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Av. Prefeito Lothário Meissner -2oandar, 80210-170, Curitiba, PR, Brazil

leonardo.delima@ufpr.br

3Escola Nacional de Ciências Estat́ısticas, Rua André Cavalcanti 106, Bairro de
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Abstract

Let G = (V,E) be a simple, undirected and connected graph on n vertices. The
Graovac–Ghorbani index of a graph G is defined as

ABCGG(G) =
∑

uv∈E(G)

√
nu + nv − 2

nunv
,

where nu is the number of vertices closer to vertex u than vertex v of the edge
uv ∈ E(G) and nv is defined analogously. Bicyclic graphs with no pendent vertices
are composed by three infinite families of graphs. In this paper, we give a lower
bound for all graphs in one of these families, and prove that this bound is sharp
by presenting its extremal graphs. Additionally, we conjecture a sharp lower and
upper bounds to the ABCGG index for all bicyclic graphs.

1 Introduction

Let G = (V,E) be a simple undirected and connected graph such that n = |V | and

m = |E|. The degree of a vertex v ∈ V , denoted by dv, is the number of edges incidents
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to v. The Graovac-Ghorbani index, [7], is defined as

ABC(G) =
∑

uv∈E(G)

√
nu + nv − 2

nunv

, (1)

where nu is the number of vertices closer to vertex u than vertex v of the edge uv ∈ E(G)

and nv is defined analogously. Note that equidistant vertices from u and v are not taken

into account to compute nu and nv in Equation (1). The problem of finding graphs with

maximum or minimum Graovac-Ghorbani index turns to be a difficult problem for general

graphs. Some papers have been published in order to find extremal graphs to the Graovac-

Ghorbani index of trees [9], unicyclic [3] and bipartite graphs [4]. Some interesting results

on this topic can be found at [1,2,5,6,11]. In 2016, Das in [1] posed the following question:

“Which graph has minimal ABCGG index among all bicyclic graphs?” Motivated by this

question we considered the ABCGG index for bicyclic graphs with no pendent vertices.

In this paper, we explicitly give the ABCGG index for some bicyclic graphs of no

pendent vertices and present a sharp lower bound. Also, we conjecture a lower bound to

the ABCGG for all bicyclic graphs with no pendent vertices.

2 Preliminaries

A connected graph G of order n is called a bicyclic graph if G has n + 1 edges. Bicyclic

graphs with no vertex of degree one are bicyclic graphs with no pendent vertices. Let Bn
be the set of all bicyclic graphs of order n with no pendent vertices. According to [8],

there are three types of bicyclic graphs containing no pendent vertices, which we denote

here by B1(n), B2(n) and B3(n). We use integers p, q ≥ 3 to denote the size of the cycles,

and l ≥ 1 to denote the length of a path (i.e., the number of edges of a path). Let

B1(p, q) be the set of bicyclic graphs obtained from two vertex-disjoint cycles Cp and Cq

by identifying a vertex u of Cp and a vertex v of Cq such that n = p+ q− 1. Observe that

all graphs in B1(p, q) have the same number of vertices but are not isomomorphic since

the size of the cycles are not the same. Let B2(p, l, q) be the bicyclic graph obtained from

two vertex-disjoint cycles Cp e Cq, by joining vertices v1 of Cp and ul of Cq by a new path

v1u1, . . . , ul−1ul with length l, such that n = p + q + l − 1. Let B3(p, l, q) be the bicyclic

graph obtained from a cycle Cp+q−2l with vertex set given by v1v2v3, . . . , vp+q−2l−1vp+q−2lv1

by joining vertices v1 and vp−l−2 by a new path v1u1u2, . . . , ul−2ul−1ulvp−l−2 with length
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l, where n = p + q − l − 1. Thus,

B1(n) =
⋃

p,q≥3

B1(p, q), B2(n) =
⋃

p,q≥3,l≥1

B2(p, l, q) and B3(n) =
⋃

p,q≥3,l≥1

B3(p, l, q).

Now, it is clear that Bn = B1(n) ∪B2(n) ∪B3(n). In Figure 1 the general form of the

graphs in families B1(n), B2(n) and B3(n) is displayed.

Figure 1. Families B1(n), B2(n) and B3(n) of bicyclic graphs with no pendent
vertices

3 ABCGG index for all graphs G ∈ B1(n)

In this section, we give an explicit formula to the ABCGG index of any graph in B1(n).

In order to prove it, we consider the following cases:

• If n is odd there are two possibilities: either Cp and Cq are both odd cycles or Cp

and Cq are both even cycles.

• If n is even, Cp is an odd cycle and Cq is an even cycle.

Throughout the proofs of next lemmas, we define

f(u, v) =

√
nu + nv − 2

nunv

,

for any edge uv ∈ E(G), and we write G[H] for the subgraph induced in G by the vertex

set of graph H. In Lemmas 3.1, 3.2 and 3.3 we present the ABCGG for all graphs in B1(n).

Note that for a fixed n some non-isomorphic graphs can be obtained by varying p and q

such that n = p + q − 1.

