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Abstract

Molecular graphs of unsaturated carbon frameworks or hydrocarbons pruned
of hydrogen atoms, are chemical graphs. A chemical graph is a connected simple
graph of maximum degree 3 or less. A nut graph is a connected simple graph with
a singular adjacency matrix that has one zero eigenvalue and a non-trivial kernel
eigenvector without zero entries. Nut graphs have no vertices of degree 1: they are
leafless. The intersection of these two sets, the chemical nut graphs, is of interest in
applications in chemistry and molecular physics, corresponding to structures with
fully distributed radical reactivity and omniconducting behaviour at the Fermi level.
A chemical nut graph consists of v2 ≥ 0 vertices of degree 2 and an even number,
v3 > 0, of vertices of degree 3. With the aid of systematic local constructions that
produce larger nut graphs from smaller, the combinations (v3, v2) corresponding to
realisable chemical nut graphs are characterised. Apart from a finite set of small
cases, and two simply defined infinite series, all combinations (v3, v2) with even
values of v3 > 0 are realisable as chemical nut graphs. Of these combinations,
only (20, 0) cannot be realised by a planar chemical nut graph. The main result
characterises the ranges of edge counts for chemical nut graphs of all orders n, and
hence leads to a characterisation of the chemical formulas of all possible conjugated
hydrocarbons corresponding to chemical nut graphs.

1 Introduction

Nut graphs constitute an important subclass of graphs. They were introduced and first

studied in a series of papers by Sciriha and co-workers [13–18]. A nut graph has a singu-

lar adjacency matrix, the spectrum of which contains exactly one zero eigenvalue, with a
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corresponding non-trivial kernel eigenvector that has no zero entries. In chemistry, this

property has significant consequences for the modelling of carbon frameworks at molecular

and nano scales. The graphs that are possible models for unsaturated carbon frameworks

are the chemical graphs. A chemical graph is simple (without multiple edges or loops),

connected, and of maximum degree ≤ 3 (to allow for each four-valent carbon atom re-

taining one valence for participation in a π system). Eigenvectors and eigenvalues of

chemical graphs correspond to the distributions of π molecular orbitals and their energies

within the qualitative Hückel model [20]. To qualify as a model of a carbon π-system,

a nut graph must also be a chemical graph. In this model, the kernel eigenvector of a

nut graph corresponds to a non-bonding orbital, occupation of which by a single electron

leads to spin density, and hence radical reactivity distributed over all carbon centres [18].

Nut graphs also have unique status as strong omniconductors [8, 9] of nullity one, in the

Hückel-based version of the SSP (source-and-sink potential) model of ballistic molecular

conduction [6, 12].

For obvious reasons, we call a nut graph that satisfies the conditions for a chemical

graph a chemical nut graph. Given their chemical interest, a natural question is: for which

combinations of order (n, number of vertices) and size (m, number of edges) do chemical

nut graphs exist? It turns out to be possible to supply a complete answer to this question.

2 Initial considerations

A nut graph has various useful properties. These include the following: a nut graph is

connected; it is non-bipartite; it has no vertices of degree 1 [19]. We will refer to graphs

that have no vertices of degree 1 as leafless. Since the number of vertices of odd degree

of a simple graph is even, a chemical nut graph is leafless, with v2 vertices of degree 2,

and v3 vertices of degree 3, where v3 is even. Order and size of a chemical nut graph are

related to these numbers by n = v2 + v3 and m = v2 + 3
2
v3. This suggests a mapping

of chemical nut graphs onto a grid parameterised by even integers v3 ≥ 0 and integers

v2 ≥ 0.

Hence, our initial question can be rephrased as: for what combinations (v3, v2) do

chemical nut graphs exist? In other words: which pairs (v3, v2) are realisable? In this

paper we give a complete answer to this question. We also show that only one realisable

pair, namely (20, 0) cannot be realised by a planar chemical nut graph. (It is realised
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by chemical nut graphs of genus 1.) Useful background information exists, in the form

of a database of nut graphs of low order produced by the computations described in [5]

and listed on the accompanying website [4]. Information available on the website includes

a dataset restricted to chemical nut graphs with n ≤ 22, which decides the existence

question for small values of v3 and v2. Table 1 gives the results of our interrogation of

the dataset, listing cases of parameter pairs in the range n ≤ 22 where no chemical nut

graph exists, and graph counts for the parameter pairs that are realisable by chemical nut

graphs in the range.

HH
HHHHv2

v3 0 2 4 6 8 10 12 14 16 18 20 22

0 ∅ ∅ 0 0 0 0 9 0 0 5541 5 71
1 ∅ ∅ 0 0 0 0 0 10 22 235 13602 −
2 ∅ 0 0 0 0 0 2 0 37 3600 30760 −
3 0 0 0 0 7 9 71 5042 13474 168178 − −
4 0 0 0 0 0 10 225 388 14022 480051 − −
5 0 0 0 0 7 82 596 16497 280798 − − −
6 0 0 0 0 4 127 1186 15801 545237 − − −
7 0 1 0 8 212 1368 23127 575614 − − − −
8 0 0 0 5 22 620 12035 181009 − − − −
9 0 1 0 36 718 9603 211501 − − − − −
10 0 0 2 13 176 5457 106013 − − − − −
11 0 3 0 189 4427 60792 − − − − − −
12 0 0 2 50 786 25535 − − − − − −
13 0 3 0 601 14153 − − − − − − −
14 0 0 11 118 3415 − − − − − − −
15 0 6 0 1881 − − − − − − − −
16 0 0 13 309 − − − − − − − −
17 0 6 0 − − − − − − − − −
18 0 0 38 − − − − − − − − −
19 0 10 − − − − − − − − − −
20 0 0 − − − − − − − − − −
21 0 − − − − − − − − − − −
22 0 − − − − − − − − − − −

Table 1. Census of chemical nut graphs. The table shows the counts of chemical
nut graphs for each of the allowed degree signatures (v3, v2) accessible
to graphs with n ≤ 22. Symbol − means that the case is outside the
range of the dataset. Symbol ∅ in the table means that no graph with
these parameters exists. Entries in the table were obtained by filtering
the graphs from the nut graph database [2,4,5]. Only the boldface entries
are used in the proof of our main result; realisability in all other cases
follows from the theory developed in Sections 3.1 to 3.3.

