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Abstract

We investigate the algorithmic hardness of a series of counting problems that
come from crystal physics and fullerene chemistry. We claim that those problems
are representative of mathematical nanosciences, and we observe that all them are
sparse. It follows from Mahaney’s work that sparse problems cannot be hard for
NP. Then, we have to use a different complexity class to analyze the aforementioned
(seemingly hard) problems. We study the complexity class #P1, which is constituted
by all the tally counting problems that belong to the counting class #P.

We conjecture that counting matchings in square grids, counting Hamiltonian
cycles in square grids, and counting Clar sets in fullerene graphs are all hard for
#P1. We prove some weak results related to these conjectures. We also consider the
restriction of these three problems to carbon nanotubes, and we prove that those
restrictions can be solved in logarithmic time. We get these tractability results
about nanotubes as corollaries of a Büchi-like Theorem for linear lattices.

We study counting (and optimization) problems that come from crystal physics and

fullerene chemistry. We use the term nanosciences to refer those two research areas as

well as some other closely related areas. A key feature of those counting problems is that

all them are sparse. This implies that those problems cannot be hard for NP. However, it

seems that some of them are hard. We ask: for which complexity class are those problems

hard?
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1 Introduction

Let us introduce the counting problems that are studied in this paper, as well as some of

the tools that are used to study those problems.

1.1 Sparse counting problems

There are many counting problems coming from different areas of the natural sciences. Let

us just mention the counting of spanning subtrees, perfect matchings, Eulerian orientati-

ons, matchings, self-avoiding walks and Hamiltonian circuits (see [1], [2] and the references

therein). The first three problems motivated the invention of counting algorithms that

are landmarks in the area, namely: Kirchhoff’s Matrix-Tree Algorithm [3], Kasteleyn’s

Algorithm [4] and the Transfer Matrix Counting Method [5]. The last three problems, in

turn, have resisted all the attacks: we do not know how to efficiently count those objects.

Valiant studied the counting of perfect matchings in bipartite graphs, and he proved

that this problem is hard for a class that he called #P [6]. The complexity class #P allows

the analysis of counting problems in NP. It is known that counting perfect matchings,

counting matchings, counting self-avoiding walks (SAW’s, for short), counting Eulerian

orientations and counting Hamiltonian circuits are all #P-hard problems [1]. It is also

known that any #P-hard problem is hard for the polynomial hierarchy [7]. On the

other hand, Kasteleyn proved that one can count perfect matchings of planar graphs

in polynomial time [4]. Thus, we get that the restriction to planar graphs makes some

hard problems become tractable. However, we have to observe that there are many

problems that remain #P-hard when restricted to planar graphs. This is the case with

the counting of matchings, Hamiltonian paths, SAW’s and Eulerian orientations [1]. We

claim that those hardness results for planar graphs are not the end of the investigations on

the algorithmic hardness of the latter four problems: nanoscientists use to be interested

in highly homogeneous graphs that we call nanostructures. The canonical example of

nanostructures are square grids. It could be argued that the following four problems,

besides the counting of perfect matchings, are the most studied counting problems coming

from the mathematical nanosciences:

1. Counting Hamiltonian circuits in square grids.

2. Counting matchings in square grids.
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3. Counting SAW’s in square grids.

4. Counting Eulerian orientations in square grids with periodic boundary conditions.

We have to observe that the restriction to square grids can have a positive effect on

the algorithmic hardness of the above problems: the counting of Eulerian orientations

becomes tractable when restricted to square grids with periodic boundary conditions [5].

However, it seems that the remaining three problems remain hard when we restrict them

to square grids. Let us use the symbols #1Ham, #1Matchings and #1SAW to denote

those problems. We ask: what can be said about the algorithmic hardness of #1Ham,

#1Matchings and #1SAW? To begin with, it should be said that those problems have

resisted all the attacks, and, as far as we know, nobody knows either a polynomial time

solution or a hardness proof for one of them. We would like to analyze the algorithmic

hardness of #1Ham, #1Matchings and #1SAW, as well as the algorithmic hardness of

a fourth problem coming from fullerene chemistry (see below). One of our goals is to

find an explanation for more than seventy years of failures trying to count Hamiltonian

circuits, matchings and SAW’s.

Remark 1 The latter assertion holds for exact counting. The problems #1Ham,

#1Matchings and #1SAW admit full polynomial time randomized approximation sche-

mes [8].

Remark 2 The problems #1Ham and #1SAW are closely related: Hamiltonian circuits

are a special type of self-avoiding walks. Then, it makes sense if we focus on the problems

#1Ham and #1Matchings.

1.2 Sparse problems and the class #P1

Is #1Ham hard for #P? Is #1Matchings hard for #P? We have to observe that #1Ham

and #1Matchings are sparse problems.

Definition 3 We say that a problem L is sparse, if and only if, problem L has polynomial

many instances of each possible size.

Suppose that P is different of NP, and let L be a sparse problem in NP. We have that L

cannot be NP-hard. This is the famous theorem of Mahaney [9]. It should be noted that
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Mahaney’s argument does not actually require the sparse language to be in NP: there is

a sparse problem that is NP-hard, if and only if, P = NP. Further, E 6= NE, if and only

if, there exist sparse languages in NP that are not in P [10].

Definition 4 A tally counting problem is a function f : N→ N. We say that f is a tally

counting problem in NP, if and only if, there exists a nondeterministic polynomial time

unary Turing machine M such that for all n ≥ 1 the equality

f (n) = #accM (1n)

holds, where the symbol #accM (1n) denotes the number of accepting computations of M,

on the input 1n.

Assume that deterministic exponential time is different to nondeterministic exponen-

tial time ( E 6= NE). We get that there must exist tally counting problems in NP that

are not in P. Then, we can dream of proving that #1Ham and #1Matchings are not in

P. How can we achieve this? By proving that those two problems are hard for a suitable

complexity class. We think that this suitable complexity class is the class #P1 introduced

by Valiant and defined below [11].

Definition 5 A counting problem f belongs to #P1, if and only if, f is polynomial time

reducible to a tally counting problem in NP.

What do we know about the class #P1?

Theorem 6 We have:

1. #P1 is closed under polynomial time counting reductions.

2. #P1 contains problems that are complete under polynomial time counting reductions

[11].

3. #P1 does not contain #P-hard problems: if P 6= NP, then the class #P1 cannot

contain problems that are hard for NP [10].

4. Assume that E is different to NE, then the class #P1 contains problems that are not

in P.
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We think that we can use the class #P1 to successfully analyze the problems #1Ham

and #1Matchings: if we could prove that one of those problems is #P1-hard, then we

could use items 3 and 4, of the above list, to explain more than seventy years of failures

trying to count Hamiltonian circuits and matchings in square grids.

1.3 Complete problems for #P1

Let us begin with a quotation:

The Class #P1 is not nearly as interesting as #P due to the absence of

any interesting natural problem known to be complete in it.

This quotation is taken from Rudich’s lecture notes on Computational Complexity

Theory [12]. We could think that Rudich’s remark is unfair, given that #P1 contains

problems that are complete for this class. However, we have to understand that Rudich’s

remark is pointing out an important question:

All the hardness results about the class #P1 are generic results, which assert that

certain large sets of counting problems contain some unspecified problems that are hard

for #P1. None of those results tells apart a single specific problem to claim that this

problem is hard for this complexity class.