-431-



Lemma 3.1. Let G ∈ B1(n) be a graph on n = p + q − 1 vertices such that Cp and Cq

are odd cycles. Then

ABCGG(G) = 2 (p− 1)

√
p + q − 4

(p− 1)(p + 2q − 3)
+

2
√
p− 3

p− 1
+

+ 2 (q − 1)

√
p + q − 4

(2 p + q − 3)(q − 1)
+

2
√
q − 3

q − 1
. (2)

Proof. Let G be the graph labeled as Figure 2. Let H1 = G[Cp] be the graph induced

by vertices {v1, v2, ..., vp} and consider the edge (v1, vp) ∈ E(H1). Note that nv1 = p+2q−3
2

and nvp = p−1
2

. Taking the advantage of the symmetry, we can observe that this same

situation occurs p − 1 times which can be written as nvi = p+2q−3
2

and nvi+1
= p−1

2
for

i =
{

1, . . . , p−1
2

}
. For i ∈

{
p+3
2
, . . . , p− 1

}
nvi = p−1

2
and nvi+1

= p+2q−3
2

. The remaining

edge (v p+1
2
, v p+3

2
) has nv p+1

2

= nv p+3
2

= p−1
2

. Thus

∑
uv∈E(H1)

f(u, v) = (p− 1)

√(
p−1
2

)
+
(
p+2q−3

2

)
− 2(

p−1
2

) (
p+2q−3

2

) +

√(
p−1
2

)
+
(
p−1
2

)
− 2(

p−1
2

) (
p−1
2

) (3)

= 2 (p− 1)

√
p + q − 4

(p− 1)(p + 2q − 3)
+

2
√
p− 3

p− 1
. (4)

Now, let H2 = G[Cq] be the graph induced by vertices {v1, vp+1, . . . , vn}. Considering

the edge (v1, vn), we get nv1 = 2p+q−3
2

and nvn = q−1
2
. Analogously to the previous case,

nvj = 2p+q−3
2

and nvj+1
= q−1

2
for j =

{
p + 1, . . . , 2p+q−3

2

}
. For j ∈

{
2p+q+1

2
, . . . , n

}
then nvj = q−1

2
and nvj+1

= 2p+q−3
2

. The remaining edge (u, v) =
(
v 2p+q−1

2
, v 2p+q+1

2

)
has

nu = nv = q−1
2

. Thus,

∑
uv∈E(H2)

f(u, v) = (q − 1)

√(
q−1
2

)
+
(
2p+q−3

2

)
− 2(

q−1
2

) (
2p+q−3

2

) +

√(
q−1
2

)
+
(
q−1
2

)
− 2(

q−1
2

) (
q−1
2

)
= 2 (q − 1)

√
p + q − 4

(2 p + q − 3)(q − 1)
+

2
√
q − 3

q − 1
.

Therefore,

ABCGG(G) =
∑

uv∈H1

f(u, v) +
∑

uv∈H2

f(u, v)

= 2 (p− 1)

√
p + q − 4

(p + 2 q − 3)(p− 1)
+

2
√
p− 3

p− 1
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+ 2 (q − 1)

√
p + q − 4

(2 p + q − 3)(q − 1)
+

2
√
q − 3

q − 1
,

and the result follows.

Figure 2. Vertex labeling of a graph G ∈ B1(n) where Cp and Cq are odd cycles

Lemma 3.2. Let G ∈ B1(n) be a graph on n = p + q − 1 vertices such that Cp and Cq

are even cycles. Then

ABCGG(G) = 2 p

√
p + q − 3

p (p + 2 q − 2)
+ 2 q

√
p + q − 3

q (2 p + q − 2)
. (5)

Proof. Let G be the graph labeled as Figure 3. Let H1 = G[Cp] be the graph induced by

vertices {v1, v2, . . . , vp} and consider the edge (v1, vp) ∈ E(H1). Note that nv1 = p+2q−2
2

and nvp = p
2
. Taking the advantage of the symmetry, we can observe that this same

situation occurs p times which can be written as nvi = p+2q−2
2

and nvi+1
= p

2
for i ∈{

1, . . . , p
2

}
. For i ∈

{
p
2
, . . . , p− 1

}
, nvi = p

2
and nvi+1

= p+2q−2
2

. Thus,

∑
uv∈H1

f(u, v) = p

√(
p
2

)
+
(
p+2q−2

2

)
− 2(

p
2

) (
p+2q−2

2

)
= p

√ (
2p+2q−2−4

2

)
4

p (p + 2q − 2)
= 2 p

√
p + q − 3

p (p + 2 q − 2)
.

Now, let H2 = G[Cq] be the induced graph by vertices {v1, vp+1, . . . , vn} . Considering

edge (v1, vn), we get nv1 = 2p+q−2
2

and nvn = q
2
. Analogously to the previous case, we have

nvj = 2p+q−2
2

and nvj+1
= q

2
for j ∈

{
p + 1, . . . , 2p+q−2

2

}
. For j ∈

{
2p+q
2

, . . . , n− 1
}

, we

obtain nvj = q
2

and nvj+1
= 2p+q−2

2
. Thus,

∑
uv∈E(H2)

f(u, v) = q

√(
q
2

)
+
(
q+2p−2

2

)
− 2(

q
2

) (
q+2p−2

2

) = q

√(
2p+2q−2−4

2

)
4

q (p + 2q − 2)
= 2 q

√
p + q − 3

q (2 p + q − 2)
.
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Figure 3. Vertex labeling of a graph G ∈ B1(n) where Cp and Cq are even cycles

Therefore,

ABCGG(G) =
∑

uv∈H1

f(u, v) +
∑

uv∈H2

f(u, v) = 2 p

√
p + q − 3

p (p + 2 q − 2)
+ 2 q

√
p + q − 3

q (2 p + q − 2)
,

and the result follows.