As a chemical nut graph has v3 even, we may consider it to be derived from a cubic

graph on v3 vertices with some edges arbitrarily subdivided to reach the total count of
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v2 + v3. We will use this fact later (e.g., in the proof of Theorem 12). Note that fast

generation of chemical graphs was made possible by methods first introduced for cubic

graphs [2, 3].

3 Main result

The main existence result can be stated as follows.

Theorem 1. A chemical nut graph with parameters (v3, v2), v2 ≥ 0, v3 ≥ 0 and v3 even,

exists if and only if one of the following statements holds:

(a) v3 = 2 and v2 = 7 + 2k, k ≥ 0;

(b) v3 = 4 and v2 = 10 + 2k, k ≥ 0;

(c) v3 = 6 and v2 ≥ 7;

(d) v3 ≥ 8 and

(v3, v2) /∈ {(8, 0), (8, 1), (8, 2), (8, 4), (10, 0), (10, 1),

(10, 2), (12, 1), (14, 0), (14, 2), (16, 0)}.

Moreover, in each case where chemical nut graphs exist, a planar chemical nut graph may

be found, except when v3 = 20 and v2 = 0, where one of the 5 chemical nut graphs has

genus 1, and the other 4 have genus 2.

The key to proving this theorem, and determining all realisable parameter pairs, is

to use Table 1 as a source of seed graphs, and then to apply systematic constructions of

larger nut graphs [7,10]. The proof of the main result has several ideas. We identify each

of them by a separate claim.

3.1 Constructions for extending nut graphs

3.1.1 The bridge construction

The first construction that we introduce is the bridge construction and is applicable only

to graphs with bridges, i.e. graphs with edges, whose removal disconnects the graph. Let

uv be a bridge in G. By B(G, uv) we denote the graph in which we insert two vertices on

the bridge uv.

-522-



G1 G2u

a
v

b

(a) G

−G1 G2u

−a
v

b
x

−b
y

a

(b) B(G, uv)

Figure 1. The bridge construction. The graph G consists of subgraphs G1 and G2

that are joined by an edge uv, i.e. G1 and G2 are connected components
of G − uv. B(G, uv) is the enlargement of a nut graph by insertion of
two vertices on a bridge and is also a nut graph. Values a, b and −a,
−b, a and b are entries in the unique kernel eigenvectors of the graph G
and its expansion, B(G, uv), respectively.

Proposition 2. If we insert two vertices on a bridge uv of G, the resulting graph B(G, uv)

is a nut graph if and only if G is a nut graph.

The forward direction of this result, together with an alternative proof using linear algebra,

can be found in Section 4.3 of [19].

Proof.

(⇒): The process of assigning entries of a new kernel eigenvector on the bridging path

ux y v in the graph B(G, uv) from the graph G is unique if we retain all kernel eigenvector

entries in G2. (See Figure 1.)

(⇐): If the graph B(G, uv) is a nut graph and the vertices u and v have kernel eigenvector

entries assigned as shown, then the entries for vertices x and y follow. The reverse

operation can be carried out by switching signs of all kernel eigenvector entries in either

G1 or G2. Hence, the graph G is a nut graph.

3.1.2 The subdivision construction

Proposition 3. If we insert four vertices on an edge uv of G, the resulting graph S(G, uv)

is a nut graph if and only if G is a nut graph.

The forward direction of this result, together with an alternative proof using linear algebra,

can be found as Lemma 4.1 in [19].

Proof.

(⇒): The process of assigning entries of a new kernel eigenvector for the four inserted

vertices w x y z is unique if we retain all eigenvector entries in G. (See Figure 2.)
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(⇐): If the enlarged graph S(G, uv) is a nut graph, then after removing the four additional

vertices and joining u directly to v, retaining all other eigenvector entries, the reduced

graph G is also a nut graph.

u

a
v

b

(a) G

u

a
v

b
w

b
x

−a
y

−b
z

a

(b) S(G, uv)

Figure 2. The subdivision construction. The graph S(G, uv) is obtained by in-
serting vertices w, x, y, z into the edge uv of graph G. Values a, b, −a,
−b are entries in the unique kernel eigenvectors of the graph G and its
subdivision expansion, S(G, uv).

3.1.3 The ‘Fowler construction’

The third construction is applicable to any graph G and any of its vertices v with degree

d, d > 1. Let G be a graph and let v be a vertex of degree d in G. Let the neighbourhood

of v be NG(v) = {u1, u2, . . . , ud}. We remove the d edges incident on v, add 2d vertices,

and connect them to the rest of the graph as shown in Figure 3. Let F (G, v) denote the

resulting graph, which has been called the Fowler construction on G [10]. The case where

d = 3 was already described in [17].

Let the kernel eigenvector x be assigned to the vertices of G in such a way that

x(v) = x,x(u1) = x1,x(u2) = x2, . . . ,x(ud) = xd. Then there is a unique way to carry

over this kernel vector to F (G, v). Moreover, we have the following theorem, proved by

Gauci et al. in [10].