The consequence of all this is that we do not count with a problem like SAT, which is

complete for NP, or a problem like #SAT, which is complete for #P. Or, more concretely:

we do not know how to use the class #P1 when we want to analyze specific problems like

#1Ham and #1Matchings. We think, together with Rudich, that the construction of a

natural #P1-complete problem is an important open problem related to the complexity

theory of tally counting problems.

1.4 Tractable problems: One–dimensional structures

Our main goal is to study the algorithmic problems that come from mathematical nano-

sciences. We would like to establish positive results concerning the tractability of some

large families of those problems. We conjecture that most counting problems related to

square grids are intractable. We believe that this conjectured intractability of square

grids relies on the two-dimensional character of those graphs: the set of square grids

is a set of unbounded treewidth. We also believe that most counting problems about

fullerene are intractable: the set of fullerene graphs is also a set of unbounded treewidth.
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We believe, on the other hand, that one-dimensional homogeneous structures such as

carbon nanotubes are highly tractable. We investigate the tractability of counting and

optimization problems that can be defined by monadic second order formulas. We prove

that all those problems can be solved in logarithmic time over the Word–Level RAM

model when those problems are restricted to tally sets of one-dimensional homogeneous

structures. Then, we get that we can count matchings, SAW’s, Hamiltonian circuits and

Clar sets of carbon nanotubes in logarithmic time.

1.5 Organization of the work and contributions

This work is organized into five sections including the introduction.

In section 2 we study two problems that come from crystal physics, namely the

problems #1Ham and #1Matchings. We prove some weak results related to the (likely)

#P1-hardness of both problems: we prove that the counting of matchings and the counting

of Hamiltonian cycles become #P1-hard when restricted to sparse sets that are constituted

by fuzzy versions of the set of square grids.

In section 3 we study some counting problems that are related to fullerene molecules.

We begin observing that the set of fullerene graphs is a sparse set. We conclude that

our counting problems about fullerene belong to the class #P1. We study in depth the

problem of counting Clar sets of fullerene graphs, and we prove that a fuzzy version of

this problem is hard for #P1.

In section 4 we focus on Carbon nanotubes. We prove that all the counting problems

studied in previous sections can be solved in logarithmic time when restricted to nanotubes

and similar structures. We get those results as corollaries of the following algorithmic

meta-theorem: any problem about linear lattices that can be defined by a monadic second

order formula can be solved in time O (log (n)) .

We finish in section 5 with some few concluding remarks.

2 Crystal nano-physics: Square grids

The counting problems #1Ham or #1Matchings appear in statistical physics as the

partition functions of different models of crystal growth [4]. The quasiperiodic structure

of those planar lattices make them suitable models of crystal structures.

We would like to prove that #1Ham or #1Matchings are hard for #P1. This is a very
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hard piece of work, and it becomes harder when we realize that:

1. Most combinatorial gadgets produce graphs that are far apart from being square

grids.

2. The set of square grids is a rigid set that is quickly overflowed for any useful

combinatorial reduction.

3. Most tally sets of molecular graphs are as rigid as the set of square grids.

It seems that any hardness result for #P1 implies a certain amount of uncertainty:

there is a sentence, there is a census function, there is Turing machine, there is a pattern...

There is a sparse set of graphs for which the problem f is #P1-hard. We prove this latter

type of generic results in this section: we prove that there are sparse sets of graphs that

look like grids, and which are hard for the counting of Hamiltonian circuits and for the

counting of matchings. More specifically, we prove that there is a sparse set of grids with

holes for which the problem #Ham is #P1-hard, and we prove that there is a sparse set

of hairy grids for which the problem #Matching is #P1-hard. Unfortunately, we cannot

say what are those two sparse sets of fuzzy grids without running a certain algorithm on

an infinite set of instances: those two hard sets of fuzzy grids are not specified by the

hardness proofs.

2.1 Counting Hamiltonian circuits

A grid with holes is a graph that can be obtained from a square grid by deleting some edges

(and creating some holes). Papadimitriou et al proved that it is NP-hard to recognize the

grids with holes that are Hamiltonian [13]. Toda et al proved that counting Hamiltonian

circuits in grids with holes is #P hard [14]. This latter result is the best evidence we have

about the hardness of #1Ham. Let GH be the set of grids with holes. We have to observe

that GH is not sparse, but the reader should also observe that this set is constituted by

graphs that are very close to be square grids. Moreover, as we will see, it is easy to extract

a sparse subset of GH such that the restriction of #Ham to this subset is #P1-hard.

Let f be a tally counting problem in #P1 that is complete for this class. Problem f

belongs to #P, and hence it can be reduced in polynomial time to #Ham [GH]. The set

of queries that are made when one reduces f to #Ham [GH] is a sparse subset of GH,

and this sparse set is #P1-hard for the counting of Hamiltonian circuits.
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The above idea is the key argument in the proof of the easy and weak result that

we prove in this section. We should think of this basic idea as a general constructive

principle: any counting problem that is hard for #P contains sparse subproblems that

are hard for #P1.

Definition 7 Let L be a problem that is hard for #P, let f : N → N be a tally counting

problem that is complete for #P1, and let R be a polynomial time reduction of f in L.

We say that R is tally reduction, if and only if, there exists a polynomial p (X) such that

given n ≥ 1, the size of the queries that are made, when the reduction is ran on input n,

is bounded below by p (n) .

Remark 8 Note that the definition of tally reduction forbids to make queries that are

very small when compared with the size of the input.

Theorem 9 There exists a sparse subset of GH such that the restriction of #Ham [GH]

to this subset is hard for #P1.

Proof. Let f be a tally counting problem that is complete for #P1. It follows from the

construction of Toda, Liskiewicz and Ogiwara that there exists a tally reduction of f in

#Ham [GH] (see [14]). Let R be one of those tally reductions. Given n ≥ 1, we define

Rf,n as the set{
G : G is an instance of #Ham [GH] that occurs in a query that

is made when one runs R on input n

}
.

The set

Rf =
⋃
n≥1

Rf,n

is an sparse subproblem of #Ham [GH] that is hard for #P1.

Remark 10 We would like to prove that the set of square grids is hard for the counting

of Hamiltonian circuits. This result seems to be out of scope. We ask: how close can we

get to the set of square grids? A sparse set of square grids with holes is not an uniform

set of graphs as it is the set of square grids, and we have to agree that we are far away

from our target.

We have to observe that we got the above result almost for free. We will prove a

similar result concerning the counting of matchings. This latter result is more demanding

and more exciting than the latter:
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• We have to work harder than in the proof of the previous theorem: we have to

prove, first, that the set of hairy grids (see below) is #P-hard for the counting of

matchings.

• We prove that there exists a highly uniform sparse set of hairy grids that is hard

for #P1.

2.2 Counting matchings

We prove, in this section, a result about matchings that is analogous to the above result

about Hamiltonian circuits: we prove that there exists a sparse set of hairy grids that we

denote with the symbol HG1 and such that #Matchings [HG1] is hard for #P1. We get

this result as an easy corollary of the following theorem: let HG be the set of hairy grids,

the problem #Matchings [HG1] is hard for #P. It seems that this is the best thing that

we can do for the moment: to prove that a certain set of graphs that look like square

grids is #P hard for the counting of the substructures under study.