Lemma 3.3. Let G ∈ B1(n) be a graph on n = p+ q− 1 vertices such that Cp is an odd

cycle and Cq is an even cycle. Then

ABCGG(G) =
2
√
p− 3

p− 1
+ 2 (p− 1)

√
p + q − 4

(p + 2 q − 3)(p− 1)
+ 2 q

√
p + q − 3

q (2 p + q − 2)
. (6)

Proof. Let G be the graph labeled as Figure 4. Let H1 = G[Cp] be the graph induced by

vertices {v1, v2, . . . , vp} and consider the edge (v1, vp) ∈ E(H1). Note that nv1 = p+2q−3
2

and nvp = p−1
2
. Taking the advantage of the symmetry, we can observe that this same

situation occurs p− 1 times which can be written as nvi = p+2q−3
2

and nvi+1
= p−1

2
for i ∈

{1, . . . , p−1
2
}. For i ∈

{
p+3
2
, . . . , p− 1

}
, then nvi = p−1

2
and nvi+1

= p+2q−3
2

. The remaining

edge
(
v p+1

2
, v p+3

2

)
has nv p+1

2

= nv p+3
2

= p−1
2

. Thus,

∑
uv∈H1

f(u, v) = (p− 1)

√(
p−1
2

)
+
(
p+2q−3

2

)
− 2(

p−1
2

) (
p+2q−3

2

) +

√(
p−1
2

)
+
(
p−1
2

)
− 2(

p−1
2

) (
p−1
2

)
= 2 (p− 1)

√
p + q − 4

(p− 1)(p + 2q − 3)
+

2
√
p− 3

p− 1
.

Now, let H2 = G[Cq] be the graph induced by vertices {v1, vp+1, . . . , vn}. Considering

the edge (v1, vn), we get nv1 = 2p+q−2
2

and nvn = q
2
. Analogously to the previous case,

nvj = 2p+q−2
2

and nvj+1
= q

2
for j ∈

{
p + 1, . . . , 2p+q−2

2

}
. For j ∈

{
2p+q
2

, . . . , n− 1
}

then

nvj = q
2

and nvj+1
= 2p+q−2

2
. Thus,

∑
uv∈E(H2)

f(u, v) = q

√(
q
2

)
+
(
2p+q−2

2

)
− 2(

q
2

) (
2p+q−2

2

) = 2 q

√
p + q − 3

q (2 p + q − 2)
.
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Therefore,

ABCGG(G) =
∑

uv∈H1
f(u, v) +

∑
uv∈H2

f(u, v) = 2 (p− 1)
√

p+q−4
(p+2 q−3)(p−1) + 2

√
p−3

p−1 +

+2 q
√

p+q−3
q (2 p+q−2) ,

and the result follows.

Figure 4. Vertex labeling of a graph G ∈ B1(n) where Cp is an odd cycle and Cq

is an even cycle

4 Minimizing ABCGG(G) for all G ∈ B1(n)

In order to characterize the graphs with minimal Graovac-Ghorbani index in B1(n), we

performed computational experiments to bicyclic graphs with no pendent vertices up to

16 vertices. These graphs were generated by using Nauty-Traces package [10] and the

ABCGG indices were computed in BlueJ software [12,13].

4.1 When n is odd

We first consider the case when both cycles have odd length. Since n ≥ 9 and n is odd,

we have that n = 2k − 1, where k ≥ 5 and k ∈ N.

Case (i) : Cp and Cq are odd cycles.

From the symmetry of the process of removing vertices from cycle Cp and adding them

to Cq, we get that: if k is odd, 3 ≤ p ≤ n+1
2

and n+1
2
≤ q ≤ n−2; if k is even, 3 ≤ p ≤ n−1

2

and n+3
2
≤ q ≤ n− 2. From these inequalities, we obtain that: if k is odd, then 3 ≤ p ≤ k

and k ≤ q ≤ 2k − 3; if k is even, then 3 ≤ p ≤ k − 1 and k + 1 ≤ q ≤ 2k − 3.
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Let x ∈ N be the number of vertices removed from Cq and added to Cp. Note that in

this process, x should be even to keep both cycles of odd length and that p = 3 + x and

q = 2k − 3− x. The following facts are true:

(F1) If k ≥ 5 is odd, then 0 ≤ x ≤ k − 3;

(F2) If k ≥ 5 is even, then 0 ≤ x ≤ k − 4.

Let G1(p, q) be a graph of order n belonging to B1(p, q) with fixed p and q such that

n = p+ q− 1. Our proof initially considers the graph with p = 3 and q = n− 2, which we

denote by G1
0(3, n− 2). Removing two vertices from cycle Cn−2 of the graph G1

0(3, n− 2)

and adding them to C3, we obtain the graph G1
1(5, n − 4). If n and k are odd, we prove

that G1
0(3, n − 2) has minimal ABCGG among all graphs G1

x(3 + x, n − 2 − x), where

0 ≤ x ≤ (n − 5)/2. If n is odd and k is even, we prove that G1
0(3, n − 2) has minimal

ABCGG among all graphs G1
x(3 + x, n− 2− x), where 0 ≤ x ≤ (n− 7)/2.