Theorem 4 ([10]). G is a nut graph if and only if F (G, v) is a nut graph.

The construction F (G, v) converts a nut graph that contains a vertex of given degree d

to a nut graph with 2d more vertices of that degree. It has been described in the literature

for the case of general d, but here the interesting cases are for degrees 2 and 3.

If v is a vertex of degree 2 then it belongs to a path of length at least 2. If we apply

F to this vertex, the length of the path increases by 4. If instead v is a vertex of degree

3, then the construction replaces it, and its neighbourhood, by the subgraph depicted in

Figure 4.
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(b) F (G, v)

Figure 3. A construction for expansion of a nut graph G about vertex v of degree
d, to give F (G, v). The labelling of vertices in G and F (G, v) is shown
within the circles that represent vertices. Shown beside each vertex is
the corresponding entry of the unique kernel eigenvector of the respective
graph.

v
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(a) G

v

u3

u2

u1

(b) F (G, v)

Figure 4. Construction F (G, v) replaces cubic vertex v and its neighbourhood
NG(v) with the 10-vertex subgraph shown on the right.

The process of extending the nut graph can be described as follows: take a nut graph

G that has a vertex of degree d. The non-trivial kernel eigenvector of the adjacency matrix

of G has entries x on the vertex of interest and entries ui (
∑

i ui = 0) on its neighbours. It

is possible to construct a larger nut graph on n+ 2d vertices with a full kernel eigenvector

and the same nullity as G: the construction involves interleaving two layers of d vertices

internally connected as a cocktail-party graph. Untangling the cocktail-party portion of

the graph shows that the larger graph inherits the genus of G, when the vertex at which

expansion takes place is either of degree 2 or degree 3. The following proposition explains

this more precisely.
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Proposition 5. If a chemical graph G is embedded in some closed surface Σ, then any

bridge construction B(G, uv), subdivision construction S(G, uv), or Fowler construction

F (G, v) can be embedded in the same surface Σ. In particular, G is planar if and only if

each of B(G, uv), S(G, uv) and F (G, v) is planar. Moreover, if any one of the graphs G,

B(G, uv), S(G, uv) or F (G, v) is planar then all of them are planar.

It is not hard to see, for instance, by Menger’s Theorem, that G has the same connectivity

as F (G, v). This implies the following proposition.

Proposition 6. Let G be a chemical graph. G is polyhedral, i.e. planar and 3-connected,

if and only if for any vertex v of G the graph F (G, v) is polyhedral.

In passing we note that if we generalise the Fowler construction in a natural way to

multigraphs, then, for instance, the cube graph can be obtained as F (G, v) where G is

the Theta graph. A further observation relates to the logical connection between the

constructed graph F (G, v) and the subdivision construction S(G, uv).

3.2 Realisability results

The preceding section established tools that allow us to draw the following three conclu-

sions.

Lemma 7. If (v3, v2) is realisable by a graph with a bridge, then (v3, v2 + 2) is also

realisable (in the same surface) by such graph.

Lemma 7 follows from Proposition 2.

Lemma 8. If (v3, v2) is realisable, then (v3, v2+4) is also realisable (in the same surface).

Lemma 8 can be established from Proposition 3.

Lemma 9. If (v3, v2) is realisable, then (v3+6, v2) is also realisable (in the same surface).

Moreover if the former graph has a bridge, the latter also has a bridge.

Lemma 9 follows from Theorem 4.

3.3 Non-realisability results

Lemma 10. No chemical graph with v3 = 0 is a nut graph.
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Proof. The lemma claims that no cycle is a nut graph. By inspection of spectra, this is

indeed the case. Namely, a cycle Cn is singular if and only if n is divisible by four, in

which case it has nullity 2. Compare column 1 in Table 1.

Lemma 11. No chemical graph with

(v3, v2) ∈ {((8, 0), (8, 1), (8, 2), (8, 4), (10, 0), (10, 1), (10, 2), (12, 1), (14, 0), (14, 2), (16, 0))}

is a nut graph.

Proof. The proof follows from computer determination of all chemical nut graphs on n

vertices, n ≤ 22, as presented in Table 1, stratified by (v3, v2) parameters. The entries

covered by this lemma are shown as boldface zeros in the table.

Note that Table 1 also shows non-existence of some other pairs (v3, v2) with v3 + v2 ≤ 22,

but these follow from Lamma 10 and Corollary 13

It turns out that only half of the pairs (v3, v2) for v3 ∈ {2, 4} are only realisable

(depending on the parity of v2). To prove this, we need the following result.

Theorem 12. Let G be a leafless chemical graph with v2 ≥ 9
2
v3 +1. Then the pair (v3, v2)

is realisable if and only if the pair (v3, v2−4) is realisable. If the latter pair is not realisable

then none of the pairs (v3, v2 + 4k), k ∈ {0, 1, 2, . . .}, is realisable.

Proof. Since G is a leafless chemical graph it can be viewed as a general subdivision of a

cubic graph H on v3 vertices. Hence, H has m = 3
2
v3 edges. And G has its v2 vertices of

degree 2 placed on these edges, forming corresponding paths. As v2 ≥ 9
2
v3 + 1 = 3m+ 1,

by the Pigeonhole Principle, when forming G from H, at least one of the edges of H

must be replaced by a path containing at least 4 degree-2 vertices. The last claim of this

theorem follows by repeated application of Lemma 8.

In the case v3 = 2, Theorem 12 applies to v2 ≥ 10; in the case v3 = 4, it applies to

v2 ≥ 19.