Definition 11 Let G be a rectangular grid. The graph G(3) is the graph that can be

obtained from G after inserting two nodes on each edge of G. We say that G(3) is the

3-subdivision of G. A hairy grid is a quintuple H = (G,A,B, n,m) , such that G is a

square grid; A and B are disjoint subsets of V (G) ; and n,m are positive integers. The

quadruple H corresponds to the graph that can be obtained from G(3) after appending paths

to the nodes in A ∪ B ∪
(
V
(
G(3)

)
− V (G)

)
. The nodes in A get paths of length n, the

nodes in B get paths of length m and the nodes in
(
V
(
G(3)

)
− V (G)

)
get nodes of length

n+ 1.

Remark 12 Note that we do not append paths of many different lengths to the nodes of

G(3), we append paths of only three different lengths, namely: n, n+ 1 and m.

We use the symbol HG to denote the set of hairy grids. The set HG is not sparse.

However, we can use the idea that was used in the proof of the previous result: if

#Matchings [HG] is #P-hard under tally reductions, then we can extract from HG a

sparse subset that is #P1-hard. This time we have to work harder, since we have to prove

that #Matchings [HG] is #P-hard under tally reductions.

Theorem 13 The problem #Matchings [HG] is #P-hard under tally reductions.
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Proof. Let #PM be the counting problem that consists in counting perfect matchings of

bipartite graphs. Valiant proved that this problem is #P-hard [6]. We prove that #PM

is polynomial time reducible to #Matchings [HG] .

M. Jerrum proved that there exists a polynomial time reduction of #PM in the

problem #Matchings [P ] , where #Matchings [P ] is the restriction of #Matchings to

planar graphs (see [15]). Jerrum’s reduction is the composition of two reductions. The

first one is a polynomial time algorithm that computes, on input G, a planar weighted

graph (G∗, ω) such that the equality

#PM (G) =
∑
M is a

matching of G

 ∏
v is not

covered by M

ω (v)


holds, where ω is a weight function that assigns weights, within the range {−1, 0, 1} , to

all the nodes in G∗. The second reduction in Jerrum’s proof is used to eliminates the

weights −1 and 0, and it is based on the polynomial interpolation method [15].

Let G be a bipartite graph, and let G∗ be the output of Jerrum’s first reduction. The

graph G∗ is a weighted planar graph that is strictly larger than G (and it implies that

the reduction is tally). We have to observe that G∗ could contain nodes with more than 4

neighbors. The first task to be solved is to reduce the degree of those nodes. We can use

weights for this end. We can reduce the degree of any node with more than four neighbors

using the following simple gadget:

Let v be a node of G∗, let v1, ..., vm be the neighbors of v, and let k < m − 1. We

reduce the degree of v from m to k + 1 by inserting two nodes vk, wk; deleting the edges

{v, vk+1} , ..., {v, vm} ,

and then adding the edges{
v, vk

}
,
{
vk, wk

}
,
{
wk, vk+1

}
, ...,

{
wk, vm

}
.

The Figure 1 corresponds to the case k = 3,m = 5.

If we assign weights 0 and 1 to the nodes vk, wk, we get a planar weighted graph such

that the equality

∑
M is a

matching of Gv,k

 ∏
u is not

covered by M

ω (u)

 =
∑
M is a

matching of G∗

 ∏
u is not

covered by M

ω (u)


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Figure 1

holds.

We can use the above gadget a polynomial number of times and obtain a planar

weighted graph G$ such that:

1. The degree of all the nodes in G$ is bounded above by 4.

2. G$ is larger than G.

3. The equality

#PM (G) =
∑
M is a

matching of G$

 ∏
u is not

covered by M

ω (u)


holds.

We can compute in polynomial time a subdivision of G$, that we denote with the

symbol G#, and which satisfies the following:

1. Any edge of G$ gets subdivided into an odd number of segments (after inserting an

even and nonzero number of nodes on this edge).

2. The graph G# is a grid with holes, and we can compute in polynomial time a

drawing of G# that represents this graph as a grid with holes: we can compute in

polynomial time a square grid RG such that G# is a subgraph of R
(3)
G , and we can

also compute in polynomial time an embedding of G# into R
(3)
G .
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If we assign weight 0 to all the nodes of G# that do not belong to G$, we get a weighted

grid with holes for which the equality

2|E(G$)| ∑
M is a

matching of G$

 ∏
u is not

covered by M

ω (v)

 =
∑
M is a

matching of G#

 ∏
u is not

covered by M

ω (u)


holds.

The next step of our construction corresponds to do a little bit of sewing work: we

reconstruct the cells of R
(3)
G that are not present in the subgraph G#. To this end we use

the following three gadgets.

Figure 2

We can use those gadgets to reconstruct all the cells of R
(3)
G . We use the gadget on

the left to reconstruct cells with one lacking edge, the gadget in the middle to reconstruct

cells with two lacking edges, and the gadget on the right to reconstruct cells with three

lacking edges. We assign weight zero to the nodes represented by disks and weight one

to the nodes represented by diamonds. The nodes represented by triangles are the nodes

that are present before the insertion of the gadget and are used to prop the construction.

We leave unchanged the weights that were previously assigned to those latter nodes. At

the end of the day (which lasts just polynomial time) we get the graph R
(3)
G enriched with

a weight function ω and some hairs of length 1. Let us use the symbol FG to denote this
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hairy version of R
(3)
G . We have that

∑
M is a

matching of G#

 ∏
u is not

covered by M

ω (u)

 =
∑
M is a

matching of FG

 ∏
u is not

covered by M

ω (u)

 .

Note that V
(
R

(3)
G

)
gets partitioned into four sets, the sets

A =
{
v ∈ V

(
R

(3)
G

)
: ω (v) = 0

}
,

B =
{
v ∈ V

(
R

(3)
G

)
: ω (v) = −1

}
,

C =
{
v ∈ V

(
R

(3)
G

)
: v is the base node of a hair

}
,

D = V
(
R

(3)
G

)
− (A ∪B ∪ C) .

Let
(
R

(3)
G , A,B,C

)
as above, and let r, s be two positive integers. We use the symbol

R
(3)
G,A,B,C,r,s to denote the hairy version of R

(3)
G that is constructed as follows: we append

paths of length r to all the nodes in A, paths of length s to all the nodes in B, and paths

of length r + 1 to the nodes in C. We assign weight 1 to all the nodes in this graph. We

can use the polynomial interpolation method (see [15]) to compute the quantity

∑
M is a

matching of FG

 ∏
u is not

covered by M

ω (u)


from the data {

#Matchings
(
R

(3)
G,A,B,C,r,s

)
: r, s ≤ p (n)

}
,

where p (X) is a suitable polynomial. Thus, given G, one can compute in polynomial

time a square grid RG, subsets A,B,C ⊂ V
(
R

(3)
G

)
and a polynomial p (X) such that

#PM (G) can be easily computed from the data{
#Matchings

(
R

(3)
G,A,B,C,r,s

)
: r, s ≤ p (n)

}
.

Altogether, we get a reduction of #PM into the problem #Matchings [HG] . The theorem

is proved.

