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Abstract

We obtain a general formula for the resistance distance (or effective resistance)
between any pair of nodes in a general family of graphs which we call flower graphs.
Flower graphs are obtained from identifying nodes of multiple copies of a given base
graph in a cyclic way. We apply our general formula to two specific families of flower
graphs, where the base graph is either a complete graph or a cycle. We also obtain
bounds on the Kirchhoff index and Kemeny’s constant of general flower graphs using
our formula for resistance. For flower graphs whose base graph is a complete graph
or a cycle, we obtain exact, closed form expressions for the Kirchhoff index and
Kemeny’s constant.

1 Introduction

The resistance distance is a tool motivated by ideas from electrical network theory and

applications in chemistry that has proven valuable in the study of graphs. The traditional

distance in a graph simply counts the number of edges in a shortest path between ver-

tices. On the other hand, the resistance distance is another notion of distance in a graph

motivated by viewing the graph as an electrical network. Placing a unit resistor on each

edge of the graph, the resistance distance, r(i, j), between vertices i and j is then defined
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as the effective resistance between them (see [1]). We give a more formal definition in

Section 2.

The resistance distance defines a metric on a graph, and thus gives geometric insight

into graph structure. The resistance distance has, for example, been applied in graph

theory to the areas of link prediction [3, 13] and graph sparsification [20]. Resistance

distance also has deep connections to the study of random walks on graphs [6,9]. A grow-

ing literature in graph theory addresses methods for computing the resistance distance

in graphs and computing the resistance distance in various families of graphs; see for

instance [1, 3, 4, 7, 12, 19,25] among others.

Resistance distance is closely related to two important constants in graph theory: the

Kirchhoff index of a graph, and Kemeny’s constant of a graph. The Kirchhoff index is

a measure of the total resistance in a graph, and is an important quantity in electrical

network theory that has been widely studied (for instance, see [14, 16, 18, 23, 25] and

references therein). Kemeny’s constant is a parameter associated to a random walk on a

graph that gives a measure of the average time a random walk takes to reach a vertex [10].

Kemeny’s constant also gives a measure of how well connected a graph is [5]. From work

in [9], Kemeny’s constant of a graph can be computed directly if all resistances in the

graph are known (see Theorem 2.6 below).

Recent research in [4] gives a formula that expresses the resistance distance between

vertices on a graph with a 2-separation (two vertices whose removal disconnects the graph)

in terms of resistances in the subgraphs involved in the 2-separation. In this paper, we

make use of these results to derive an explicit formula for the resistance distance in a

general family of graphs which we refer to as flower graphs (see Theorem 3.2 below).

Given any base graph G, the nth flower graph of G is the graph obtained by taking n

copies of G and identifying a selected pair of vertices in each copy in a cyclic nature. See

Figure 1 for an illustration. The precise definition is in Definition 3.1.

G
G

G

G
G

G

Figure 1. The 6th flower graph of G
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With our explicit formula for resistance, we are able to show that the maximum

resistance in a flower graph becomes unbounded as n approaches infinity. We are also

able to bound the Kirchhoff index and Kemeny’s constant in general flower graphs. In

addition, we apply our results to some specific families of flower graphs, namely those

where the base graph is a complete graph, and those where the base graph is a simple

cycle. This yields very simple formulas for the resistance in these specific families of flower

graphs. Using these, we are further able to compute exact formulas for the Kirchhoff index

and Kemeny’s constant for these graphs.

The relationship between the Kirchhoff index and Kemeny’s constant was first studied

in [15] where it is shown that if G is d-regular with n vertices, then Kf (G) = n
d
K(G). This

relationship is further studied in [11], [21], [22]. When the graph is not regular, the exact

relationship between the Kirchhoff index and Kemeny’s constant is less straightforward,

as our results indicate as well.

We remark that the family of flower graphs we have defined here can be viewed as a

generalization of the family of graphs referred to as (x, y)-flower graphs in [19], in which

the resistance of those graphs is obtained. Our general construction also contains as

an example the Sierpinski triangle graphs, whose resistance is determined in [4, 8]. Some

families of flower graphs also appear in the family of graphs whose resistance and Kirchhoff

index are considered in [24].

In work in [12], the resistance distance in random geometric graphs is analyzed, and

it is shown that as the number of vertices in a random geometric graph grows to infinity,

the resistance distance between two nodes approaches the sum of the reciprocals of their

degrees. The authors of [12] thus argue that the resistance distance is not meaningful as

a metric in random geometric graphs since the limiting resistance remains bounded and

depends only on degrees, and not the structure of the network. The results of the current

paper are in sharp contrast to this paradigm, since the resistance becomes unbounded

as the flower graph grows for any choice of base graph (see Theorem 3.5 and Corollary

3.6). Indeed, our results add to a growing body of research exhibiting families of graphs

with this property. See [3], for instance, for a discussion of this issue. Interestingly, many

flower graphs (depending on the base graph chosen) can be viewed as “geometric” graphs,

in that they can be exhibited as points in the plane which are adjacent if they are within

a certain distance of each other, but they are not random geometric graphs as considered
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in [12]. It is of interest to determine generally when the resistance distance in a family of

graphs will behave more like random geometric graphs of [12], or more like graphs we are

considering here.

2 Preliminaries

As mentioned in the introduction, the resistance distance is defined to be the effective

resistance between two vertices in a graph where each edge has a unit resistor. For

purposes of computing the resistance distance, we define this formally as follows (see [2]).

Definition 2.1. Let G be a connected graph with vertex set V (G) = {1, . . . , n} and let L

denote the Laplacian matrix of G. The effective resistance or resistance distance between

two vertices i, j is

rG(i, j) = (ei − ej)TL†(ei − ej),

where ei denotes the standard unit vector with a 1 in the ith position and 0 elsewhere, and

L† represents the Moore-Penrose pseudoinverse of the Laplacian matrix. The resistance

matrix of G is the matrix whose (i, j)-entry is rG(i, j).