For instance, for n = 17 we have k = 9 and all graphs in B1(17) are: G1
0(3, 15),

G1
2(5, 13), G1

4(7, 11), G1
6(9, 9). In the other hand, if n = 19, we have k = 10 and all graphs

in B1(19) are: G1
0(3, 17), G1

2(5, 15), G1
4(7, 13), G1

6(9, 11). In both cases, we will prove in

the next lemmas that graph G1
0(3, n− 2) has minimal ABCGG.

Recall Equation (2) of Lemma 3.1 and rewrite it as:

f1(x) : = ABCGG(G) = 2(x + 2)

√
2k − 4

(4k − x− 6)(x + 2)
+

+ 2 (2 k − x− 4)

√
2k − 4

(2k + x)(2 k − x− 4)
+

2
√

2 k − x− 6

2 k − x− 4
+

2
√
x

x + 2
. (7)

Next, we prove that the first three terms of f1(x) is an increasing function in x.

Lemma 4.1. Let n = 2k − 1 such that k ≥ 5 and let x ≥ 0. Then, the function

g1(x) = 2(x + 2)

√
2k − 4

(4k − x− 6)(x + 2)
+ 2 (2 k − x− 4)

√
2k − 4

(2k + x)(2 k − x− 4)

+
2
√

2 k − x− 6

2 k − x− 4

is increasing in x.

Proof. We will use Facts (F1) and (F2) to prove our result. We split g1(x) into two cases:
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Case 1. Let h(x) = 2
√
2 k−x−6

2 k−x−4 . We have that h′(x) is given by

h′(x) =
2 k − x− 8

(2 k − x− 4)2
√

2 k − x− 6
.

Assume that k ≥ 5 is odd. From (F1), we have 2 k− x− 8 ≥ 0 and 2 k− x− 6 ≥ 0. Now,

assume that k ≥ 5 is even. From (F2), we have 2 k−x− 8 ≥ 0 and 2 k−x− 6 ≥ 0. Then

h′(x) > 0, which means that h(x) is increasing in x for all k ≥ 5.

Case 2. Let m(x) = 2(x + 2)
√

2k−4
(4k−x−6)(x+2)

+ 2 (2 k − x− 4)
√

2k−4
(2k+x)(2 k−x−4) . We have

that m′(x) is given by

m′(x) =
8(k − 1)(k − 2)

(x + 2)(4 k − x− 6)2
√

2k−4
(x+2)(4 k−x−6)

− 8(k − 1)(k − 2)

(2k − x− 4)(2k + x)2
√

2k−4
(2k−x−4)(2k+x)

=
8(k − 1)(k − 2)√

(2k − 4)

(
(x+2)(4 k−x−6)2√
(x+2)(4 k−x−6)

) − 8(k − 1)(k − 2)√
(2k − 4)

(
(2k−x−4)(2k+x)2√
(2k−x−4)(2k+x)

)
Define d1(x) and d2(x) as

d1(x) =
(x + 2)(4 k − x− 6)2√

(x + 2)(4 k − x− 6)
= (4k − x− 6)

√
(4k − x− 6)(x + 2),

d2(x) =
(2k − x− 4) (2k + x)2√

(2k − x− 4)(2k + x)
= (2k + x)

√
(2k + x)(2k − x− 4).

If d2(x) ≥ d1(x), then m′(x) ≥ 0 and m(x) is increasing in x. Let t(x) = d2(x)2 − d1(x)2.

By algebraic manipulations, we have that

t(x) = d2(x)2 − d1(x)2

= (2k + x)3(2k − x− 4)− (x + 2)(4k − x− 6)3

= 16 k4 + 16 k3x− 4 kx3 − x4 − 32 k3 − 48 k2x− 24 kx2 − 4x3

−(64 k3x− 48 k2x2 + 12 kx3 − x4 + 128 k3 − 384 k2x +

+168 kx2 − 20x3 − 576 k2 + 720 kx− 144x2 + 864 k − 432x− 432)

= 16 k4 − 48 k3x + 48 k2x2 − 16 kx3 − 160 k3 + 336 k2x−

−192 kx2 + 16x3 + 576 k2 − 720 kx +

+144x2 − 864 k + 432x + 432

t(x) = 16(k − 1)(k − x− 3)3.
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Note that x = k−3 is the root of t(x). Using Facts (F1) and (F2), we get t(x) > 0. We have

that t(x) = d2(x)2 − d1(x)2 = (d2(x)− d1(x))(d2(x) + d1(x)) ≥ 0, then d2(x)− d1(x) ≥ 0.

Thus, m′(x) > 0, which means that m(x) is increasing in x for all k ≥ 5.

Therefore, from Cases 1 and 2, we have that g′1(x) > 0, and so g1(x) is increasing in x for

all k ≥ 5.

Lemma 4.2. Let n = 2k − 1 such that k ≥ 5. Let x ≥ 0 and

f1(x) = 2(x + 2)

√
2k − 4

(4k − x− 6)(x + 2)
+ 2 (2 k − x− 4)

√
2k − 4

(2k + x)(2 k − x− 4)

+
2
√

2 k − x− 6

2 k − x− 4
+

2
√
x

x + 2
.

Then, we have that f1(0) is the minimal value of f1(x).

Proof. Let g1(x) be defined by

g1(x) = 2(x + 2)

√
2k − 4

(4k − x− 6)(x + 2)
+ 2 (2 k − x− 4)

√
2k − 4

(2k + x)(2 k − x− 4)

+
2
√

2 k − x− 6

2 k − x− 4
.