Corollary 13. Since pairs (v3, v2) ∈ {(2, 6), (2, 8), (4, 15), (4, 17)} are not realisable, this

means that no pair (2, 2k) and (4, 2k + 1) is realisable, for k ≥ 0.

By using Corollary 13, we have generated two infinite series of zeros (non-realisable

pairs), namely, for v3 = 2 and v3 = 4. For the case v3 = 0 we use Lemma 2 to obtain a
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third infinite series of zeros. The remaining zeros are finite in number and are covered by

Lemma 3 based on the database of chemical graphs in House of Graphs. The final step

in the proof of Theorem 1 is to establish that outside the triangular region of parameter

space covered by the database, every pair that does not belong to one of the infinite series

of zeros (unrealisable cases), is realisable. To do this we use the notion of seed graphs.

3.4 Seed graphs

A seed graph is a chemical nut graph that cannot be generated from any smaller chemical

nut graph by some combination of the three constructions. We will show that all realisable

pairs can be generated from a small set of seed graphs by repeated application of the

constructions.

Lemma 14. Chemical nut graphs with the following parameters exist:

(a) Planar, with a bridge (B):

(v3, v2) ∈ {(2, 7), (4, 10), (6, 7), (6, 8), (8, 5), (8, 6),

(10, 4), (10, 5), (21, 3), (14, 4), (20, 2)}

(b) Planar 2-connected (P):

(v3, v2) ∈ {(10, 3), (12, 2), (14, 1), (16, 1), (16, 2), (18, 1), (22, 0)}

(c) Polyhedral (i.e. planar 3-connected) (Π):

(v3, v2) ∈ {(12, 0), (26, 0), (28, 0)}

(d) Non-planar, genus one (N):

(v3, v2) ∈ {(20, 0)}

Proof. By inspection of adjacency data presented in the appendices for each seed chemical

nut graph.

Note that other chemical nut graphs with these parameters may exist and that other

choices of seed graphs are possible.
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3.5 Proof of Theorem 1

Proof. To prove the realisability result we construct Table 2 according to the following

rules. We start by indicating the parameters of the 22 seed graphs listed in Lemma 14

using boldface B, P, Π, N as appropriate. A bold X is used to indicate a non-realisable

entry derived from Table 1. Other entries are filled in according to three rules based on

lemmas:

(i) (Lemma 7) if we have B in the table (meaning a planar chemical nut graph with a

bridge) then we can insert B two entries below;

(ii) (Lemma 8) if we have P or Π in the table (meaning a planar chemical nut graph

without a bridge) then we can insert P four entries below;

(iii) (Lemma 9) if we have B, P or Π in a row of the table then three steps to the right

we have B, P or Π , respectively.

We proceed initially by columns. Column v3 = 0 is entirely non-realisable (see Lemma 10).

The first boldface entry in each of columns v3 = 2 and v3 = 4 gives a series of realisable

cases. All other entries in these columns are non-realisable: this follows from Corollary 13.

In column v3 = 6, consecutive boldface B entries prove realisability for all v2 ≥ 7. Like-

wise, in column v3 = 8, entry (3, 8) in combination with (6, 8) proves realisability for all

v2 ≥ 5 (by a planar graph containing a bridge). Similarly, in column v3 = 10 the entries

(4, 10) and (5, 10) prove realisability for all v2 ≥ 4. Having established the rectangle of

six cases outlined in the table (with corners (7, 6), (7, 10), (8, 6), and (8, 10)), we fill the

whole quadrant to the right and below. Rows v2 = 7 and v2 = 8 are generated by the

Fowler construction and all entries below by repetition of the bridge construction. We are

left with rows for v2 < 7. For each of them we start with a seed graph and then repeat

the Fowler construction. Non-realisability of remaining entries follows from Table 1. By

using (0, 26) as a seed graph we were able to show the existence of planar graphs for all

entries to the right.
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H
HHHHHv2

v3 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 · · ·

0 ∅ ∅ X X X X Π X X FΠ N P FΠ Π Π ⇒
1 ∅ ∅ X X X X X P P P FP FP FP FP FP ⇒
2 ∅ X X X X X P X P FP B FP FP FB FP ⇒
3 X X X X B P B FB FP FB FB FP FB FB FP ⇒
4 X X X X X B P B FB P FB FB FP FB FB ⇒
5 X X X X B B B FB FB FB FB FB FB FB FB ⇒
6 X X X X B B P FB FB FP FB FB FP FB FB ⇒
7 X B X B B B FB FB FB FB FB FB FB FB FB ⇒
8 X X X B B B FB FB FB FB FB FB FB FB FB ⇒
9 X B X B B B B B B B B B B B B ⇒
10 X X B B B B B B B B B B B B B ⇒
11 X B X B B B B B B B B B B B B ⇒
12 X X B B B B B B B B B B B B B ⇒
13 X B X B B B B B B B B B B B B ⇒
14 X X B B B B B B B B B B B B B ⇒
15 X B X B B B B B B B B B B B B ⇒
16 X X B B B B B B B B B B B B B ⇒
17 X B X B B B B B B B B B B B B ⇒
18 X X B B B B B B B B B B B B B ⇒
... ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

Table 2. Parameter pairs (v3, v2) for which chemical nut graphs exist. Notation: ∅ -
no graph exists; X - no nut graph exists; B - a planar graph with a bridge
exists (FB - obtained by Fowler construction); P - a 2-connected planar
graph exists (FP - obtained by Fowler construction); Π - a polyhedral
graph exists (FΠ - obtained by Fowler construction); N - only non-planar
graphs exist; ⇒ - the pattern extends indefinitely to the right; ⇓ - the
pattern extends indefinitely below. Boldface symbols were determined
from the graph database: B, P, Π, N represent seed graphs, while X
represents non-existence that follows from Table 1. Dashed lines indicate
the quadrant that can be completely filled with bridged cases, once the
boxed rectangle is established.

