ V (K) and using Lemma 2, we obtain the result.

Case 2. Suppose that n is odd. Clearly, one of the components of F is an induced

odd cycle, say C. If F contains at least two induced odd cycles, then Lemmas 1, 2 and 3

give the result. Let d(u) = n− 2.

First, suppose that u ∈ V (C). Since u is adjacent to all other vertices of C, except at

most one vertex, u lies on a triangle. Hence, one can assume that F is a disjoint union

of one C3 and some P2-components. Let V (C3) = {u, v, w}. Since d(u) = n − 2, there
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exists a P2-component of F , say ab, such that a, b ∈ N(u). Let H = 〈u, v, w, a, b〉. Note

that ∆(H) = 4 and δ(H) ≥ 2. If E(H) ≥ 7, then by Lemma 2, the result is obtained.

Otherwise, H is one the Graphs (a) or (b) in Remark 13. It is easy to see that this happens

only if a is adjacent to exactly one of the vertices v or w, and b is adjacent to the other

one. Now, consider 〈u, v, w, a, b, c, d, r, s〉, where c, d, r, s ∈ N(u) \ {v, w, a, b} and cd, rs

are P2-components of F (since n ≥ 11, cd and rs exist). Note that the situation of cd

and rs are the same as ab, that is c is adjacent to one of the v and w, and d is adjacent

to another one and this holds for r and s, too. Thus this graph contains a subdivision of

K3,3 with parts {u, v, w} and {a, c, r}, which contradicts Lemma 8.

Next, suppose that u ∈ V (P2), where P2 = uw is a P2-component of F . If |V (C)| ≥ 9,

then Lemmas 2 and 4 give the result. So let |V (C)| ≤ 7. If u or w is adjacent to all vertices

of C, then consider 〈u,w, V (C)〉. Now, by Lemma 2 and Remark 15, the assertion holds.

Suppose that none of u and w is adjacent to all vertices of C. Since d(u) = n − 2, u is

adjacent to all vertices of P2-components of F except u. First let C = C3. Since w is not

adjacent to at least one of the vertices of C3 and d(w) ≥ 4, there exists a P2-component

of F , say fh, such that K = 〈u,w, f, h〉 is either K4 or K4 \ e, for some edge e. Note that

E(C3) = 4 and E(K) ≥ 5. Since the order of C3 ∪K is 7 and E(C3 ∪K) ≥ 9, Lemma 2

yields the result.

In the sequel suppose that |V (C)| ∈ {5, 7}. If N(w) 6⊆ V (C) ∪ {u}, then since

E(C) ≥ |V (C)| + 1, a similar proof as we did for C3 works. Thus assume that N(w) ⊆

V (C) ∪ {u}. We know that u is adjacent to all vertices of C except one vertex. Let

V (C) = {v1, . . . , v2k+1} and without loss of generality, assume that u is not adjacent to

v2k+1. Since d(w) ≥ 4, w is adjacent to vt, for some t 6= 1, 2. Now, the triangle u, vt−2, vt−1

and the edges wvt, vt+1vt+2, . . . , vt−4vt−3, where indices of vertices are considered modulo

2k + 1, union all P2-components of F except uw, form a {1, 2}-factor for G, in which u

lies on C3 and the proof is complete.

Theorem 19. If G 6= W5 is a connected planar graph containing a {1, 2}-factor, then

E(G) ≥ ∆(G) + δ(G).

Proof. By Remark 16, the result holds for graphs of order at most 9. Let G be a planar

graph of order n ≥ 10. If n ≥ ∆ + δ, then Lemma 1 gives the result. Since G is planar,

δ ≤ 5. Hence, if ∆ ≤ n − 5, then n ≥ ∆ + δ and we are done. Thus assume that

∆ + δ = n + i, i = 1, 2, 3, 4. If ∆ = n − 1, then the result is obtained by Theorems 11,

12 and 17. If ∆ = n − 2, then Theorems 12 and 18 yield the result. If ∆ = n − 3, then
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Theorem 12 implies the result for the case δ ≤ 4. Note that by [10, Theorem 6.1.23], each

planar graph of order n has at most 3n − 6 edges. If ∆ = n − 3 and δ = 5, then the

number of edges of G is at least 1
2
(n− 3 + 5(n− 1)) = 3n− 4 which is impossible. Also

if ∆ = n− 4, then the result is a consequence of Theorem 12.

Since the graph W5 has singular adjacency matrix and each complete graph of order

at least 5 is not planar, as a consequence of Theorem 19, we give the following corollary.

Corollary 3. The conjecture holds for planar graphs.
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