Remark 14 The hairy grids R
(3)
Gn,An,Bn,Cn,r,s

resemble us Inca quipus. Quipus are graphs

made with ropes, and which were used by Incas for accounting. It is interesting to observe

that those quipu graphs were complete for the accounting needs of the Incas, while our

quipus are complete for #P1.
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3 Carbon nano-chemistry: Fullerene

Square grids are examples of graphs that can be constructed by assembling together many

identical (similar) pieces. There are many molecules whose molecular graphs hold this

property. Let us just mention graphene molecules, which are planar (two-dimensional)

carbon molecules that are completely constituted by carbon hexagons, that is: graphene

is an allotrope of carbon consisting of a single layer of atoms arranged in a two-dimensional

honeycomb lattice. A second allotrope of carbon that exhibits the same kind of regularity

is diamond: those crystals are built by assembling several copies of the diamond cubic

structure. We claim that mathematical nanosciences are naturally focused on this type

of structures, as nanotechnology is strongly based on this type of regular nanomaterials.

There is a third allotrope of carbon that exhibits the same kind of regular structure,

and which has been instrumental in the development of nanotechnology, we are refering

to fullerene.

Definition 15 A fullerene graph is a planar, cubic and triconnected graph such that all

its faces are either hexagons or pentagons (see [16] and the references therein).

Remark 16 There are infinitely many fullerene graphs, and each one of them corresponds

to the molecular graph of a fullerene molecule.

3.1 Counting Clar Sets of Fullerene

It has been observed that some properties of fullerene molecules can be reasonably

predicted from the values that are taken by some few topological indices (see [19] and

the references therein). The Kekule Number and The Clar number are two of those

indices [17].

Definition 17 Let G be a fullerene graph, the Kekule Number of G is equal to the number

of perfect matchings in G.

We can efficiently compute the above index in the planar case. Thus, we focus on

computing The Clar Number of fullerene [18]. First, some definitions.

Definition 18 Let G be a planar graph together with a planar embedding of G that we

denote with the symbol cG. Let M be a perfect matching of G, and let F be a even-sized
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face. We say that F is a resonant face for the triple (G, cG,M), if and only if, the equality

|F ∩M | = |F |
2

holds.

Remark 19 It is worth to remark that the notion of face is not intrinsic to G, but depends

on the planar embedding cG.

Definition 20 Let M be a perfect matching and let F = {F1, ..., Fm} be a set of even-

sized faces that are resonant for (G, cG,M). We say that F is an independent set of

resonant faces, if and only if, the faces F1, ..., Fm are pairwise node-disjoint. We say that

{F1, ..., Fm} is a Clar set for the pair (G, cG) , if and only if, there exists a perfect matching

M such that {F1, ..., Fm} constitutes an independent set of resonant faces for the triple

(G, cG,M).

There exists an important connection between Clar sets and Kekulé structures. Supp-

ose that {F1, ..., Fm} is an independent set of resonant faces for (G, cG,M). Given I ⊂

{1, ...,m} , we can construct a perfect matching MI as follows: for all i ∈ I we replace

the edges in F ∩M by the edges in F ∩ (co-M). We note that given I 6= J, the perfect

matchings MI and MJ are different, and we also note that we can construct 2m different

perfect matchings from M and the set {F1, ..., Fm}: if there is a large set of resonant faces

for the triple (G, cG,M) , then the graph G admits a large number of Kekule structures.

Definition 21 Let (G, cG) be as above, and let M be a perfect matching. The Clar number

of the triple (G, cG,M) is denoted with the symbol Clar (G, cG,M) and is defined as

max {|I| : {Fi : i ∈ I} is an independent set of resonant faces for this triple} ,

the Clar number of (G, cG) is defined by

Clar (G, cG) = max {Clar (G, cG,M) : M is a perfect matching for G} ,

while the Clar Number of G is equal to

Clar (G) = max {Clar (G, cG) : cG is a planar embedding of G} .

Remark 22 Fullerene graphs are triconnected, and it implies that all the planar embedd-

ings of a fullerene G are equivalent. This means that the set of faces of a fullerene graph

G does not depend on the planar embedding that is is chosen to represent G in the plane.

We get that the Clar number of a fullerene G is the same for all the planar embeddings

of this graph, and we get that this number is intrinsic to G [16].
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Consider the following optimization problem:

Problem 23 Clar

• Input: (G, cG), where G is a planar graph and cG is a planar embedding of G.

• Problem: compute the Clar number of (G, cG) .

The above problem is NP-hard [20]. On the other hand, the restriction of this problem

to planar bipartite graphs lies in P [21]. Let us consider the counting version of Clar.

Problem 24 #Clar

• Input: (G, cG), where G is a planar graph and cG is a planar embedding of G.

• Problem: compute the number of Clar sets for the pair (G, cG) , whose size is equal

to Clar (G, cG) .

We have

Theorem 25 The problem #Clar is #P-hard.

Proof. Let #IS be the counting problem that consists in computing the number of

maximum independent sets of a graph G given as input. Let #IS [3P ] be the restriction

of this problem to the set of planar graphs of maximum degree three. It is known that

#IS [3P ] is #P-hard [22]. We exhibit a polynomial time counting reduction of this

problem into the problem #Clar. The reduction is a composition of two reductions. The

first one is a reduction of #IS [3P ] into the problem #IS [OP ] , where OP is the set

constituted by all the pairs (G, cG) such that G is a planar graph, cG is a planar embedding

of G, and all the faces in (G, cG) have odd size. The second reduction is a reduction of

the latter problem into the problem #Clar. This latter reduction is essentially the same

reduction used by Bernath and Berczi-Kovacz in their NP-hardness proof [20], which, as

a matter of fact, is a parsimonious reduction. We focus on the first reduction.

Let G be a 3-regular planar graph. The independent sets of G are intrinsic to G

and does not depend on the embedding of G. Then, we compute in polynomial time a

embedding of G, and we denote this embedding with the symbol cG. If all the faces of
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(G, cG) have odd size there is nothing to do. Then, suppose that (G, cG) has some faces

of even length. Let v a node of G, and let F be a face that contains this node. Given the

pair (v, F ) , we append to node v a small graph Gv,F . We append this gadget in such a

way that it gets completely included in the interior of F. The graph Gv,F is one of the

following two graphs.

Figure 3

We insert gadget Gv,F by identifying the node v ∈ V (G) and the node on the bottom,

which is represented by a diamond. We use the symbol A to denote the gadget on the

right, and the symbol B to denote the one on the left. We insert a gadget Gv,F for each

pair (v, F ) . We do the latter in such a way that those small graphs do not overlap. Given

a pair (v, F ) , we choose the gadget to be inserted according to the following rule:

If the length of F is odd, we append to each one of its nodes a copy of A. If the length

of F is even, we choose exactly one node of F and we append to it a copy of B. We

append a copy of A to the remaining nodes in F.

At the end of the day we get a pair (G∗, cG∗) , such that all the faces in (G∗, cG∗) have

odd size. Let IG be the size of the maximum independent sets of G, we have that IG∗ is

equal to 9IG + 8 (n− IG) . Moreover, there exists a bijective correspondence between the

set maximum independent sets of G and that of G∗. We get our first reduction.