2.1 N-separations of graphs

Our methods for deriving explicit formulas for resistance distance rely heavily on creating

n-separations of graphs (defined below) with easy to compute effective resistances.

Definition 2.2. An n-separation on a graph G is a pair of subgraphs G1, G2 such that

• V (G) = V (G1) ∪ V (G2),

• |V (G1) ∩ V (G2)| = n,

• E(G) = E(G1) ∪ E(G2), and

• E(G1) ∩ E(G2) = ∅

The set V (G1) ∩ V (G2) = {v1, · · · , vn} is called an n-separator of G.

Lemma 2.3 (Equation 4 of [4]). Given a graph G with a 1-separator u ∈ V (G), let G1

and G2 represent the two graphs created by the 1-separation.

If i ∈ V (G1) and j ∈ V (G2),

rG(i, j) = rG1(i, u) + rG2(j, u) (1)

-408-



Lemma 2.4 (Theorem 18 of [4]). Let G be a graph with a 2-separation, with i, j the two

vertices separating the graph, and G1, G2 the two graphs created by the separation.

If u, v are in the vertex set of G1, then

rG(u, v) = rG1(u, v)− [rG1(u, i) + rG1(v, j)− rG1(u, j)− rG1(v, i)]
2

4[rG1(i, j) + rG2(i, j)]
(2)

2.2 Kirchhoff index and Kemeny’s constant

Definition 2.5. Given a connected graph G, the Kirchhoff index Kf (G) is given by the

summation

Kf (G) =
1

2

∑
i,j∈G

rG(i, j).

Kemeny’s constant is a quantity arising in the study of Markov chains, which is de-

scribed in more detail in [9] (for example). For a random walk on a graph, Kemeny’s

constant gives a measure of the average length of a random walk between two vertices of

the graph. We will not need the full definition of Kemeny’s constant here, but we will use

the following result from [9] to calculate Kemeny’s constant in terms of resistance.

Theorem 2.6 (Corollary 1 of [17]). Let R be the resistance matrix of a connected graph

G with n vertices (i.e., the matrix whose (i, j) entry is rG(i, j)), q be the number of edges

in G, and d be the vector of degrees d1, d2, ..., dn. Kemeny’s constant is given by

K(G) =
1

4q
dTRd =

1

4q

∑
i,j∈G

didjrG(i, j).

The summation term in Theorem 2.6 is also known as the multiplicative degree-

Kirchhoff index and has also been extensively studied in mathematical chemistry.

3 Generalized flower graphs

We begin with the most general result, which is the main result of this paper. First,

we define the class of graphs that we are working with and then proceed to give explicit

formulas for resistance distance in terms of the effective resistance in smaller subgraphs.

Definition 3.1. Let G be a connected graph, x, y be two distinct vertices of G, and

n ≥ 3. A generalized flower of G, written Fn(G, x, y), is the graph obtained by taking n

vertex disjoint copies of the base graph G1, G2, · · ·Gn, and associating xi−1, the marked

vertex x in Gi−1, with yi for 1 < i < n and x1 with yn. We refer to Gi as the i-th petal of

the flower graph, and the set I = {x1, · · · , xn} as the associated vertices of the flower.
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We suppress the marked vertices x, y from our notation when their choice is clear from

context or the specification is unnecessary. Note that a flower graph Fn(G) of a connected

graph G is also connected.

The following theorem is our main result, which expresses the resistance in any flower

graph Fn(G) in terms of resistances in the base graph G.

Theorem 3.2. Given a generalized flower graph Fn(G) = Fn(G, x, y) of a connected graph

G with vertices u, v in different copies of G, label the copies such that u ∈ V (G1). Let d

be the number of copies of G between u, v inclusive, that is, v ∈ V (Gd). Let x, y be the

vertices of G connecting each Gi with Gi+1 and Gi−1. Then we have

rFn(G)(u, v) = rG(u, y) + rG(v, x) + (d− 2)rG(x, y)

− [rG(u, x) + rG(v, y)− rG(u, y)− rG(v, x)− 2(d− 1)rG(x, y)]2

4nrG(x, y)
.

If u, v are both in the same copy of G,

rFn(G)(u, v) = rG(u, v)− [rG(u, x) + rG(v, y)− rG(u, y)− rG(v, x)]2

4nrG(x, y)
.

Proof. We first prove the formula when u, v are in different copies of G. Label such that

u ∈ V (G1) and v ∈ V (Gd). If we let {x1, yd} be a 2-separator on Fn(G), we have a 2-

separation such that u and v are in the same component. We sometimes refer to {x1, yd}

as {i, j} as in Lemma 2.4. Let H1 be the graph of the separation containing u, v and H2

be the rest of the flower graph (see Figure 2). Then by Lemma 2.3

rH1(u, v) = rG(u, y) + (d− 2)rG(x, y) + rG(x, v).

Due to our labeling we also have

rH1(u, i) = rG(u, x) and

rH1(v, j) = rG(v, y)

Once again using Lemma 2.3 we get

rH1(u, j) = rG(u, y) + (d− 1)rG(x, y)

rH1(v, i) = rG(v, x) + (d− 1)rG(x, y)

rH1(i, j) = d · rG(x, y) and
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rH2(i, j) = (n− d)rG(x, y)

ji
G

G
G

G
G

G

u v

Figure 2. F6(G) with the {i, j} 2-separation and nodes u, v labeled

G G G G G G
i j j i
u v

Figure 3. F6(G) after applying the 2-separation

Plugging these values into Lemma 2.4 we get

rFn(G)(u, v) = rG(u, y) + rG(v, x) + (d− 2)rG(x, y)

− [rG(u, x) + rG(v, y)− rG(u, y)− rG(v, x)− 2(d− 1)rG(x, y)]2

4[drG(x, y) + (n− d)rG(x, y)]

= rG(u, y) + rG(v, x) + (d− 2)rG(x, y)

− [rG(u, x) + rG(v, y)− rG(u, y)− rG(v, x)− 2(d− 1)rG(x, y)]2

4nrG(x, y)

Thus we have arrived at our desired result.