From Lemma 4.1 we have that g1(x) is increasing in x for all k ≥ 5, which implies that

g1(x) ≥ g1(0).

So, f1(x) ≥ g1(x) ≥ g1(0) = f1(0), and the result follows.

Note that f1(0) = ABCGG(G1
0(3, n−2)) and Lemma 4.2 implies that f1(x) is minimized

to the graph G1
0(3, n−2) among all graphs G1

i (3, n−2) when Cp and Cq have odd lengths.

Case (ii) : Cp and Cq are even cycles.

From the symmetry of the process of removing vertices from cycle Cp and adding them

to Cq, we get that: if k is odd, 4 ≤ p ≤ n−1
2

and n+3
2
≤ q ≤ n−3; if k is even, 4 ≤ p ≤ n+1

2

and n+1
2
≤ q ≤ n − 3. From these inequalities, we get: if k is odd, 4 ≤ p ≤ k − 1 and

k + 1 ≤ q ≤ 2k − 4; if k is even, 4 ≤ p ≤ k and k ≤ q ≤ 2k − 4.

Let x ∈ N be the number of vertices removed from Cq and added to Cp. Note that in

this process, x should be even to keep both cycles of even length and that p = 4 + x and

q = 2k − 4− x. The following facts are true:
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(F3) If k ≥ 5 is odd, then 0 ≤ x ≤ k − 5;

(F4) If k ≥ 5 is even, then 0 ≤ x ≤ k − 4.

We will prove that for k ≥ 11, the graph G1
0(4, n − 3) has minimal ABCGG index

among all graph when Cp and Cq are both even cycles.
So, we can rewrite Equation (5) of Lemma 3.2 as:

f2(x) := 2 (x + 4)

√
2 k − 3

(4 k − x− 6)(x + 4)
+ 2 (2 k − x− 4)

√
2 k − 3

(2 k + x + 2)(2 k − x− 4)
. (8)

Lemma 4.3. Let n = 2k − 1 with k ≥ 5. Let x ≥ 0 and

f2(x) = 2 (x + 4)

√
2 k − 3

(4 k − x− 6)(x + 4)
+ 2 (2 k − x− 4)

√
2 k − 3

(2 k + x + 2)(2 k − x− 4)
.

If k ≥ 11, then f2(0) is the minimal value of f2(x). If k is odd and 5 ≤ k ≤ 10, then

f2(k− 5) is the minimal value of f2(x). If k is even and 5 ≤ k ≤ 10, then f2(k− 4) is the

minimal value of f2(x).

Proof. The functions f ′2(x) and f ′′2 (x) are given by

f ′2 (x) =
2 (2 k − 1)(2 k − 3)

(4 k − x− 6)2 (x + 4)
√

2 k−3
(4 k−x−6)(x+4)

− 2 (2 k − 1)(2 k − 3)

(2 k + x + 2)2(2 k − x− 4)
√

2 k−3
(2 k+x+2)(2 k−x−4)

f ′′2 (x) =
2 (2 k − 1)(2 k − 3)2(2 k − 2x− 7)

(2 k + x + 2)4(2 k − x− 4)3
(

2 k−3
(2 k+x+2)(2 k−x−4)

) 3
2

− 2(2 k − 1)(2 k − 3)2(2 k − 2x− 9)

(x + 4)3 (4 k − x− 6)4
(

2 k−3
(x+4)(4k−x−6)

) 3
2

Taking f ′2(x) = 0, we obtain 4(k − x − 4)(4kx2 − 3x2 − 8k2x + 38kx − 24x + 4k3 −

44k2 + 100k − 52) = 0, which has critical points x1 = k − 4, x2 = k − 4 + (3k−2)√
(4k−3)

and

x3 = k−4− (3k−2)√
(4k−3)

. Suppose that x3 is integer. In this case, (4k−3) should be a perfect

square, that is, 4k − 3 = m2. Thus, (3k−2)√
4k−3 =

3m2

4
+ 1

4

m
= 3m

4
+ 1

4m
cannot be integer for

m > 1, and we get a contradiction. So, the only critical points are x = 0 and x = k − 4.
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We get that

f ′′2 (k − 4) =
4 (2 k − 1)(2 k − 3)2

(3 k − 2)4k3
(

2 k−3
k(3 k−2)

) 3
2

,

is positive, and so x = k − 4 is a minimum of the function f2(x).
Let k ≥ 5 and k is odd. In this case, 0 ≤ x ≤ k − 5 and we need to prove whether

f2(0) > f2(k − 5) or f2(0) < f2(k − 5). Let

m(k) = f2(k − 5)− f2(0) = 2 (k + 1)

√
2 k − 3

3(k + 1)(k − 1)
+ 2 (k − 1)

√
2 k − 3

(3 k − 1)(k − 1)
−

−2 (k − 2)

√
2 k − 3

(k + 1)(k − 2)
− 2
√

2

The derivatives of m(k) are given as follows:

m′(k) =
2
√
3(k2−2 k+2)

3
√

(2 k−3)(k+1)(k−1)(k−1)
+

2 (3 k2−2 k−2)√
(3 k−1)(2 k−3)(k−1)(3 k−1)