Remark. Note that we appended a total of 3 gadgets to each node in G, and note that

the graphs that belong to the range of the above reduction are 3-regular planar graphs with

three different icicles (A or B) appended to each one of their nodes. Take into account that

any 3-regular planar graph has a subdivision that is isomorphic to a hexagonal system with

holes. We get that the graphs that belong to the range of this first reduction are hexagonal
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systems (honeycomb lattices) with holes and icicles appended to all their nodes. We say

that those graphs are snowy honeycomb lattices.

Now suppose that we get an instance of #IS [OP ] , say a pair (H, cH) . We can suppose

that (H, cH) belongs to the range of the previous reduction, and hence we can suppose

that H is a planar graph that does not contain degree one nodes. We construct a suitable

instance of #Clar from the pair (H, cH) . We use the symbol (H∗, cH∗) to denote this

instance. We proceed as follows:

Let e be an edge of H. We have that e belongs to two different faces of (H, cH) that

we denote with the symbols Fe and Re. We add two vertices vFe and vRe , each one placed

in the interior of the corresponding face. We also add the edge {vFe , vRe} . Moreover, if

we are given a pair of edges, say {u, v} , {v, w} , and those edges belong to a common face

F, we add the edge
{
vF{u,v} , vFv,w

}
(see [20]).

We do the above things for any edge e, for any face F and for any pair {u, v} ,

{v, w} . At the end of the day we get the pair (H∗, cH∗) . Note that any face of (H∗, cH∗)

corresponds either to a face of (H, cH) , or to a vertex of H. The faces related to nodes of

H are all even faces. Recall that all the faces of (H, cH) are odd faces. We get that the

even faces of (H∗, cH∗) are the ones corresponding to vertices of H, and we get that the

size of the maximum independent sets of H is an upper bound on The Clar Number of

(H∗, cH∗). The graph H∗ has a perfect matching

M = {{vFe , vRe} : e ∈ E (H)} .

Note that any even face of (H∗, cH∗) is resonant for M. We get that the Clar Number

of (H∗, cH∗) is equal to the size of the maximum independent sets of H. The theorem is

proved.

We know that #Clar is #P -hard under parsimonious reductions. However, we are

interested in the problem #Clar [F ] , which is the restriction of #Clar to the set of

fullerene graphs. Thus, let us ask: how hard is the problem #Clar [F ]? We have that

this problem cannot be NP-hard. The latter is a consequence of Mahaney’s Theorem,

and the following theorem [23].

Theorem 26 The number of fullerene graphs of size n is O (n10).

We ask: is #Clar [F ] hard for #P1?
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Remark 27 It is easy to recognize the square grids that are Hamiltonian: a square grid of

size n2 is Hamiltonian, if and only if, n is an even number. Most decision problems about

square grids are equally easy and can be solved in polynomial time. We do not know of a

hard problem about square grids . The problem Clar [F ] seems to be hard. We think that

the set F could be a rich source of problems that are hard for NP1 (the decision version

of #P1).

We would like to prove that #Clar [F ] is #P1-hard. The best thing that we can do, at

this moment, is to prove that there exists a sparse set of snowy honeycomb lattices that is

hard for #P1. This result about snowy honeycomb lattices is analogous to some previous

results discussed in this paper: there exists a tally set of decorated grids (decorated

with holes, or decorated with hairs, or decorated with holes and icicles) that is hard for

#P1. The main question remains unsolved: can we prove the #P1-hardness of a natural

counting problem about grids(fullerene) without decorations?

4 Tractability

There exist organic molecules that can be represented as long chains of identical pieces

that are arranged in an uniform way. We use the term linear lattices to denote those

one-dimensional molecules. There are important examples of linear lattices, let us just

mention the following ones: carbon nanotubes, linear polymers, helicenes, one-dimensional

crystals.

4.1 Carbon nanotubes

A carbon nanotube is a cylindrical molecule obtained by rolling up a graphene sheet,

which is a hexagonal grid with a carbon atom at every vertex [24].

Let M be a carbon nanotube. We can think of the molecular graph of M as a one-

dimensional sequence of cylindric strips, each one constituted by the same number of

hexagons. Let k be the number of hexagons in one of the strips constituting M. We say

that k is the diameter of M. The length of M is equal to the number of hexagonal strips.

Definition 28 We use the symbol Nk to denote the set of carbon nanotubes of diameter

k.
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We have that Nk is a tally set of molecules (molecular graphs). Moreover, we have that

the carbon nanotubes that can be synthesized, and which are of interest in nanotechnology,

are nanotubes of small diameter: the diameter is bounded above by a suitable constant

N.

The set
⋃

5≤k≤N
Nk is a sparse set of molecular graphs, and we have to observe that we

can efficiently solve an algorithmic problem about the set
⋃

5≤k≤N
Nk, if and only if, we can

solve the restriction of this problem to each one of the tally sets in the list N5, ...,NN .

Thus, let us focus on the cases k = 5, 6. The cylinders in Nk can be capped using a carbon

molecule constituted by hexagons and pentagons. Thus, any cylinder in Nk (k = 5, 6) is

the truncation of a fullerene. A planar representation of a capped N5-nanotube is given

below.

Figure 4. In this graphic we are looking into the nanotube as if it were a
kaleidoscope, looking into it from one of the two pentacaps, and
specifically from the pentagon that lies at the center of this pentacap.

From now on we focus on the set N ∗5 , which is constituted by all the carbon nanotubes

of diameter 5 that are capped. Given k ≥ 6, the set Nk can be analyzed in the same vein.
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We use the symbol Nn to denote the N ∗5 -nanotube that is constituted by n hexagonal

strips. From now on, and by an abuse of language, we use the term nanotube to designate

the graphs in the set {Nn : n ≥ 1} .

4.2 Nanotubes, automata tapes, and census functions

We can identify nanotube Nn with its planar representation, and we can think of this

planar graph as a finite tape constituted by n+2 cells. We assume that those nested cells

are scanned from the outermost to the innermost.

We can choose to work with input alphabet Σ5∪Σ6, where Σ5 is constituted by all the

subgraphs of a pentacap and Σ6 is constituted by all the subsets of a hexagonal strip of

diameter 5. Writing a character of this alphabet on one of the cells of Nn corresponds to

choose some of the edges included in this cell (to write a character corresponds to highlight

some edges using one or more colors).

Figure 5

Suppose i 6= 1, n + 2, and let us focus on the i-th hexagonal strip (see the Figure 5,

the strip decorated with points).
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We chose, in the above example, 14 edges within cell i, in this case the edges represented

by broken lines. Those edges constitute a subgraph of cell i, and they also constitute a

character of Σ6. Then, we left cell i to go to cell i+ 1 (decorated with lines) and we chose

some edges within cell i + 1, which are, once again, represented by broken lines. We did

the latter in a coherent way: note that cells i and i + 1 have some common edges, the

edges

{A′, B′} , ..., {I ′, J ′} , {J ′, A′} ,

and note that one can choose a subset of those edges when he writes a character on cell

i, and then he can choose a different subset of those edges when he goes to cell i+ 1 and

writes a character on this latter cell. We could, for instance, go to cell i+2 and choose the

edge
{
I
′′
, J
′′}
. If we do this, the (i+ 1)-th character and the (1 + 2)-th character would

become inconsistent.