Now we look at when u, v are in the same copy of G. This is really just a special case

of Lemma 2.4. Note that as above we get

rH1(i, j) + rH2(i, j) = nrG(x, y).

The next theorem will address where one might find the maximum effective resistance

in a flower graph. This class of graphs contains many symmetries, which causes the max-

imum effective resistance to occur at several points. Bapat shows that resistance distance

satisfies the properties of a metric on a graph. In particular, it satisfies the triangle in-

equality, so resistance distance also satisfies the following reverse triangle inequality (see

Chapter 10 of [2]).

Lemma 3.3. Let G be any graph, and let x, y, z be any vertices of G. Then

|rG(x, y)− rG(y, z)| ≤ rG(x, z)

-411-



Theorem 3.4. Let Fn(G) be as defined above. The effective resistance between two ver-

tices u, v ∈ Fn(G) will be greatest when u ∈ G1 and v ∈ Gd where d is between d = n
2

and

d = n
2

+ 2. If n is odd, then the maximum will always occur at d = n+1
2

.

Proof. Treating Theorem 3.2 as a function of d, standard techniques show this func-

tion is increasing for d ≤ n+2
2

+ rG(u,x)+rG(v,y)−rG(u,y)−rG(v,x)
2rG(x,y)

, decreasing for d ≥ n+2
2

+

rG(u,x)+rG(v,y)−rG(u,y)−rG(v,x)
2rG(x,y)

. By Lemma 3.3, the expression rG(u,x)+rG(v,y)−rG(u,y)−rG(v,x)
2rG(x,y)

is

between −1 and 1, and thus this function will achieve its maximum at some d such that

n
2
≤ d ≤ n

2
+ 2.

One might have expected the maximum resistance in a flower graph to always occur

between copies of G that are as far apart as possible, or in other words at d = n
2

+ 1, but

this result suggests otherwise. Below is an example of a flower graph where the maximum

resistance distance can occur at one of these less expected values of d.

u v

u

v
w

u

v

Figure 4. The base graph G (left) F4(G) (center) F5(G) (right)

In Figure 4 the maximum resistance distance between copies of vertices u, v from G

will occur at points u, v ∈ F4(G) where d = 2 as opposed to u,w ∈ F4(G) where d = 3.

For F5(G) the max for those specific vertices occurs where one would expect.

Theorem 3.5. Let Fn(G) and Fn+1(G) be generalized flower graphs as defined above. Let

u, v be vertices with the largest effective resistance distance in the graph. That is, u ∈ G1

and v ∈ Gd where n
2
≤ d ≤ n

2
+ 2. Then

lim
n→∞

[rFn+1(G)(u, v)− rFn(G)(u, v)] =
1

4
rG(x, y)

Proof. Assume rFn(G)(u, v) is a maximum for Fn(G). Then d = n
2

+ α where 0 ≤ α ≤ 2.

Assume similarly that rFn+1(G)(u, v) is a maximum for Fn+1(G). Then d = n+1
2

+ β where

0 ≤ β ≤ 2. Then by Theorem 3.2 we have

rFn+1(G)(u, v) = rG(u, y) + rG(v, x) +

(
n+ 1

2
+ β − 2

)
rG(x, y)

−
[rG(u, x) + rG(v, y)− rG(u, y)− rG(v, x)− 2(n+1

2
+ β − 1)rG(x, y)]2

4(n+ 1)rG(x, y)
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and also

rFn(G)(u, v) = rG(u, y) + rG(v, x) +
(n

2
+ α− 2

)
rG(x, y)

−
[rG(u, x) + rG(v, y)− rG(u, y)− rG(v, x)− 2(n

2
+ α− 1)rG(x, y)]2

4nrG(x, y)
.

For convenience in writing, let γ = rG(u, x)+rG(v, y)−rG(u, y)−rG(v, x)−2αrG(x, y)+

2rG(x, y) and λ = rG(u, x)+rG(v, y)−rG(u, y)−rG(v, x)−2βrG(x, y)+rG(x, y). Plugging

in γ and λ and subtracting the previous two equations yields

rFn+1(u, v)− rFn(u, v) =

(
1

2
+ β − α

)
rG(x, y)

+
(n+ 1)[γ − nrG(x, y)]2 − n[λ− nrG(x, y)]2

4n(n+ 1)rG(x, y)

=

(
1

2
+ β − α

)
rG(x, y) + (n+ 1)

γ2 − 2γnrG(x, y) + n2rG(x, y)2

4n2(1 + 1
n
)rG(x, y)

− nλ
2 − 2λnrG(x, y) + n2rG(x, y)2

4n2(1 + 1
n
)rG(x, y)

=

(
1

2
+ β − α

)
rG(x, y)

+
2λ− 2γ + rG(x, y)

4(1 + 1
n
)

+
n(γ2 − 2γrG(x, y)− λ2) + γ2

4n2(1 + 1
n
)rG(x, y)

Note that 2λ− 2γ = 4αrG(x, y)− 4βrG(x, y)− 2rG(x, y). Now taking the limit as n goes

to infinity we have

lim
n→∞

rFn+1(u, v)− rFn(u, v) = lim
n→∞

[(
1

2
+ β − α

)
rG(x, y) +

n2rG(x, y)2(4α− 4β − 1)

4n2(1 + 1
n
)rG(x, y)

+
n(γ2 − 2γrG(x, y)− λ2) + γ2

4n2(1 + 1
n
)rG(x, y)

]
=

(
1

2
+ β − α

)
rG(x, y) +

(
α− β − 1

4

)
rG(x, y)

=
1

4
rG(x, y).

Corollary 3.6. For a class of flower graphs with the same base graph G,

lim
n→∞

max
u,v

(rFn(G)(u, v)) =∞.
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3.1 Bounds for Kirchhoff index and Kemeny’s constant

While we have not derived formulae for the Kirchhoff Index and Kemeny’s constant for

generalized flower graphs, we have derived bounds on these values.