− 2 k2+4 k−13√
(2 k−3)(k+1)(k−2)(k+1)

m′′(k) = 4 k4+16 k3−156 k2+316 k−191
2
√

(2 k−3)(k+1)(k−2)(2 k−3)(k+1)2(k−2)
− 2

√
3(k4−4 k3+12 k2−10 k−2)

3
√

(2 k−3)(k+1)(k−1)(2 k−3)(k+1)(k−1)2
−

− 2 (9 k4−12 k3−36 k2+78 k−38)√
(3 k−1)(2 k−3)(k−1)(3 k−1)2(2 k−3)(k−1)

We know that m(k) and m′(k) are continuous in this interval. Using a numerical

method, we get k1 = 5 and k2 ' 10.3147 as exact real roots for m(k). Using a nume-

rical method for m′(k), we obtain k′1 ' 7.5248. Evaluating m′′(k) for k′1, we have that

m′′(7.5248) > 0, and k′1 is an absolute minimum. Since m(k) < 0 for 5 < k ≤ 10,

m(k′1) < 0 and m(11) > 0, then, we have that m(k) ≥ 0 for all k ≥ 10.3147. Therefore,

m(k) > 0 for all k ≥ 11, which implies that f2(x) ≥ f2(0), and the graph G0(4, n − 3)

minimizes f2(x). Now, let k be odd and 5 ≤ k ≤ 10. In this case, m(k) ≤ 0, which implies

that f2(k−5) is minimum and the graph G1
k−5(p, q) = G1

k−5(k−1, k+ 1) minimizes f2(x).

If k is even, since 0 ≤ x ≤ k − 4, we need to prove that f2(0) < f2(k − 4). Replacing

the extremes x1 = 0 and x2 = k − 4 in f2(x) we obtain

f2(0) = 2 (k − 2)

√
2 k − 3

(k + 1)(k − 2)
+ 2
√

2,

f2(k − 4) = 4 k

√
2 k − 3

k(3 k − 2)
.

Consider the function

h(k) = f2(k − 4)− f2(0) = 4 k

√
2 k − 3

k(3 k − 2)
− 2 (k − 2)

√
2 k − 3

(k + 1)(k − 2)
− 2
√

2
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The derivatives of h(k) are given as follows:

h′(k) =
4 (3 k2−4 k+3)√

(3 k−2)(2 k−3)k(3 k−2)
− 2 k2+4 k−13√

(2 k−3)(k+1)(k−2)(k+1)

h′′(k) = 4 k4+16 k3−156 k2+316 k−191
2
√

(2 k−3)(k+1)(k−2)(2 k−3)(k+1)2(k−2)
− 12 (3 k4−8 k3+18 k2−18 k+3)√

(3 k−2)(2 k−3)k(3 k−2)2(2 k−3)k
.

We know that h(k) and h′(k) are continuous in this interval. Using a numerical method,

we get k1 = 21+5
√
17

4
' 10.4039 and k2 = 4 (with multiplicity 2) as exact real roots for

h(k). Making h′(k) = 0, we obtain(
36 k7 − 312 k6 + 172 k5 + 1600 k4 − 2595 k3 + 1546 k2 − 332 k + 72

)
(2 k − 3)(k − 4) = 0,

and the critical points are k′1 = 4 and k′2 = 7.3648. Evaluating h′′(k) in k′2, we have that

h′′(7.3648) > 0, and k2 is an absolute minimum. Since h(3) < 0, h(8) < 0, h(k′2) < 0 and

h(11) > 0, we have that h(k) ≥ 0 for all k ≥ 21+5
√
17

4
. Therefore, h(k) > 0 for all k ≥ 11,

which implies that f2(x) ≥ f2(0), and the graph G1
0(4, n− 3) minimizes f2(x). Now, let k

be even and 5 ≤ k ≤ 10. In this case, h(k) < 0, which implies that f2(k − 4) is minimum

and the graph G1
k−4(p, q) = G1

k−4(k, k) minimizes f2(x).

The next result shows that G1
0(3, n − 2) has minimal ABCGG among all graphs G in

B1(n) when n is odd.

Lemma 4.4. Let G ∈ B1(n) with odd n and n ≥ 9. Then,

ABCGG(G) ≥ ABCGG(G1
0(3, n− 2)).

Proof. Let n = 2k−1 such that n ≥ 9. First, suppose that k ≥ 11. From Lemmas 4.2 and
4.3, we should prove that f1(0) < f2(0). Considering h(k) = f2(0)− f1(0), we have that

h(k) = 2 (k − 2)

√
2 k − 3

(k + 1)(k − 2)
+ 2
√

2−

(
2
√

2(k − 2)√
k

+ 2

√
2k − 4

2k − 3
+

√
2 k − 6

k − 2

)

h(k) = 2 (k − 2)

√
2 k − 3

(k + 1)(k − 2)
+

√
2

5
+

9
√

2

5
−

(
2
√

2(k − 2)√
k

+ 2

√
2k − 4

2k − 3
+

√
2 k − 6

k − 2

)

h(k) = 2 (k − 2)

√
2 k − 3

(k + 1)(k − 2)
+

√
2

5
− 2
√

2(k − 2)√
k︸ ︷︷ ︸

i

+
9
√

2

5
− 2

√
2k − 4

2k − 3
−
√

2 k − 6

k − 2︸ ︷︷ ︸
ii

Case (i). Let m(k) be defined as

m(k) = 2 (k − 2)

√
2 k − 3

(k + 1)(k − 2)
+

√
2

5
− 2
√

2(k − 2)√
k
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=

√
k
√

2k − 3(10k − 20)−
√

2
√
k − 2

√
k + 1(10k −

√
k − 20)

5
√
k − 2

√
k
√
k + 1

.