4 Polyhedral and toroidal chemical nut graphs

Before we conclude this paper we want to address a special class of chemical nut graphs,

namely the polyhedral chemical nut graphs, i.e. 3-connected planar chemical nut graphs.

In practice this means that only cubic graphs, v2 = 0, are eligible. The smallest chemical

nut graphs of this type were found in [18] and the list was extended in [2,4,5, 10]. There

are two cubic polyhedral nut graphs on 12 vertices, illustrated in [18]. One of these (Fig-

ure 17(b) in [18]) is the Frucht graph [10]; the other (Figure 17(a) in [18]) can be realised

with C2 point-group symmetry. Since the result of applying the Fowler construction to a

polyhedral nut graph is a polyhedral nut graph, these seed graphs give rise to an infinite
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series of parameters v3 = 12, 18, 24, . . . that admit polyhedral nuts. In [10], a cubic nut

graph with v3 = 26 is identified. In fact, this is one of four. By the same argument

we obtain another infinite series v3 = 26, 32, 38, . . .. From Table 2 one can see that no

polyhedral nut graph exists for v3 = 14, 16, 20. There is no cubic polyhedral nut graph

with v3 = 22 ([18], confirmed in [2,4,5,10]). There are 316 chemical polyhedral nut graphs

on v3 = 28 vertices [2, 4, 5]. This gives rise to the final infinite series: v3 = 28, 34, 40, . . ..

The adjacency data of the three polyhedral seeds are given in the Appendix Π. These

observations completely characterise admissible parameters and hence prove the following

proposition.

Proposition 15. A polyhedral chemical nut graph with parameters (v3, v2) exists if and

only if v2 = 0 and v3 is even with v3 = 12, v3 = 18 or v3 ≥ 24.

A subset of the cubic polyhedra of special interest for the chemistry of carbon cages

is that of the fullerenes. A fullerene has a cubic polyhedral molecular graph in which

exactly 12 faces are of size 5 and any other faces are of size 6. Nut fullerenes seem

relatively rare [18], and have been enumerated up to order 240 [2, 4, 5]. The smallest

nut fullerene has 36 vertices and a construction given in [18] (Figure 14) shows that the

unique C36 nut fullerene can be extended by adding belts of six hexagons at a time to

make larger cylindrical fullerenes that are also nut graphs. This rationalises the presence

of the integers n = 24 + 12k (k > 0) in the published list of orders of fullerene nut graphs

[2, 4, 5]. The members of this sub-series all have the same six-pentagon cluster in each

cylinder cap, and all are uniform [18] in the sense that every vertex is surrounded in the

kernel eigenvector by the same triple of entries {2,−1,−1}.

All nut fullerenes known so far have multiple pentagon adjacencies, which militates

against their stability as neutral all-carbon molecules.

Incidentally, as there is, in addition to the example on 20 vertices, a chemical nut

graph of genus 1 on 22 and 24 vertices (see Appendix N), we have an infinite series of

toroidal 3-regular chemical nut graphs. More precisely, there is a toroidal 3-regular nut

graph on n vertices if and only if n is even and n ≥ 20.

5 Conclusion

The parameter space occupied by chemical nut graphs has been characterised in terms of

allowed vertex signatures (v3, v2), according to Theorem 1. This result has implications
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for the theory of molecular conduction, in that each chemical nut graph corresponds to the

carbon skeleton of a π-conjugated molecule with a single non-bonding molecular orbital

and strong omni-conducting behaviour [8, 9].

The characterisation of chemical nut graphs by vertex degrees also implies restrictions

on their orders and sizes, n and m. As a chemical nut graph has no vertices of degree 1

and maximum degree ∆ ≤ 3, the Theorem 1 implies a restricted range of Betti numbers,

m− n+ 1, for these graphs. For a chemical nut graph, v1 = 0, v2 ≥ 0 and v3 > 0 is even.

Hence, n = v2 + v3, m = v2 + 3
2
v3, and the Betti numbers span the range

1 <
v3
2

+ 1 = m− n+ 1 ≤
⌈
n+ 1

2

⌉
. (1)

Transforming Table 2 from (v3, v2) to (n,m) space, shows that for n = 15 and n ≥ 17,

there is just one missing value in the range (1): for odd n ≥ 15 no chemical nut graph

has m − n + 1 = 3, and for even n ≥ 18 no chemical nut graph has m − n + 1 = 2. For

all other realisable values of n (more precisely, 9 ≤ n ≤ 14 and n = 16), there are at least

two missing values in the range (1).

Restrictions on n and m translate into a characterisation of the molecular formula of

a chemical nut graphs. A chemical graph G describes a hydrocarbon molecule in which

the hydrogen atoms have been suppressed, but the underlying π-conjugated molecule is

easily reconstructed: it has n carbon atoms C, m carbon-carbon σ bonds, and for each

vertex v of degree d(v), there are 3−d(v) hydrogen atoms attached. Hence, the neutral π

system corresponding to the chemical nut graph G has formula CxHy with x = v2+v3 = n

and y = v2 = 3n − 2m. The charge on the molecular species depends on the difference

between the number of π electrons, nπ, and the number of carbon centres, n. Within

the approximations of Hückel theory, if the graph G has n+ positive, n0 = η zero, and

n− negative eigenvalues, the ideal π-electron count lies between 2n+ and 2(n+ + η), as

these electron counts all correspond to the maximum in the total π energy. Hence, the

chemical nut graph G in this simplified Hückel model represents a plausible range of

charged systems CxH
q

y , with x = n, y = 3n− 2m, and as η = 1 we have q = n− 2n+− 2,

q = n− 2n+− 1 or q = n− 2n+. For example, the smallest chemical nut graph has v2 = 7

and v3 = 2, molecular formula C9H7, n+ = n− = 4 and η = 1, so the Hückel prediction for

the ideal π-electron count is between 10 and 8, corresponding to chemical species C9H
–

7 ,

C9H
·

7 and C9H
+

7 .