Theorem 3.7. Let Kf (Fn(G)) be the Kirchhoff index for the nth flower graph of G and

Kf (G) be Kirchhoff index for the base graph G. Let |V (G)| = m and r = rG(x, y). Then

the following inequality holds.

nKf (G)− m(m− 1)r

2
≤ Kf (Fn(G)) ≤ Kf (G)(n+ nm(n− 1)) +

r(n3 − n2)m2

4
.

Proof. Here we will write the Kirchhoff Index in terms of the resistances that exist within

a copy of G and the resistances that span into different copies of G. We refer to resistance

distance in Fn(G) as rF (i, j) and resistance distances in G as r(i, j).

For the lower bound we will add only the resistances between vertices that are in the

same copy of G by using Theorem 3.2. We also make use of Lemma 3.3 in the third line.

Kf (Fn(G)) =
n

2

∑
i,j∈G1

rF (i, j) +
∑

i∈Gk,j∈Gl
i/∈Gl

rF (i, j)

≥ n

2

∑
i,j∈G

(
r(i, j)− [r(i, x) + r(j, y)− r(i, y)− r(j, x)]2

4nr(x, y)

)
≥ nKf (G)− n

2

∑
i,j∈G

r(x, y)

n

= nKf (G)− m(m− 1)r(x, y)

2

Now for the upper bound. We again will add resistances in the same copy of G and

those in strictly different copies of G using Theorem 3.2.

Kf (Fn(G)) =
1

2

∑
i,j∈F

rF (i, j)

=
n

2

∑
i,j∈G1

rF (i, j) +
∑

i∈Gk,j∈Gl
j /∈Gk

rF (i, j)

≤ nKf (G) +
n

2

n∑
d=2

m∑
i=1

m∑
j=1

(r(i, y) + r(x, j) + (d− 2)r(x, y))

= nKf (G) +

(
n

2

)
m

m∑
i=1

r(i, y) +

(
n

2

)
m

m∑
j=1

r(x, j) +

(
n

2

)
r(x, y)nm2

2
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≤ nKf (G) + n(n− 1)mKf (G) +
r(x, y)n2(n− 1)m2

4

= Kf (G)(n+ nm(n− 1)) +
r(x, y)(n3 − n2)m2

4

The lower bound on Kirchhoff index is admittedly quite rough as we are throwing

away a lot of information in the proof. However, the Kirchhoff index of a flower graph

with G = P2 and n = 3 will achieve our lower bound. Note that F3(P2) is simply a

complete graph on 3 vertices. In Sections 3 and 4 we find exact expressions for certain

families of flower graphs. These examples suggest that the upper bound is closer to the

true value.

Theorem 3.8. Let K(Fn(G)) be Kemeny’s constant for the nth flower graph of G and

K(G) be Kemeny’s constant for the base graph G. Let |V (G)| = m, |E(G)| = q, and

r = rG(x, y). Then the following inequality holds.

K(G)− m(m− 1)3r

2nq
≤ K(Fn(G)) ≤ K(G)(4n− 1) +

r(n2 − 3n+ 2)(2m− 2)2m2

8qG

Proof. We proceed in similar fashion as we did with the Kirchhoff index. Note that

|E(Fn(G))| = nq. Note that the maximum possible degree of a vertex in a flower graph

is 2(m− 1).

K(Fn(G)) =
1

4nq

∑
i,j∈F

diF djF rF (i, j)

≥ 1

4q

∑
i,j∈G1

diF djF

(
r(i, j)− [r(i, x) + r(j, y)− r(i, y)− r(j, x)]2

4nr(x, y)

)
≥K(G)− 1

4

∑
i,j∈G1

4(m− 1)2r(x, y)

n

= K(G)− m(m− 1)3r(x, y)

2nq

Now we prove the upper bound. Since the degree of vertices x, y will be smaller in G than

they are in Fn(G) we take caution and account for that in order to preserve the inequality.

K(Fn(G)) =
1

4nq

∑
i,j∈F

diF djF rF (i, j)

=
1

4q

∑
i,j∈Gk

diF djF rGk
(i, j) +

1

4nq

∑
i∈Gk,j∈Gl

j /∈Gk

diF djF rF (i, j)
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≤K(G) +
1

4q

∑
i∼y

diGdxG
rG(i, y)

+
1

4q

∑
j∼x

djGdyGrG(x, j) +
1

4nq

∑
i∈Gk,j∈Gl

i/∈Gl

diF djF rF (i, j)

≤ 3K(G) +
1

4q

n∑
d=2

m∑
i=1

m∑
j=1

diF djF (rG(i, y) + rG(x, j) + (d− 2)rG(x, y))

= 3K(G) +
n− 1

4q

m∑
i=1

m∑
j=1

diF djF (rG(i, y) + rG(x, j))

+
rG(x, y)(n2 − 3n+ 2)

8q

m∑
i=1

m∑
j=1

diF djF

≤ 3K(G) + 2(n− 1)K(G) +
n− 1

4q

∑
i∼y

diGdxG
rG(i, y)

+
n− 1

4q

∑
j∼x

djGdyGrG(x, j) +
rG(x, y)(n2 − 3n+ 2)(2m− 2)2m2

8q

≤ (4n− 1)K(G) +
rG(x, y)(n2 − 3n+ 2)(2m− 2)2m2

8q

As with the lower bound of the Kirchhoff index, the lower bound for Kemeny’s constant

is quite rough. We are unaware of examples achieving the lower bound. In Sections 4 and

5, we derive exact expressions for Kemeny’s constant in certain families of flower graphs.

As with the Kirchhoff index, these examples suggest the upper bound is closer to the true

value.

4 Complete flower graphs

The results given by Theorem 3.2 are best used by applying them to subclasses of flower

graphs where the base graph G is from a specific family of graphs. By studying a family

of graphs in which resistance distance is well-known or easily derived, we are able to

derive expressions in terms of distances and resistances in the base graph in many cases.