Let t(k) = d1(k)2 − d2(k)2, where d1(k) =
√
k
√

2k − 3(10k − 20) and

d2(k) = −
√

2
√
k − 2

√
k + 1(10k −

√
k − 20). We need to verify if t(k) > 0. Then, we

have that,

t(k) = d1(k)2 − d2(k)2

= k(2k − 3)(10k − 20)2 − 2(k − 2)(k + 1)(10k −
√
k − 20)2

= 2(k − 2)(20k2
√
k − 51k2 − 20k

√
k + 299k − 40

√
k − 400)

Let
√
k = u ≥ 0 and r(k) = 20k2

√
k− 51k2− 20k

√
k + 299k− 40

√
k− 400. Then, r(u) =

20u5 − 51u4 − 20u3 + 299u2 − 40u− 400. We have that r(u) ≥ 0 for all u ≥ u1 ' 1.42596

(the unique real root). Then, r(k) ≥ 0 for all k ≥ k1 ' 2.03336. Since k ≥ 5, we get

t(k) > 0 and consequently m(k) > 0 for all k ≥ 5.

Case (ii). Let g(k) be defined as

g(k) =
9
√

2

5
− 2

√
2k − 4

2k − 3
−
√

2 k − 6

k − 2

=

√
2
√

2k − 3(9k − 5
√
k − 3− 18)− 10

√
k − 2

√
2(k − 2)

5(k − 2)
√

2k − 3
.

Let t(k) = d1(k)2 − d2(k)2, where d1(k) = 2(2k − 3)(9k − 5
√
k − 3− 18)2 and

d2(k) = −10
√
k − 2

√
2(k − 2). We need to check whether t(k) ≥ 0. Note that

t(k) = d1(k)2 − d2(k)2

= 2(2k − 3)(9k − 5
√
k − 3− 18)2 − 200(k − 2)3

= 2(62k3 − 180k2
√
k − 3− 241k2 + 630k

√
k − 3 + 195k − 540

√
k − 3 + 53).

By making the variable change u =
√
k − 3 we can prove that t(k) ≥ 0 for all k ≥ 3,

which implies that g(k) ≥ 0. Therefore, from Cases (i) and (ii), we have that h(k) > 0.

Let k be even such that 5 ≤ k ≤ 10. From Lemmas 4.2 and 4.3, we should prove that

f1(0) < f2(k − 4). Let h(k) = f2(k − 4)− f1(0) defined as

h(k) = 4 k

√
2 k − 3

(3 k − 2)k
− 2
√

2(k − 2)√
k

− 2

√
2k − 4

2 k − 3
−
√

2 k − 6

k − 2
.

By replacing each k in h(k) we obtain that h(k) ≥ 0.
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Let k be odd such that 5 ≤ k ≤ 10. From Lemmas 4.2 and 4.3, we should prove that

f1(0) < f2(k − 5). Let h(k) = f2(k − 5)− f1(0) defined as

h(k) = 2 (k + 1)

√
2 k − 3

3(k + 1)(k − 1)
+ 2 (k − 1)

√
2 k − 3

(3 k − 1)(k − 1)
− 2
√

2(k − 2)√
k

−

−2

√
2k − 4

2 k − 3
−
√

2 k − 6

k − 2
.

By replacing each k in h(k) we obtain that h(k) ≥ 0.

Now, the proof is complete.

4.2 When n is even

Note that when n = 2k such that n = p + q − 1. We should conclude that one of the

cycles has odd length and the other has even length. Recall the graph G1
0(3, n− 2). From

the symmetry of the process of removing vertices from cycle Cq and adding them to Cq,

we get that 3 ≤ p ≤ n− 3 and 4 ≤ q ≤ n− 2, which implies that

(F5) 3 ≤ p ≤ 2k − 3 and 4 ≤ q ≤ 2k − 2.

Let x ∈ N be the number of vertices removed from Cq and added to Cp. Note that in

this process, x should be even to keep both cycles of even length such that p = 3 + x,

q = 2k − 2− x and

0 ≤ x ≤ 2k − 6.

Next, we prove that G1
0(3, n − 2) has minimal ABCGG(G) among all graphs G ∈ B1(n)

with n even. Equation (6) of Lemma 3.3 can be rewritten as a function of n and x :

f2(x) = 2 (n− x− 2)

√
n− 2

(n + x + 2)(n− x− 2)
+ 2 (x + 2)

√
n− 3

(2n− x− 4)(x + 2)
+

2
√
x

x + 2
.

Note that f(0) is equal to ABCGG(G1
0(3, n− 2)).

Lemma 4.5. Let n ≥ 5 and x ≥ 0. Let g2(x) be defined as

g2(x) = 2 (n− x− 2)

√
n− 2

(n + x + 2)(n− x− 2)
+ 2 (x + 2)

√
n− 3

(2n− x− 4)(x + 2)
.