Let w ∈ Σ5 ◦ Σn
6 ◦ Σ5. We have that w is a sequence of cell-subgraphs that could

represent (constitute) a subgraph of Nn. We have that w encodes a subgraph of G, if and

only if, consecutive characters are consistent. Consistency is a local property that can be

easily checked by finite state automata. We get that

Proposition 29 The language

SUB =
{
w ∈ Σ5 ◦ Σ∗6 ◦ Σ5 : w represents a subgraph of N|w|−2

}
is a regular language.

Counting matchings in Nn reduces to compute the quantity

|{w ∈ Σ5 ◦ Σn
6 ◦ Σ5 : w ∈ SUB and w represents a matching}| .

It is easy to check that

{
w ∈ Σ5 ◦ Σ∗6 ◦ Σ5 : w ∈ SUB and w represents a matching of N|w|−2

}
is also regular language. We get that counting matchings in nanotubes reduces to compute

the census function of an specific regular language. Is this useful?
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4.3 Census functions of regular languages and
Schützenberger method

Let L be a formal language. The census function of L is the tally counting problem

fL : N→ N that is defined by the equation:

fL (n) = |{w ∈ Σn : w ∈ L}| .

Census functions of regular languages are easy to compute. Let M be a nondetermi-

nistic finite state automaton (NFA, for short) and let L (M) be the language accepted by

M. We have:

Theorem 30 The census function fL(M) can be computed in time O (log (n)) on the

Word-Level RAM model.

Proof. Let L be a regular language, and letM be a NFA accepting L. We can compute in

time O (1) a deterministic finite state automaton (DFA, for short) that accepts the same

language as M. Let N = (Q, q0, A,Σ, δ) be this DFA, and suppose that Q = {1, ..., q} .

Let us suppose that q0, the initial state, is equal to 1. The transition matrix of N is the

matrix TN = [nij]i,j≤q , where nij is equal to

|{a ∈ Σ : δ (i, a) = j}| ,

that is: nij is equal to the number of characters of the input alphabet Σ that make N

change its inner state from i to j. We can think of N as a multidigraph GN whose set of

nodes is equal to {1, ..., q} , and such that nij is the number of directed edges that go from

i to j. We have that TN is the adjacency matrix of GN , and we have that the number of

paths of length n that go from 1 to A ⊂ {1, ..., q} is equal to
∑
i∈A

T nN [1, i] , where T nN [1, i]

denotes the entry (1, i) of the n-th power of matrix TN . We also have that this quantity is

equal to fL(M) (n) . We get that the census function ofM can be computed in time O (n)

using a naive algorithm for the computation of matrix powers, and we also get that this

quantity can be computed in time O (log (n)) over the Word-Level RAM model using fast

exponentiation. The theorem is proved.

Remark 31 The Word-Level RAM is a parallel model of computation that allows us to

compute the n-th power of a matrix of size O (1) in time O (log (n)) [25].
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The above theorem provides us with a strategy that can be used to deal with many tally

counting problems. We used this strategy in the previous section when we showed how

to count matchings in nanotubes: we construct a bijective coding of nanotube matchings

as words of a regular language, and we got a logarithmic time reduction of this problem

into the problem of computing the census function of a regular language.

4.3.1 Closed formulas

Let M be a DFA with k states, and suppose that the transition matrix TM can be

diagonalized over the real numbers. We get that fL(M) can be expressed as a sum of k

exponential functions and we get that fL(M) has a short closed formula. We also get that

any tally counting problem that can be suitably reduced to fL(M) also has a closed formula.

Now suppose that TM cannot be diagonalized over the real numbers. We have [26]:

Theorem 32 There exists s ∈ N, there exist λ1, ..., λs ∈ C and there exist complex

polynomials p1 (z) , ..., ps (z) such that for all n ∈ N the equality

fL(M) (n) = p1 (n)λn1 + · · ·+ ps (n)λns

holds. Moreover, the complex numbers λ1, ..., λs and the polynomials

p1 (z) , ..., ps (z) can be effectively computed.

Let f : N→ N be a tally counting problem, let M be a DFA, and let g, h : N→ N

be two functions that hold short closed formulas. Suppose that for all n the equality

f (n) = h
(
fL(M) (g (n))

)
holds. We get, as a corollary of the above theorem, that problem

f admits a short closed formula. Schützenberger Method is a strategy that is used to

compute closed formulas for tally counting problems. One uses this method to solve

problem f when he computes a DFAM and a suitable reduction of f into fL(M). We can

use this method to compute a closed formula for the number of matchings in nanotubes,

and we can also use this method to solve many other counting problems about nanotubes.

To do the latter we use the same trick we used before: we think of nanotubes as automata

tapes, and we think of the substructures to be counted as strings written on those tapes

that satisfy a local property which can be checked by finite state automata. Let us ask:

which counting problems about nanotubes can be solved this way? We will be back with

this question in the next sections.
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4.4 Beyond closed formulas: Tally optimization problems

The basic insight behind Schützenberger Method is that algorithmic problems about finite

automata use to be easy. We can use this idea to deal with problems about nanotubes that

are of very different nature. We can deal with tally counting problems, and we can also

deal with tally optimization problems. We can use this Extended Schützenberger Method

to compute the Clar number of nanotubes in logarithmic time. We will not get a short

closed formula in this case since, as we will see, we will loss the spectral decomposition of

transition matrices.

Let M be a finite state automaton with input alphabet Σ, and let f : Σ → Q+ be

a weight function. We consider the following tally optimization problem about the pair

(M, f):

Problem 33 WRL (M), Weightiest String Accepted by M.

• Input: n, where n is a positive integer.

• Problem: compute the weight of the weightiest string in Σn ∩ L (M) .

We have

Theorem 34 Problem WRL (M) can be solved in time O (log (n)) over the Word-Level

RAM model.

Proof. Let (M,Σ, f, n) be an instance of WRL (M). Suppose

M = (Q, q0, A, δ,Σ) ,

and suppose Q = {1, ..., k}. We use the symbol Ttrop (M) to denote the matrix [tij]i,j≤k

defined by

tij =

{
−max {f (a) : δ (i, a) = j} ,

0, otherwise.

Let G be the weighted digraph whose adjacency matrix is equal to Ttrop (M) , and let

i, j be two states of M. The weightiest string of length n that sends state i to state j

is equal to the labeling of the lightest path of length n that connects those two vertices.

Thus, it remains to look for the weight of the lightest path of length n that is directed
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from the initial state ofM to the set A, that is: if we suppose q0 = 1, then it only remains

to compute the quantity

−min
{
d

(n)
M (1, j) : j ∈ A

}
.

Let B,C be two k × k matrices, the tropical product of the pair B,C is the matrix

[dij]i,j≤k that is defined by

dij = min {bir + cri : r ≤ k} .

We use the symbol B ⊗C to denote this product. We have that this tropical product

is an associative operation that satisfies the following: let i, j be two nodes of G, the

equality t
(n)
ij = d

(n)
M (i, j) holds for all n, where t

(n)
ij is the ij-entry of the n-th tropical

power of Ttrop (M) , that is: [
t
(n)
ij

]
i,j≤k

=
⊗
i≤n

Ttrop (M) .