If it is possible to derive explicit expressions for resistance, it is also possible to create

formulae for expressing Kemeny’s constant and the Kirchoff index explicitly. The first

such subclass of flower graphs that we will examine is the complete flower graph.

Definition 4.1. A complete flower graph is a flower graph where G = Km for some m ≥ 3

and x, y ∈ G are arbitrary provided that x 6= y. We denote a complete flower Fn(Km).
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Figure 5. F5(K4), a complete flower on 5 copies of K4

4.1 Resistance distance

As expressed in the introduction to this section, if we can express resistance distance in

the base graph simply, the generalized formulae become more useful. We may easily find

an expression for the effective resistance on a complete graph. The following Lemma is

easily verified with results from chapter 10 of [2].

Lemma 4.2. Let u, v ∈ V (Km), where m ≥ 3. Then the resistance distance between u

and v is given by

rKm(u, v) =
2

m
if u 6= v (3)

Theorem 4.3. Let G be a complete flower Fn(Km) and u and v be vertices in G. Recall

that I is the set of associated vertices connecting each copy of Km, then

rFn(Km)(u, v) =
2d(n− d)

mn
if both u, v ∈ I

rFn(Km)(u, v) =
2d

m
− (2d− 1)2

2mn
if one of u, v ∈ I

rFn(Km)(u, v) =
2d

m
− 2(d− 1)2

mn
if neither u, v ∈ I

where d is the number of flower petals separating u and v including the petals containing

u, and v.

Proof. If u = v, then rFn(Km)(u, v) = 0, so we assume that u 6= v.

Case 1. Suppose that u, v ∈ I. Let i, j be the vertices of the 2-separation as in the proof

of Theorem 3.2. The simplest 2-separation occurs when we set u = i and v = j, so let G1

and G2 be the graphs created by the 2-separator {u, v} and d be the number of complete

graphs in G1. The terms rG1(u, i) and rG1(v, j) are both zero due to the selection of i and

-417-



j, and with a simple summation we have rG1(u, v) = rG1(u, j) = rG1(v, i) =
∑d

i=1
2
m

= 2d
m

.

From Theorem 3.2, we have

rFn(Km)(u, v) =
2d

m
−
[
−2d

m
− 2d

m

]2
4
(
2n
m

)
which gives the desired result when simplified.

Case 2. Suppose, without loss of generality, that u ∈ I and v ∈ O. We take i = u

to be one of the 2-separators and let the other 2-separator j be a vertex adjacent to v

such that u and v are in the same component of the 2-separation. The resistances remain

identical to those of case 1 with the exception that rG1(v, j) becomes 2
m

, so

rFn(Km)(u, v) =
2d

m
−
[
2
m
− 2d

m
− 2d

m

]2
4
(

2d
m

+ 2(n−d)
m

)
rFn(Km)(x, y) =

2d

m
− (2d− 1)2

2mn

Case 3. Suppose that u, v ∈ O. If we select i ∈ I to be either vertex adjacent to u

and j ∈ I to be adjacent to v such that u and v are both in the same component of the

2-separation. The only resistance that changes from case 2 is rG1(u, i) = 2
m

, giving

rFn(Km)(u, v) =
2d

m
−
[
2
m

+ 2
m
− 2d

m
− 2d

m

]2
4
(

2d
m

+ 2(n−d)
m

)
=

2d

m
− 2(d− 1)2

mn

This gives the interesting result that if u, v are in the same copy of Km and neither is

in I, rFn(Km)(u, v) = rKm(u, v).

Theorem 4.4. The maximum resistance in a complete flower graph Fn(Km) is given by

max(rFn(Km)(u, v)) =
n+ 4

2m
if n is even

max(rFn(Km)(u, v)) =
n2 + 4n− 1

2mn
if n is odd

Proof. Using Theorems 3.4 and 4.3 to compare potential maximums we find that the

largest resistance occurs between nodes u, v ∈ O with a value of d = n
2

+ 1 if n is even

and d = n+1
2

if n is odd.
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4.2 Kirchhoff index and Kemeny’s constant

Theorem 4.5. The Kirchhoff Index of a complete flower is given by

Kf (Fn(Km)) =
n(5 + 12n+ n2 +m2(−1 + 6n+ n2)−m(1 + 18n+ 2n2))

6m

Proof. Because the closed-form expressions for the resistance distance vary, to compute

the Kirchhoff index of a complete flower Fn(Km), we must take a sum across each of the

different expressions.

To get the result we will first add all the resistances between vertices in I, this will

be our first summation term. Next we add resistances between all possible vertices where

exactly one of them is in I. That is our second summation term. We next add all the

resistances between vertices in the same copy of Km but are not in I. That is our third

term. The final summation term adds all possible resistance distances between vertices

in different copies of Km where neither vertex is in I.

Kf (Fn(Km)) =
1

2

(
n

n−1∑
d=1

(
2d(n− d)

mn

)
+ 2n(m− 2)

n∑
d=1

(
2d

m
− (2d− 1)2

2mn

)

+ n(m− 2)(m− 3)

(
2

m

)
+n(m− 2)2

n∑
d=2

(
2d

m
− 2(d− 1)2

mn

))
Simplifying these summations gives the desired result.