Although we have settled the question of the existence of chemical nut graphs, there
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several intriguing related topics that we can address in future work. One of them is the

question of the existence of signed chemical nut graphs. For signed graphs, see for instance

recent work [1] and [11].
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Appendix S: Seed graphs

For each seed graph G, the entry lists v3, v2, n, m followed by m edges E(G) and the

kernel eigenvector x as a list of integer entries.

v3 = 2, v2 = 7, n = 9,m = 10
E(G) = {(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (0, 2), (4, 8)}
x =

[
1 1 −1 −2 1 1 −1 −1 1

]
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v3 = 4, v2 = 10, n = 14,m = 16
E(G) = {(0, 6), (0, 10), (1, 7), (1, 10), (2, 8), (2, 11), (3, 9), (3, 13), (4, 10), (4, 11), (5, 12),
(5, 13), (6, 12), (7, 12), (8, 11), (9, 13)}
x =

[
1 1 1 −1 −2 2 −1 −1 1 −1 1 −1 −1 1

]
v3 = 6, v2 = 7, n = 13,m = 16
E(G) = {(0, 6), (0, 10), (1, 7), (1, 8), (1, 10), (2, 7), (2, 9), (2, 12), (3, 8), (3, 11), (4, 9),
(4, 11), (5, 11), (5, 12), (6, 10), (9, 12)}
x =

[
1 −2 2 2 −1 −1 1 2 −1 −1 −1 1 −1

]
v3 = 6, v2 = 8, n = 14,m = 17
E(G) = {(0, 6), (0, 8), (0, 13), (1, 7), (1, 12), (2, 9), (2, 10), (3, 9), (3, 11), (3, 13), (4, 10),
(4, 11), (5, 11), (5, 12), (5, 13), (6, 8), (7, 12)}
x =

[
1 1 −1 1 1 −2 −1 1 −1 −1 1 −1 −1 2

]
v3 = 8, v2 = 3, n = 11,m = 15
E(G) = {(0, 5), (0, 9), (1, 6), (1, 7), (1, 10), (2, 6), (2, 8), (2, 10), (3, 7), (3, 8), (3, 10), (4, 8),
(4, 9), (5, 9), (6, 7)}
x =

[
1 −2 1 1 −2 1 1 1 1 −1 −2

]
v3 = 8, v2 = 6, n = 14,m = 18
E(G) = {(0, 5), (0, 9), (0, 13), (1, 6), (1, 10), (1, 11), (2, 7), (2, 10), (3, 8), (3, 12), (4, 9),
(4, 11), (5, 11), (6, 10), (7, 12), (7, 13), (8, 12), (9, 13)}
x =

[
1 −2 3 1 1 1 −1 −2 1 1 2 −1 −1 −2

]
v3 = 10, v2 = 3, n = 13,m = 18
E(G) = {(0, 5), (0, 8), (1, 6), (1, 9), (2, 7), (2, 11), (2, 12), (3, 8), (3, 9), (3, 10), (4, 8), (4, 9),
(4, 12), (5, 10), (5, 11), (6, 10), (6, 12), (7, 11)}
x =

[
2 2 1 1 −3 −3 2 2 3 −2 −1 −1 −1

]
v3 = 10, v2 = 4, n = 14,m = 19
E(G) = {(0, 5), (0, 9), (0, 10), (1, 6), (1, 9), (1, 11), (2, 7), (2, 11), (3, 8), (3, 12), (3, 13),
(4, 9), (4, 12), (4, 13), (5, 10), (5, 13), (6, 10), (7, 11), (8, 12)}
x =

[
1 2 −1 2 −3 1 −2 −1 1 1 −2 1 −2 1

]
v3 = 10, v2 = 5, n = 15,m = 20
E(G) = {(0, 6), (0, 8), (0, 11), (1, 7), (1, 9), (1, 14), (2, 8), (2, 10), (2, 12), (3, 9), (3, 13),
(3, 14), (4, 10), (4, 11), (5, 12), (5, 13), (6, 12), (7, 13), (8, 11), (9, 14)}
x =

[
2 −2 1 3 −1 −5 4 2 −1 −1 3 −3 −2 2 −1

]
v3 = 12, v2 = 0, n = 12,m = 18
E(G) = {(0, 4), (0, 7), (0, 8), (1, 5), (1, 7), (1, 9), (2, 6), (2, 9), (2, 11), (3, 7), (3, 10), (3, 11),
(4, 8), (4, 10), (5, 8), (5, 9), (6, 10), (6, 11)}
x =

[
1 1 1 −2 1 −2 1 1 −2 1 1 −2

]
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v3 = 12, v2 = 2, n = 14,m = 20
E(G) = {(0, 5), (0, 9), (0, 10), (1, 6), (1, 9), (1, 11), (2, 7), (2, 12), (2, 13), (3, 8), (3, 10),
(4, 8), (4, 11), (4, 13), (5, 9), (5, 12), (6, 10), (6, 11), (7, 12), (7, 13)}
x =