Notice that Ttrop (M) is a matrix of size O (1) . Then, one can compute the matrix⊗
i≤n

Ttrop (M) in time O (log (n)) over the Word-Level RAM model using fast exponenti-

ation. Moreover, given the matrix
[
t
(n)
ij

]
i,j≤k

, one can compute in time O (1) the quantity

−min
{
t
(n)
1i : i ∈ A

}
, which is the weight of the weightiest string of length n that is

included in the language L (M) . The theorem is proved.

Recall that we can think of the tally set {Nn : n ≥ 1} as if it were the set of finite

tapes of a DFA. We can use the alphabet Σ5 ∪ Σ6 to encode the subgraphs of nanotubes

as strings. Moreover, we know that the string w ∈ Σ5 ◦ Σn
6 ◦ Σ5 represents a subgraph of

Nn, if and only if, this string belongs to the regular language SUB. We can also choose

a different alphabet. If we choose the alphabet (Σ5 × Σ5) ∪ (Σ6 × Σ6) , we can use this

alphabet to encode pairs of substructures, as for example a perfect matching M together

with an independent set of resonant hexagons for this matching. It is not hard to check

that one can construct a DFA that accepts the set constituted by those pairs. Then, it

only remains to define a suitable weight function

wClar : (Σ5 × Σ5) ∪ (Σ6 × Σ6)→ N.

We define this function as follows

wClar (α, β) =

{
0, if (α, β) ∈ Σ5 × Σ5

number of hexagons included in β, if (α, β) ∈ Σ6 × Σ6
.
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There exists a regular language

LClar ⊂ (Σ5 × Σ5) ◦ (Σ6 × Σ6)∗ ◦ (Σ5 × Σ5)

such that:

1. w ∈ LClar, if and only if, w encodes a pair (M,H) constituted by a perfect matching

of N|w|−2 and an independent set of resonant hexagons for the matching M .

2. The Clar Number of Nn is equal to the weight of the weightiest string included in

the set LClar ∩ (Σ5 ◦ Σn
6 ◦ Σ5) .

We get that the Clar number of nanotubes can be computed in logarithmic time using

the tropical version of Schützenberger Method.

4.5 Beyond carbon nanotubes: Linear lattices

A nanotube of length n is built by gluing together, along a spatial axis, n copies of a

pattern-graph that we called the hexagonal strip of diameter k. Mathematical nanoscien-

ces are specially concerned with the study of tally sets of molecular graphs that exhibit

the same one-dimensional character. Important examples of this type of structures are

linear polymers, one-dimensional crystals, carbon nanotubes of diameter k (with k ≥ 5),

boron nitride nanotubes etc. We use the term linear lattices to designate this type of

chemical chains.

4.5.1 Linear lattices

Let (G, c) be a pair constituted by a graph G (either planar or non-planar) and a drawing

of G in the plane. We suppose that the drawing c holds the following properties:

1. the drawing c fills a square of side 1.

2. The square cell is made of two vertical segments that we call L and D, together

with two horizontal segments. We suppose that c places on L the same number that

it places on D.

We can use this drawing of G as a pattern, and built linear chains based on this

pattern. To begin with the construction we list the nodes placed on L. To do the latter
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we start with the node on the top, and then we go down the segment L until we reach

the node on the bottom. Let

w1 = wN , w2, ..., wk−1, wS = wk

be this ordered list. We do the same with the nodes placed on D. Let

e1 = eN , e2, ..., ek−1, eS = ek

be this second list. Now, we can glue together two copies of (G, c) and obtain a chain

C2 (G, c) (a (G, c)-chain of length 2):

Let us suppose that we have two copies of (G, c) (of the chosen drawing). We use the

superindex 1 to indicate that a node (or and edge) belongs to the first copy, and we use

the superindex 2 to indicate that the corresponding object belongs to the second copy.

We glue those two copies by placing the second copy on the right and identifying the pairs

(
e1
N , w

2
2

)
,
(
e1

2, w
2
2

)
, ...,

(
e1
k−1, w

2
k−1

)
and

(
e1
S, w

2
S

)
.

The graphic below despicts two copies of a suitable planar drawing of the cubic diamond.

We use the symbol (CD, c) to denote this pattern-graph (to denote the pair constituted

by the non-planar graph CD and the planar drawing c). If we identify the pair of nodes

represented by hexagons, the pair of nodes represented by disks and the pair of nodes

represented by triangles we get a linear-diamond of length 2. Observe that we can glue

together n copies of (CD, c) and construct the chain Cn (CD, c) . We can do the same

with any pattern-graph (G, c) .

Definition 35 A linear lattice with cell-pattern (G, c) is a chain Cn (G, c). We say that

Cn (G, c) is a linear lattice of length n.

Remark 36 Linear diamonds are more abstract objects than actual molecules. However,

this abstract model of crystals can help us to understand crystal growth.

Let us stress, once again, that there are examples of linear lattices that are of great

importance in nanotechnology: carbon nanotubes, boron nitride nanotubes, linear polymers

etc.

We can study some physico-chemical properties of one-dimensional molecules using

chemical indices. Examples of chemical indices that are relevant are the number of
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Figure 6. The broken lines indicate that the corresponding edges do not belong to
the set of edges of this graph.

matchings (Hosoya index [27]) and the number of Hamiltonian circuits (dense-packing

number, see [28] and [29]). If we restrict those two indices to a tally set {Cn (G, c)}n≥1 ,

we get the tally counting problems #1MatchingsG,#1HamG : N→ R that are defined

by

#1MatchingsG (n) = # matchings in the graph Cn (G, c) .

#1HamG (n) = # Hamiltonian circuits in the graph Cn (G, c) .

Note that we can use the periodic structure of the graphs in the sequence {Cn (G, c)}n≥1

to compute a suitable recurrence for the function

#1MatchingsG (n). The counting of Hamiltonian circuits seems to be very much harder.

Let us ask: can we count Hamiltonian circuits in linear lattices?

Notation 37 Let f be a counting problem about graphs, let G be a graph, let c be a

drawing of G, and let f �C(G,c) be the restriction of f to the set {Cn (G, c)}n≥1 . We say

that f �C(G,c) is a tally counting problem about linear lattices. We ask: what are the tally

counting problems about linear lattices that can be solved in logarithmic time?
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4.6 Beyond linear time: The SBC-theorem for linear lattices

We are in the search of an algorithmic meta-theorem telling us that a large family of

tally counting and tally optimization problems about linear lattices can be solved in

logarithmic time. Courcelle Theorem is the paradigmatic algorithmic meta-theorem [30].

This theorem establishes that decision, counting and optimization problems that can be

defined by monadic second order formulas become linear time solvable when restricted to

sets of bounded treewidth [31]. We have to observe that any tally set of linear lattices

is a set of bounded treewidth (bounded pathwidth). We get that any tally counting

(optimization) problem about linear lattices that can be defined by a monadic second

order formula can be solved in linear time. On the other hand, we have to observe that

Courcelle’s method does not yield algorithmic solutions that run in logarithmic time over

the Word-Level RAM model. Then, if we could prove that all the problems that can

be defined by monadic second order formulas can be solved in logarithmic time when

restricted to tally sets of linear lattices, we would establish a new, independent and (we

strongly believe) useful result. It is important to stress that monadic second order logic is

an expressive logic that can be used to define many different types of graph substructures

as for example Hamiltonian cycles, self-avoiding walks, matchings, perfect matchings,

Eulerian orientations and Clar sets (see [32] and the references therein).