Theorem 4.6. Kemeny’s Constant of a complete flower is given by

K(Fn(Km)) =
(m− 1)(−12n+m(n2 + 6n− 1))

6m

Proof. We begin by noting that there are nm(m−1)
2

edges in a complete flower graph. Then

we proceed as we did to find the Kirchhoff index only multiplying by the degrees of the

vertices as Theorem 2.6 calls for. Note that if i ∈ I and j ∈ O then di = 2m − 2 and

dj = m− 1. Then using Theorem 2.6 we have

K(Fn(Km)) =
1

2nm(m− 1)

(
n(2m− 2)2

n−1∑
d=1

(
2d(n− d)

mn

)
+ 2n(m− 2)(m− 1)(2m− 2)

n∑
d=1

(
2d

m
− (2d− 1)2

2mn

)
+

2n

m
(m− 2)(m− 3)(m− 1)2

+n(m− 2)2(m− 1)2
n∑

d=2

(
2d

m
− 2(d− 1)2

mn

))
Once again, simplifying this expression will yield the desired result.
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Comparing these results to the bounds from Theorems 3.7, 3.8 we find that as n →

∞ the ratio of the upper bound for the Kirchhoff index to the actual Kirchhoff index

approaches 3m2

(m−1)2 . Similarly, we find that as n→∞ the ratio of the upper bound for the

Kemeny’s constant to the actual Kemeny’s constant approaches 12.

4.3 Example: SFn

Definition 4.7. A sunflower graph is a subclass of flower graphs where G = K3. We

denote a sunflower graph with n copies of K3 as SFn. See Figure 6.

The construction of SFn creates a cycle on n vertices consisting of the u, v we selected.

We refer to vertices on this cycle as the inner vertex set of SFn and frequently refer to

the copies of K3 as the petals of SFn.

Figure 6. SF6

4.3.1 Formulas for resistance distance

Due to the previously computed formulae for complete flowers, deriving expressions for

the resistance distance between vertices on a sunflower graph is trivial.

Theorem 4.8. Let SFn be a sunflower graph. Recall that I is the set of associated vertices

connecting each copy of K3, then

rSFn(u, v) =
2d(n− d)

3n
if both u, v ∈ I (4)

rSFn(u, v) =
4nd− 4d2 + 4d− 1

6n
if only u ∈ I (5)

rSFn(u, v) =
2(nd− (d− 1)2)

3n
if neither u, v ∈ I (6)

Where d is the number of flower petals separating u and v including the petals containing

u and v.

Proof. Substituting m = 3 into Theorem 4.3 yields the desired result.
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From Theorems 4.4, 3.5 and Corollary 3.6 we have

max(rSFn(u, v)) =
n+ 4

6
if n is even

max(rSFn(u, v)) =
n2 + 4n− 1

6n
if n is odd

lim
n→∞

[max(rSFn+1(u, v)−max(rSFn(u, v)] =
1

6

lim
n→∞

max(rSFn(u, v)) =∞.

4.3.2 Kirchhoff index and Kemeny’s constant

Theorem 4.9. The Kirchhoff Index of a Sunflower Graph on n triangles, SFn, is given

by

Kf (SFn) =
1

18
(4n3 + 12n2 − 7n).

Proof. Using m = 3 with the result in Theorem 4.5 and simplifying gives the desired

result.

Theorem 4.10. Kemeny’s constant for a Sunflower Graph SFn is given by

K(SFn) =
1

3
(n2 + 2n− 1)

Proof. Plugging in m = 3 into the formula for Kemeny’s constant from Theorem 4.6 and

simplifying yields the desired result.

5 Generalized sunflower graphs

The construction of complete flowers arose from generating a flower graph with the base

graph being a complete graph. We see sunflower graphs as a subclass of complete flowers,

but if we instead take the base graph to be a cycle on n vertices, it is possible to construct

another class of graphs that contains sunflower graphs.

Definition 5.1. A generalized sunflower, denoted Fn(Cm), is a class of flower graphs

obtained by setting G = Cm and selecting two vertices x, y in this cycle, then following

the construction of flower graphs. In each Cm we call the shorter path from x to y D1

and the longer path D2. Let p = d(x, y).
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Figure 7. F4(C6)

5.1 Resistance distance

Lemma 5.2. Let Cm be a cycle on m vertices. Then the resistance distance between any

vertices u, v ∈ V (Cm) is given by the formula:

rCm(u, v) =
(m− d(u, v))d(u, v)

m
(7)

where d(u, v) indicates the standard distance between two vertices of a graph.

Proof. This result is easy to verify with techniques from chapter 10 of [2].

Theorem 5.3. If G is a generalized sunflower graph Fn(Cm) and u ∈ Cmi
, v ∈ Cmj

,

i 6= j, then

rG(u, v) =
(pu + l)(m− pu − l) + k(m− k) + pu(m− pu)(d− 2)

m

− [pv(m− pv − 2k) + pu(m− pu + 2l)− 2dpu(m− pu)]2

4nmpu(m− pu)
.

If u, v ∈ Cmi
, then

rG(u, v) =
(k − l)(m− k + l)

m
− pu(k − l)2

nm(m− pu)
if u, v ∈ Di

rG(u, v) =
(k + l)(m− k − l)

m
− [p2u + pu(2l −m) + pv(m− 2k − pv)]2

4nmpu(m− pu)
otherwise

where d is the number of flower petals separating u and v, inclusive, pu is the length of

the path from xi to yi that does not contain u, pv is the length of the path from xj to yj

that does not contain v, l is the distance from x to u along the path containing u, and k

is the distance from x to v along the path containing v. If u or v ∈ I, we instead define

pu to be the distance from x to y in the base graph G. If pu = pv label such that k ≥ l.

Proof. We first consider the case where u ∈ Cmi
and v ∈ Cmj

. Label such that Cmi
= Cm1

and Cmj
= Cmd

. Then by Lemma 5.2 we have

rCm(u, y) =
(pu + l)(m− pu − l)

m
rCm(u, x) =

l(m− l)
m
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rCm(v, y) =
(pv + k)(m− pv − k)

m
rCm(v, x) =

k(m− k)

m
rCm(x, y) =

pu(m− pu)

m
.

Plugging these values into Theorem 3.2 and simplifying yields the desired result.

Next consider the cases where u, v are in the same copy of Cm. The same resistances

from above will hold in these cases, all that is left is to determine rCm(u, v).

If u, v ∈ Di, label such that k ≥ l. Then there is a path of length k − l between u, v

so we have rCm(u, v) = (k−l)(m−k+l)
m

. Also note that in this case pu = pv. Using this with

Theorem 3.2 and simplifying we get the desired result.

