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Abstract

Let G be a graph. The energy E(G) is the sum of the absolute values of the
eigenvalues of the adjacency matrix of G. In [Energy, matching number and odd
cycles of graphs, Linear Algebra Appl. 577 (2019) 159–167] it has been proved that
for a graph G whose cycles are odd and vertex disjoint, if from each cycle of G, we
remove an arbitrary edge to obtain a tree T , then E(G) ≥ E(T ). There is a gap in
the proof. In this paper, we correct the proof and generalize this result by showing
that if G is a graph all of whose cycles are vertex disjoint and the length of each
cycle is not 0, modulo 4, then for any spanning tree of G, E(G) ≥ E(T ). Finally we
give an upper bound on E(G) of a graph G all of whose cycles are vertex disjoint.

1 Introduction

For a graph G, denote the set of vertices and the set of edges of G by V (G) and E(G),

respectively. The number of vertices of G is called the order of G. The adjacency matrix

of a graph G, A(G) = [aij], is an n× n matrix, where aij = 1 if vivj ∈ E(G), and aij = 0,
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otherwise. The eigenvalues of G will be referred to the eigenvalues of A(G). The cycle

of order n is denoted by Cn. A matching M in G is a set of pairwise non-adjacent edges,

that is, no two edges in M share a common vertex. A matching is said to be maximum if

it has the largest number of edges among all matchings of G. The number of edges of a

maximum matching of G is called the matching number of G, denoted by ν. A k-matching

is a matching of size k. Denote by m(G, k) the number of k-matchings of the graph G.

Let xn + a1x
n−1 + · · ·+ an be the characteristic polynomial of G. We recall the Sachs

theorem [3] for the coefficients of the characteristic polynomial of a graph, that is

ai = ai(G) =
∑
S∈Li

(−1)k(S)2c(S), (1)

where Li denotes the set of Sachs subgraphs of G of order i, that is, the subgraphs in

which every component is either a K2 or a cycle, k(S) is the number of components of S

and c(S) is the number of cycles contained in S.

The energy of a graph G of order n, E(G), is the sum of absolute values of the

eigenvalues of its adjacency matrix. This spectrum-based graph invariant has been much

studied in both chemical and mathematical literature. For details of the mathematical

theory of this, nowadays very popular, graph-spectral invariant see the book [9], the recent

papers [1, 2, 4–7] and the references cited therein.

Moreover, E(G) can be expressed as the Coulson integral formula [8]

E(G) =
1

π

∫ +∞

0

1

x2
ln

 dn2 e∑
j=0

b2jx
2j

2

+

 dn2 e∑
j=0

b2j+1x
2j+1

2 dx.
where bi(G) = |ai(G)|, i = 0, 1, . . . , n.

The following result was proved in [2].

Lemma 1. [2, Lemma 8] Let G be a graph whose cycles have odd lengths and are vertex

disjoint. If from each cycle of G, we remove one edge to obtain a tree T , then E(G) ≥

E(T ).

It seems that the proof given in [2] has a gap and for the determining of the coefficients

of the characteristic polynomial the author does not consider Sachs subgraphs with an

even number of odd cycles as a Sachs subgraph. In this paper we generalize this result

and present a correct proof for Lemma 1. Before proving our main result we need some

results.
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Lemma 2. [1, Corollary 3] Adding any number of edges to each part of a bipartite graph,

does not decrease its energy.

Proof of Lemma 1. If we remove an arbitrary edge from each cycle, then we obtain a

bipartite graph (indeed a tree) such that every removed edge has two vertices in one of

the parts. So by Lemma 2, we are done.

Lemma 3. Let G be a graph all of whose cycles are vertex disjoint and the length of every

cycle is 2 (mod 4). If from each cycle of G, we remove one edge to obtain a tree T , then

E(G) ≥ E(T ).

Proof. Suppose that C4l1+2, . . . , C4ls+2 are all cycles of G, and ri = 2li + 1, 1 ≤ i ≤ s.

Now, we obtain the sign of every term contributing to a2k according to (1). The number

of Sachs subgraphs of order 2k each of whose component is K2 is m(G, k). So one term of

a2k is (−1)km(G, k). Now, suppose that we have a Sachs subgraph of order 2k containing

ji cycles of order 4li + 2, for i = 1, . . . , s. Then the number of connected components of

this Sachs subgraph is:

2k −
∑s

i=1 2jiri
2

+
s∑
i=1

ji = k −
s∑
i=1

jiri +
s∑
i=1

ji ,

since ri is odd, the number of connected components is k modulo 2. Since by [9] b2k =

(−1)ka2k, thus every term in b2k is positive. This yields that b2k ≥ m(G, k). Now, if T is

a spanning tree of G, we have b2k ≥ m(G, k) ≥ m(T, k) = b′2k, where b′2k is the coefficient

of xn−2k in the characteristic polynomial of T . On the other hand, a′2k+1 = 0. Note that

since G is bipartite, b2k+1 = 0, for k = 0, 1, . . . , bn−1
2
c. Thus we have,(∑

k≥0

b2kx
2k

)2

≥

(∑
k≥0

b′2kx
2k

)2

,
∑
k≥0

b2k+1x
2k+1 =

∑
k≥0

b′2k+1x
2k+1 = 0.

Thus, E(G) ≥ E(T ).

Theorem 4. Let G be a graph all of whose cycles are vertex disjoint and the length of

each cycle is not 0, modulo 4. Suppose that T is an arbitrary spanning tree of G, then

E(G) ≥ E(T ).

Proof. Suppose that G has t cycles C1, . . . , Ct of odd lengths and s cycles C ′1, . . . , C
′
s of

even lengths. Let ei, 1 ≤ i ≤ t, be an arbitrary edge of cycle Ci, and e′j, 1 ≤ j ≤ s, be

an arbitrary edge of cycle C ′j. Let H = G \ {e1, . . . , et}. Then H is a bipartite graph
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each of whose cycle has length 2 module 4. If T = H \ {e′1, . . . , e′s}, then by Lemma 3,

E(H) ≥ E(T ). Since, H is a bipartite graph, then by Lamma 2, E(G) ≥ E(H) and this

completes the proof.

Conjecture 5. Let G be a C4-free graph whose cycles are vertex disjoint. If from each

cycle of G, we remove an arbitrary edge to obtain a tree T , then E(G) ≥ E(T ).

Remark 6. By means of a computer-aided search [10], for connected C4-free unicyclic

graphs of order up to 14, we see that Conjecture 5 is correct.

In [2], Ashraf obtained a lower bound on E(G) in terms of matching number ν. More-

over, for graphs with vertex-disjoint cycles, she proved that E(G) ≥ 2ν + k, where k

denotes the number of odd cycles of G with length at least 5. We now give an upper

bound on E(G) of a graph G all of whose cycles are vertex disjoint.

Theorem 7. Let G be a connected graph with k cycles all of whose cycles are vertex

disjoint. If |E(G)| = m, then

E(G) ≤ 2

√(
ν +

k

2

)
m,

where ν is the matching number of graph G.

Proof. Since E(G) =
∑

λi 6=0 |λi|, by Cauchy-Schwarz inequality, we have,

E(G) ≤
√

1 + · · ·+ 1︸ ︷︷ ︸
r

√∑
λi 6=0

|λi|2,

where r = rank(A). Thus E(G) ≤
√

2rm. By Theorem 1.1 of [11], r−k
2
≤ ν and this

implies that E(G) ≤ 2
√

(ν + k
2
)m.
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