[
1 −3 −1 −2 2 2 1 −1 −1 −3 1 2 2 −1

]
v3 = 12, v2 = 3, n = 15,m = 21
E(G) = {(0, 5), (0, 9), (0, 12), (1, 6), (1, 10), (1, 11), (2, 7), (2, 10), (2, 14), (3, 8), (3, 12),
(3, 14), (4, 9), (4, 13), (4, 14), (5, 12), (5, 13), (6, 10), (6, 11), (7, 11), (8, 13)}
x =

[
3 −1 2 1 −3 −4 −1 2 7 6 3 −2 −2 −1 −5

]
v3 = 14, v2 = 1, n = 15,m = 22
E(G) = {(0, 5), (0, 8), (0, 10), (1, 6), (1, 11), (1, 12), (2, 7), (2, 13), (2, 14), (3, 9), (3, 10),
(3, 12), (4, 9), (4, 11), (4, 14), (5, 8), (5, 10), (6, 12), (6, 14), (7, 13), (8, 13), (9, 11)}
x =

[
1 3 2 −2 −1 1 −1 3 −5 −2 4 3 −2 −2 −1

]
v3 = 14, v2 = 4, n = 18,m = 25
E(G) = {(0, 8), (0, 16), (1, 9), (1, 10), (1, 17), (2, 9), (2, 11), (2, 17), (3, 10), (3, 12), (3, 13),
(4, 11), (4, 15), (4, 16), (5, 12), (5, 13), (5, 14), (6, 12), (6, 14), (6, 15), (7, 13), (7, 14), (7, 15),
(8, 16), (9, 17)}
x =

[
1 −1 2 1 −2 −2 1 1 1 −1 2 2 −1 −1 2 −1 −1 −1

]
v3 = 16, v2 = 1, n = 17,m = 25
E(G) = {(0, 6), (0, 9), (0, 11), (1, 7), (1, 12), (1, 16), (2, 8), (2, 14), (3, 10), (3, 13), (3, 16),
(4, 10), (4, 14), (4, 15), (5, 11), (5, 12), (5, 13), (6, 9), (6, 11), (7, 13), (7, 14), (8, 15), (8, 16),
(9, 12), (10, 15)}
x =

[
1 −1 −3 −4 −3 −2 1 6 5 3 −2 −4 −2 6 −5 7 −4

]
v3 = 16, v2 = 2, n = 18,m = 26
E(G) = {(0, 7), (0, 9), (0, 15), (1, 8), (1, 15), (1, 17), (2, 9), (2, 13), (2, 14), (3, 10), (3, 12),
(3, 13), (4, 10), (4, 14), (5, 11), (5, 12), (5, 16), (6, 11), (6, 13), (6, 17), (7, 14), (7, 15), (8, 16),
(9, 17), (10, 12), (11, 16)}
x =

[
12 −9 −6 3 9 −12 3 −3 9 6 9 3 −12 3 −9 −3 9 −6

]
v3 = 18, v2 = 1, n = 19,m = 28
E(G) = {(0, 7), (0, 9), (0, 13), (1, 8), (1, 14), (1, 18), (2, 10), (2, 11), (2, 14), (3, 10), (3, 16),
(3, 17), (4, 11), (4, 15), (4, 16), (5, 12), (5, 13), (5, 15), (6, 12), (6, 16), (6, 17), (7, 9), (7, 13),
(8, 17), (9, 18), (10, 14), (11, 18), (12, 15)}
x =

[
2 −2 1 −2 3 −4 −1 2 3 4 1 −2 1 −6 1 5 −3 2 −4

]
v3 = 20, v2 = 0, n = 20,m = 30
E(G) = {(0, 8), (0, 11), (0, 12), (1, 9), (1, 12), (1, 13), (2, 10), (2, 16), (2, 17), (3, 11), (3, 13),
(3, 14), (4, 11), (4, 17), (4, 18), (5, 12), (5, 15), (5, 19), (6, 13), (6, 15), (6, 16), (7, 14), (7, 17),
(7, 18), (8, 14), (8, 15), (9, 16), (9, 19), (10, 18), (10, 19)}
x =

[
1 −3 −1 1 −2 2 2 3 −4 −1 −1 1 3 −2 1 −2 4 −3 2 −1

]
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v3 = 20, v2 = 2, n = 22,m = 32
E(G) = {(0, 9), (0, 14), (0, 15), (1, 10), (1, 15), (1, 17), (2, 11), (2, 12), (2, 21), (3, 11), (3, 19),
(3, 20), (4, 12), (4, 20), (5, 13), (5, 17), (5, 18), (6, 13), (6, 18), (6, 19), (7, 14), (7, 15), (7, 16),
(8, 18), (8, 20), (8, 21), (9, 14), (9, 16), (10, 16), (10, 17), (12, 21), (13, 19)}
x =

[
1 1 1 −1 3 −2 4 −2 −2 1 1 3 1 −3 −2 1 1 −2 5 −2 −1

−4
]

v3 = 22, v2 = 0, n = 22,m = 33
E(G) = {(0, 7), (0, 12), (0, 16), (1, 8), (1, 13), (1, 14), (2, 9), (2, 14), (2, 15), (3, 10), (3, 16),
(3, 17), (4, 11), (4, 20), (4, 21), (5, 13), (5, 15), (5, 17), (6, 18), (6, 19), (6, 20), (7, 12), (7, 16),
(8, 19), (8, 21), (9, 14), (9, 19), (10, 17), (10, 18), (11, 20), (11, 21), (12, 18), (13, 15)}
x =