4.6.1 The SBC-theorem

The prefix SBC is an acronym for Schützenberger-Büchi-Courcelle. This theorem asserts

that we can solve in time O (log (n)) any problem about nanotubes and linear lattices

that can be defined by a monadic second order formula. The theorem holds for counting

as well as for optimization problems. We make the proof for counting problems.

From now on we think of graphs as relational structures over the vocabulary τgraph =

{V,E, I} , where:

1. The unary relation V defines the set of nodes.

2. The unary relation E defines the set of edges.

3. The binary relation I corresponds to the node-edge incidence relation.

Let G be a graph, let c be a drawing of G and let φ (X1, ..., Xm) be a monadic second

order formula in the vocabulary τgraph.
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Consider the tally counting problem #(G,c)φ (X1, ..., Xm) that is defined by:

• Input: n, where n is a positive integer.

• Problem: compute the quantity

|{H1, ..., Hm ⊆ Cn (G, c) : Cn (G, c) � φ (H1, ..., Hm)}| .

We prove that all those tally counting about linear lattices can be solved in time

O (log (n)).

Theorem 38 The SBC-Theorem

Problem #(G,c)φ (X1, ..., Xm) can be solved in time O (log (n)) .

Proof. Let us suppose that G is equal to the pair

({1, ...,m} ; {e1, ..., er}) .

We use the symbols

bi1, ..., b
i
r, b

i
r+1, ..., b

i
r+m

to denote the corresponding elements of the i-th cell (bag) of Cn (G, c) . We suppose that

the last k nodes of the i-th cell are equal to the first k nodes of the (i+ 1)-cell. We also

suppose that the last l edges of the i-th cell are equal to the first l edges of the (i+ 1)-th

cell.

Let H be a subset of edges of Cn (G) . We can associate to H a string (a labeled path)

of length n that carries all the information needed to reconstruct this subgraph of Cn (G).

The labeling of a node i ∈ {1, ..., n} must describe the intersection of H with the i-th cell

of Cn (G). Thus we define the label λH (i) as

λH (i) =
{
j ≤ r +m : bij belongs to the intersection of the i-th cell and H

}
.

We set

wH = ({1, ..., n} ,≤, λH) .

Note that the alphabet of wH is

ΣG = Pow ({1, ..., r + s}) .
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We use the symbol τG to denote the relational vocabulary {Ra : a ∈ ΣG}∪{≤} . To finish

with the proof we have to define a suitable translation of the set of monadic second order

formulas over the vocabulary τgraph into the set of monadic second order formulas over

the vocabulary τG. The latter suffices because Büchi’s Theorem estates that the monadic

second order properties of labeled paths can be recognized by finite automata [33]. Given

H ⊆ Cn (G) , and given t ≤ r + s we set

Ut (H) =
{
i ≤ n : bit ∈ H

}
,

and we also set U (H) = (U1 (H) , ..., Ur+s (H)) . Note that we are representing subsets of

Cn (G) as (r + s)-tuples of subsets of {1, ..., n}. A key fact is that we can characterize the

(r + s)-tuples of {1, ..., n} that represent subsets of Cn (G) . We have:

Let U = (U1, ..., Ur+s) , there exists H such that U (H) = U, if and only if, for all

i ∈ {1, ..., n} and for all p, q, h, u ∈ {1, ..., r + s} we have that:

1. If h is equal to the edge {p, q} and i ∈ Uh, then i ∈ Up, Uq.

2. Suppose that p is one of the first k nodes of G, and suppose q is equal to r− p+ 1,

we have that i+ 1 ∈ Up, if and only if, i ∈ Uq.

3. Suppose that h is one of the first l edges of G, and suppose u is equal to r+s−p+1,

we have that i+ 1 ∈ Uh, if and only if, i ∈ Uu.

We can construct two monadic second order formulas set (X1, ..., Xr+s) and

elem (X1, ..., Xr+s) such that for all (r + s)-tuples U = (U1, ..., Ur+s) of subsets of {1, ..., n}

wH � set (X1, ..., Xr+s) , if and only if,

there is H ⊆ Cn (G) such that U = U (H) ,

wH � elem (X1, ..., Xr+s) , if and only if,

there is a ∈ Cn (G) such that U = U ({a}) .

To finish with the proof of the Theorem it suffices to prove the following claim.

Claim. Let H be a subgraph of Cn (G) . We have that every monadic second order

formula φ (X1, ..., Xp, y1, ..., yq) in the vocabulary τgraph can be effectively translated into

a monadic second order formula φ∗
(
X̂1, ..., X̂p, Ŷ1, ..., Ŷq

)
in the vocabulary τG, and such
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that for all H1, ..., Hp ⊆ H, a1, ..., aq ∈ H, it happens that

H � φ (H1, ..., Hp, a1, ..., aq) , if and only if,

wH � φ∗ (U (H1) , ..., U (Hp) , U ({a1}) , ..., U ({aq})) .

(Proof of the claim).

We begin considering the atomic case. For the formula I (y1, y2) we set

(I (y1, y2))∗ = ∃x

 ∨
i1,i2∈{1,...,r+s}

Y1,i1 (x) ∧ Y2,i2 (x) ∧
∨
c∈ΣK
{i1,i2}∈c

Rc (x)


 ;

that is, we express that there must be some path node contained in all Ŷi and such that

the corresponding elements are related by I. Equalities, and formulas V (x) , E (x) are

treated similarly.

Now consider an atomic formula φ (X, y) equal to X (y) . We set

φ∗
(
X̂, Ŷ

)
= ∃x

 ∨
i∈{1,...,r+s}

(Yi (x) ∧Xi (x))

 .

For the inductive step, Boolean connectives are handled in the straightforward way.

To deal with quantifiers, we use the formulas elem and set. For example, if φ = ∃yψ we

let

φ∗ = ∃Y1 · · · ∃Yr+s (elem (Y1, ..., Yr+s) ∧ ψ∗) ,

and if φ = ∀Xψ we let

φ∗ = ∀X1 · · · ∀Xr+s (set (X1, ..., Xr+s)⇒ ψ∗) .

It is easy to check that the above translation works.

Let φ (X1, ..., Xm) be a monadic second order formula over the vocabulary τgraph. We

get, from Büchi’s Theorem, that there exists a DFA Mφ such that for all n the equality

cMφ
(n) = |{H1, ..., Hm ⊆ Cn (G) : Cn (G) � φ (H1, ..., Hm)}|

holds. We get that #(G,c)φ (X1, ..., Xm) can be solved in time O (log (n)) over the Word-

Level RAM model. The theorem is proved.
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5 Concluding remarks

Mathematical nanosciences is a research field that seems to be strongly involved with

the analysis of small sets of highly regular graphs. Those small sets of graphs are small

enough to become sparse, and they are also regular enough as to be efficiently enumerated,

becoming tally sets of graphs. We get that many algorithmic problems coming from

mathematical nanosciences are tally, and we also have that:

1. The tally classes NP1 and #P1 lack examples of natural problems that are complete

for them. Mathematical nanosciences seems to be a rich source of natural problems

for those classes.

2. We need a complexity class different to NP to analyze the algorithmic hardness of

problems that arise from mathematical nanosciences. We claim that NP1 and #P1

are the complexity classes that are most suitable to play this role.
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