If u ∈ Di and v ∈ Dj we have a path of length l + k between u, v so we have

rCm(u, v) = (l+k)(m−l−k)
m

. Using this with Theorem 3.2 and simplifying we get the desired

result.

v

x2

u

x1

Figure 8. Here if we use d = 2 then l = 2 as d(u, x) = 3 measured along the path
in D2 and k = 1 since d(x, v) = 1 measured along the path in D1.

5.2 Kirchhoff index and Kemeny’s constant

Theorem 5.4. The Kirchhoff Index of a Generalized Sunflower Graph is given by

Kf (Fn(Cm)) =
n(pm− p2) (n2(m− 1)2 +m2(4− 6n) + 6mn− 1)

12m

− n(m3 +m− 2− 2n(m− 1)2(m+ 1)

12

Proof. Our goal is to add the resistance distance over all possible pairs of vertices u, v in

our graph. As some of our formulas overlap on a few edge cases we will be careful not to

overcount. The first sum below adds all the resistances r(u, v) where u, v ∈ D1 and u, v

are in different copies of G. This also catches some of the edge cases where at least one

of u, v is a connector vertex. The second sum is over all u, v ∈ D2 with u, v in different

copies of G. The third sum adds all the r(u, v) with u ∈ D2, v ∈ D1 with u, v in different

copies of G. The last three sums will take care of cases where u, v are in the same copy of
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G. The fourth sum adds all the resistances with u, v ∈ D1. The fifth sum adds resistances

with u ∈ D2, v ∈ D1. The last sum adds resistances with u, v ∈ D2. Notice that except

for the first two sums, we must multiply by two in order to add not only r(u, v) but also

r(v, u) as Definition 2.5 calls for.

Kf (Fn(Cm)) =
1

2

[
n

n∑
d=2

p−1∑
l=0

p−1∑
k=0

(
k(m− k) + (p− l)(m− p+ l) + p(m− p)(d− 2)

m

−(m− p)(k − l + p(d− 1))2

nmp

)
+ n

n∑
d=2

m−p−1∑
l=1

m−p−1∑
k=1

(
(p+ l)(m− p− l) + k(m− k) + p(m− p)(d− 2)

m

−p(l − k +m+ p(d− 1)−md)2

nm(m− p)

)
+ 2n

n∑
d=2

m−p−1∑
l=1

p∑
k=1

(
(p+ l)(m− p− l) + k(m− k) + p(m− p)(d− 2)

m

−(p2(d− 1) + p(k + l +m−md)− km)2

nmp(m− p)

)
+ 2n

p−1∑
l=0

p−1∑
k=l+1

(
(k − l)(m− k + l)

m
− (k − l)2(m− p)

nmp

)

+ 2n

m−p−1∑
l=1

p∑
k=1

(
(k + l)(m− l − k)

m
− (p(k + l)− km)2

nmp(m− p)

)

+2n

m−p−1∑
l=1

m−p−1∑
k=l+1

(
(k − l)(m− k + l)

m
− p(k − l)2

nm(m− p)

)]

Simplifying these sums will yield the desired result.

Theorem 5.5. Kemeny’s Constant is given by

K(SFn(Cm)) =
(n2 − 6n+ 4)(pm− p2) +m2(2n− 1)− 2n− 1

6

Proof. We proceed similarly as we did for the Kirchhoff index but take the degrees of the

vertices into account as Theorem 2.6 calls for. If u ∈ I then du = 4. Otherwise du = 2.

The first summation term adds the effective resistance between vertices u, v in D1 in

different copies of G where exactly one of u, v is in I. We take advantage of symmetry

and multiply by 2 to help accomplish this. The second term adds resistances where both

u, v ∈ I. The third term adds resistance where u, v ∈ D1 and u, v ∈ O and u, v are in

different copies of G.
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The fourth term adds resistances with u, v ∈ D2, u, v ∈ O, and u, v in different copies

of G.

For all the following sums we will multiply by 2 in order to count both r(u, v) and

r(v, u).

The fifth term adds resistances where u ∈ D2 and v ∈ I and u, v are in different copies

of G. The sixth term adds resistances where u, v ∈ D2 and u, v ∈ O and u, v are in

different copies of G.

The seventh term adds resistances where u, v ∈ D1, v ∈ I, and u, v ∈ Gk. The eighth

term adds resistances where u, v ∈ D1, u, v ∈ O, and u, v ∈ Gk.

The ninth term adds resistances where u ∈ D2, v ∈ I, and u, v ∈ Gk. The tenth term

adds resistances where u ∈ D2, v ∈ D1, u, v ∈ O, and u, v ∈ Gk.

The final term adds resistances where u, v ∈ D2, u, v ∈ O, and u, v ∈ Gk.

K(Fn(Cm)) =
1

4mn

[
4 · 2 · 2n

n∑
d=2

p−1∑
k=1

(
k(m− k) + p(m− p)(d− 1)

m
− (m− p)(k + p(d− 1))2

nmp

)

+ 4 · 4n
n∑

d=2

p(m− p)(n− d + 1)(d− 1)

nm

+ 2 · 2n
n∑

d=2

p−1∑
l=1

p−1∑
k=1

(
k(m− k) + (p− l)(m− p + l) + p(m− p)(d− 2)

m

−(m− p)(k − l + p(d− 1))2

nmp

)
+ 2 · 2n

n∑
d=2

m−p−1∑
l=1

m−p−1∑
k=1

(
(p + l)(m− p− l) + k(m− k) + p(m− p)(d− 2)

m

−p(l − k + m + p(d− 1)−md)2

nm(m− p)

)
+ 2 · 4 · 2n

n∑
d=2

m−p−1∑
l=1

(p + l)(m− p− l) + p(m− p)(d− 1)

m
− p(l + d(p−m))2

nm(m− p)