[
2 1 −5 −4 1 6 −2 2 −2 4 −2 1 4 −1 3 −7 −6 8 −4 2 2

−3
]

v3 = 26, v2 = 0, n = 26,m = 39
E(G) = {(0, 1), (0, 2), (0, 3), (1, 4), (1, 5), (2, 6), (2, 7), (3, 8), (3, 9), (4, 10), (4, 11), (5, 12),
(5, 13), (6, 14), (6, 15), (7, 8), (7, 16), (8, 17), (9, 10), (9, 18), (10, 19), (11, 12), (11, 20),
(12, 13), (13, 14), (14, 20), (15, 16), (15, 21), (16, 22), (17, 18), (17, 22), (18, 23), (19, 23),
(19, 24), (20, 24), (21, 24), (21, 25), (22, 25), (23, 25)}
x =

[
2 −1 −2 3 −1 −1 2 −4 1 −3 −1 2 2 −1 −1 3 1 1 −2 4 −1

−3 1 2 −1 −2
]

Appendix Π: Polyhedral seed graphs

For each cubic polyhedral seed graph G, the entry lists v3, v2, n, m followed by m edges

E(G) and the kernel eigenvector x as a list of integer entries.

v3 = 12, v2 = 0, n = 12,m = 18
E(G) = {(0, 4), (0, 7), (0, 8), (1, 5), (1, 7), (1, 9), (2, 6), (2, 9), (2, 11), (3, 7), (3, 10), (3, 11),
(4, 8), (4, 10), (5, 8), (5, 9), (6, 10), (6, 11)}
x =

[
1 1 1 −2 1 −2 1 1 −2 1 1 −2

]
v3 = 26, v2 = 0, n = 26,m = 39
E(G) = {(0, 1), (0, 2), (0, 3), (1, 4), (1, 5), (2, 6), (2, 7), (3, 8), (3, 9), (4, 10), (4, 11), (5, 12),
(5, 13), (6, 14), (6, 15), (7, 8), (7, 16), (8, 17), (9, 10), (9, 18), (10, 19), (11, 12), (11, 20),
(12, 13), (13, 14), (14, 20), (15, 16), (15, 21), (16, 22), (17, 18), (17, 22), (18, 23), (19, 23),
(19, 24), (20, 24), (21, 24), (21, 25), (22, 25), (23, 25)}
x =

[
2 −1 −2 3 −1 −1 2 −4 1 −3 −1 2 2 −1 −1 3 1 1 −2 4 −1

−3 1 2 −1 −2
]

v3 = 28, v2 = 0, n = 28,m = 42
E(G) = {(0, 1), (0, 2), (0, 3), (1, 4), (1, 5), (2, 3), (2, 6), (3, 7), (4, 8), (4, 9), (5, 6), (5, 10),
(6, 7), (7, 11), (8, 12), (8, 13), (9, 10), (9, 14), (10, 15), (11, 12), (11, 16), (12, 16), (13, 17),
(13, 18), (14, 19), (14, 20), (15, 21), (15, 22), (16, 17), (17, 18), (18, 22), (19, 22), (19, 23),
(20, 24), (20, 25), (21, 23), (21, 25), (23, 26), (24, 26), (24, 27), (25, 27), (26, 27)}
x =

[
2 3 −7 4 −4 2 −6 5 2 −5 3 2 −1 5 1 3 −4 −1 −1 −2 7 1

−4 3 5 −6 1 −8
]
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Appendix N: Toroidal seed graphs

For each cubic toroidal seed graph G, the entry lists v3, v2, n, m followed by m edges

E(G) and the kernel eigenvector x as a list of integer entries.

v3 = 20, v2 = 0, n = 20,m = 30
E(G) = {(0, 8), (0, 11), (0, 12), (1, 9), (1, 12), (1, 13), (2, 10), (2, 16), (2, 17), (3, 11), (3, 13),
(3, 14), (4, 11), (4, 17), (4, 18), (5, 12), (5, 15), (5, 19), (6, 13), (6, 15), (6, 16), (7, 14), (7, 17),
(7, 18), (8, 14), (8, 15), (9, 16), (9, 19), (10, 18), (10, 19)}
x =

[
1 −3 −1 1 −2 2 2 3 −4 −1 −1 1 3 −2 1 −2 4 −3 2 −1

]
v3 = 22, v2 = 0, n = 22,m = 33
E(G) = {(0, 9), (0, 15), (0, 16), (1, 10), (1, 20), (1, 21), (2, 11), (2, 13), (2, 14), (3, 11), (3, 14),
(3, 18), (4, 12), (4, 16), (4, 17), (5, 12), (5, 16), (5, 21), (6, 13), (6, 17), (6, 18), (7, 14), (7, 17),
(7, 19), (8, 18), (8, 19), (8, 20), (9, 15), (9, 19), (10, 20), (10, 21), (11, 13), (12, 15)}
x =

[
2 −1 4 −5 −4 2 3 1 2 −3 −1 −7 1 1 6 2 1 −2 1 −4 3

−2
]

v3 = 24, v2 = 0, n = 24,m = 36
E(G) = {(0, 11), (0, 12), (0, 16), (1, 12), (1, 13), (1, 14), (2, 13), (2, 14), (2, 15), (3, 13),
(3, 15), (3, 18), (4, 14), (4, 16), (4, 21), (5, 15), (5, 18), (5, 19), (6, 16), (6, 17), (6, 23), (7, 17),
(7, 19), (7, 20), (8, 18), (8, 20), (8, 21), (9, 19), (9, 21), (9, 22), (10, 20), (10, 22), (10, 23),
(11, 22), (11, 23), (12, 17)}
x =

[
1 1 1 −2 −2 1 1 −2 1 1 1 −2 1 1 −2 1 1 −2 −2 1 1 1

−2 1
]
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