Then, g2(x) has its minimum value in g2(0).
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Proof. Let n ≥ 5, x1 = x and x2 = x + 2. In order to prove that g2(x) is increasing in x,
we need to prove that g2(x2)− g2(x1) ≥ 0. Take h(x) = g2(x2)− g2(x1). Note that

h(x) = −2 (n− x− 2)

√
n− 2

(n + x + 2)(n− x− 2)
+ 2 (n− x− 4)

√
n− 2

(n + x + 4)(n− x− 4)

+ 2 (x + 4)

√
n− 3

(2n− x− 6)(x + 4)
− 2 (x + 2)

√
n− 3

(2n− x− 4)(x + 2)
.

One can prove that

h(0) = 2 (n− 4)

√
n− 2

(n + 4)(n− 4)
+ 2
√

2− 2 (n− 2)√
n + 2

− 2

√
n− 3

n− 2
≥ 0,

and

h(n− 6) = −2 (n− 4)

√
n− 3

(n + 2)(n− 4)
+ 2 (n− 2)

√
n− 3

(n− 2)n
− 2
√

2 + 2

√
n− 2

n− 1
≥ 0.

By using numerical analysis, we get that polynomial h(x) has no root for 0 ≤ x ≤ n− 6.

So, h(x) ≥ 0, which implies that g2(x) is increasing and the result follows.

Lemma 4.6. Let n ≥ 5 and x ≥ 0. Let f2(x) be defined as

f2(x) = 2 (n− x− 2)

√
n− 2

(n + x + 2)(n− x− 2)
+ 2 (x + 2)

√
n− 3

(2n− x− 4)(x + 2)
+

2
√
x

x + 2
. (9)

Then, f2(x) has its minimum value in f2(0) for all n ≥ 5.

Proof. Note that f2(x) ≥ g2(x). From Lemma 4.5, g2(x) ≥ g2(0). Therefore, f2(x) ≥

g2(x) ≥ g2(0) = f2(0), and the result follows.

Next, we state the main result of this paper.

Theorem 4.7. Let G ∈ B1(n) be a graph of order n ≥ 9. If n is odd, then

ABCGG(G) ≥ 2(n− 3)√
n− 1

+ 2

√
n− 3

n− 2
+

2
√
n− 5

n− 3
.

If n is even, then

ABCGG(G) ≥ 2

√
n− 3

n− 2
+

2 (n− 2)√
n + 2

.

Equality holds in both cases if and only if G ∼= G1
0(3, n− 2).

Proof. Let G ∈ B1(n). Suppose that n is odd. From Lemma 4.4, ABCGG(G) = f(x) ≥

f(0) = ABCGG(G1
0(3, n−2)). Now, suppose that n is even. From Lemma 4.6, ABCGG(G)

= f ′ ′(x) ≥ f ′ ′(0) = ABCGG(G1
0(3, n− 2)) and the result follows.
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Figure 5. Graph of B1(n) family with minimal value of the ABCGG index for
n = 10.

In Figure 5, the extremal graph G1
0(3, 8) is displayed.

Note that Theorem 4.7 states the extremal graphs for n ≥ 9. In Figure 6, we display

all graphs up to 10 vertices that are extremal to the ABCGG index in the family B1(n)

obtained by exhaustive computational search.

Figure 6. Graph of B1(n) family with minimal value of the ABCGG index for
5 ≤ n ≤ 10.

5 Conclusion

We finish this paper by presenting two conjectures related to the ABCGG index for any

bicyclic graph. The following conjectures were motivated by computational experiments

for all bicyclic graphs up to 16 vertices. The computational routines in Python are freely

available at https://github.com/20445/ProjetoTeste.

Let B′n be the family of all bicyclic graphs on n vertices. The next conjecture states a

lower bounds to the ABCGG index among all graphs in B′n. It is worth mentioning that

the extremal graphs belong to the family Bn, that is, the bicylic graphs with no pendent
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vertices. This fact makes the study of all graphs in B1(n), B2(n), and B3(n) useful to

prove the general case.

Conjecture 5.1. Let G ∈ B′n be a bicyclic graph of order n ≥ 9. If n is odd, then

ABCGG(G) ≥ 2(n + 1)

√
n− 2

n2 − 1
.

If n is even, then

ABCGG(G) ≥ 6

n

√
n− 2 + 2(n− 2)

√
1

n + 2
.

For n odd, equality holds if and only if G ∼= B3(4, 2, n− 1). For n even, equality holds if

and only if G ∼= B3(6, 3, n− 2).

Figure 7 displays the extremal graphs of Conjecture 5.1 according to the partity of n.

Figure 7. Bicyclic graphs with minimal value of ABCGG index for n ≥ 9.

Next, we present a conjecture about the upper bound to the ABCGG index for all

bicyclic graphs. Let H be the graph obtained by adding n − 4 pendent vertices to one

vertex of degree 3 of the complete graph K4 minus an edge. Figure 8 displays the graphs

with maximal ABCGG index for n ≥ 4, and the graph H is the last graph for n ≥ 8.

Figure 8. Bicyclic graphs with maximal value of ABCGG index for n ≥ 4.
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Conjecture 5.2. Let G ∈ B′n a bicyclic graph with order n ≥ 8. Then,

ABCGG(G) ≤ (n− 4)

√
n− 2

n− 1
+

√
n− 4

n− 3
+ 2

√
n− 3

n− 2
+
√

2.

Equality holds if and only if G is isomorphic to H.
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[13] D. Barnes, M. Kölling, Objects First with Java – A Practical Introduction Using

BlueJ , Pearson Prentice Hall, London, 2016.

-448-