+ 2 · 2 · 2n
n∑

d=2

m−p−1∑
l=1

p−1∑
k=1

(
(p + l)(m− p− l) + k(m− k) + p(m− p)(d− 2)

m

−(p2(d− 1) + p(k + l + m−md)− km)2

nmp(m− p)

)
+ 2 · 4 · 2n

p−1∑
k=1

(
k(m− k)

m
− k2(m− p)

nmp

)

+ 2 · 2 · 2n
p−1∑
l=1

p−1∑
k=l+1

(
(k − l)(m− k + l)

m
− (k − l)2(m− p)

nmp

)

+ 2 · 4 · 2n
m−p−1∑
l=1

(
(p + l)(m− p− l)

m
− p(m− p− l)2

nm(m− p)

)
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+ 2 · 2 · 2n
m−p−1∑
l=1

m−p−1∑
k=1

(
(k + l)(m− k − l)

m
− (p(k + l)− km)2

nmp(m− p)

)

+ 2 · 2 · 2n
m−p−1∑
l=1

m−p−1∑
k=l+1

(
(k − l)(m− k + l)

m
− p(k − l)2

nm(m− p)

)]
Simplifying these summations will yield the desired result.

Comparing these results to the bounds from Theorems 3.7, 3.8 we find that as n →

∞ the ratio of the upper bound for the Kirchhoff index to the actual Kirchhoff index

approaches 3m2

(m−1)2 and the ratio of the upper bound for Kemeny’s constant to the actual

Kemeny’s constant approaches 3(m− 1)2.

References

[1] R. B. Bapat, Resistance distance in graphs, Math. Student 68 (1999) 87–98.

[2] R. B. Bapat, Graphs and Matrices , Springer, London, 2010.

[3] W. Barrett, E. J. Evans, A. E. Francis, Resistance distance in straight linear 2-trees,

Discr. Appl. Math. 258 (2019) 13–34.

[4] W. Barrett, E. J. Evans, A. E. Francis, M. Kempton, J. Sinkovic, Spanning 2-forests

and resistance distance in 2-connected graphs, Discr. Appl. Math. 284 (2020) 341–

352.

[5] J. Breen, S. Butler, N. Day, C. DeArmond, K. Lorenzen, H. Qian, J. Riesen, Com-

puting Kemeny’s constant for a barbell graph, El. J. Lin. Algebra 35 (2019) 583–598.

[6] P. G. Doyle, J. L. Snell, Random Walks and Electric Networks , Math. Assoc. Am.,

Washington, 1984.

[7] J. W. Essam, Z. Z. Tan, F. Y. Wu, Resistance between two nodes in general position

on an m× n fan network, Phys. Rev. E 90 (2014) #032130.

[8] Z. Jiang, W. Yan, Some two-point resistances of the Sierpinski gasket network, J.

Stat. Phys. 172 (2018) 824–832.

[9] S. Kirkland, Z. Zeng, Kemeny’s constant and an analogue of Braess’ paradox for

trees, El. J. Lin. Algebra 31 (2016) 444–464.

[10] S. J. Kirkland, M. Neumann, Group Inverses of M-Matrices and Their Applications ,

CRC Press, Boca raton, 2012.

[11] R. E. Kooij, J. L. A. Dubbeldam, Kemeny’s constant for several families of graphs

and real-world networks, Discr. Appl. Math. 285 (2020) 96–107.

-426-



[12] U. V. Luxburg, A. Radl, M. Hein, Getting lost in space: Large sample analysis of

the resistance distance, in: J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S.

Zemel, A. Culotta (Eds.), Advances in Neural Information Processing Systems 23 ,

Curran Associates, 2010, pp. 2622–2630.

[13] B. Pachev, B. Webb, Fast link prediction for large networks using spectral embedding,

J. Complex Networks 6 (2018) 79–94.

[14] J. L. Palacios, Closed-form formulas for Kirchhoff index, Int. J. Quantum Chem. 81

(2001) 135–140.

[15] J. L. Palacios, On the Kirchhoff index of regular graphs, Int. J. Quantum Chem. 110

(2010) 1307–1309.

[16] J. L. Palacios, On the Kirchhoff index of graphs with diameter 2, Discr. Appl. Math.

184 (2015) 196–201.

[17] J. L. Palacios, J. M. Renom, Broder and karlin’s formula for hitting times and the

Kirchhoff index, Int. J. Quantum Chem. 111 (2011) 35–39.

[18] Y. J. Peng, S. C. Li, On the Kirchhoff index and the number of spanning trees of

linear phenylenes, MATCH Commun. Math. Comput. Chem. 77 (2017) 765–780.

[19] Y. Shangguan, H. Chen, Two-point resistances in a family of self-similar (x, y)-flower

networks, Phys. A: Stat. Mech. Appl. 523 (2019) #02.

[20] D. A. Spielman, N. Srivastava, Graph sparsification by effective resistances, SIAM

J. Comput. 40 (2011) 1913–1926.

[21] X. Wang, J. L. A Dubbeldam, P. Van Mieghem, Kemeny’s constant and the effective

graph resistance, Lin. Algebra Appl. 535 (2017) 231–244.

[22] W. Xu, Y. Sheng, Z. Zhang, H. Kan, Z. Zhang, Power-law graphs have minimal

scaling of kemeny constant for random walks, in: Y. Huang, I. King, T. Y. Liu, M.

van Steen (Eds.), WWW ’20: Proceedings of the Web Conference 2020 , ACM, 2020,

pp. 46–56.

[23] Y. J. Yang, X. Y. Jiang, Unicyclic graphs with extremal Kirchhoff index, MATCH

Commun. Math. Comput. Chem. 60 (2008) 107–120.

[24] W. J. Yin, Z. F. Ming, Q. Liu, Resistance distance and Kirchhoff index for a class of

graphs, Math. Problems Engin. 2018 (2018) #1028614.

[25] H. P. Zhang, Y. J. Yang, Resistance distance and Kirchhoff index in circulant graphs,

Int. J. Quantum Chem. 107 (2007) 330–339.

-427-


