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Abstract

The aims of this note are: (i) to identify clearly a family of graphs which attain

the equality in several lower bounds for the Kirchhoff index R(G) of a graph G; (ii)

to enlarge the set of graphs which attain the equality in a classical lower bound for

R(G); (iii) to provide a new lower bound for R(G) in terms of only four parameters

(number of vertices, number of edges, number of pendent vertices and smallest non-

pendant degree) which is better than or non-comparable to similar bounds obtained

in the literature; (iv) to suggest how to obtain a cohort of lower bounds for R(G)

in terms of other descriptors, where the equalities are attained by large families of

graphs, and to give two examples of such bounds.

1 Introduction

Let G = (V,E) be a finite simple connected graph with vertex set V = {1, 2, . . . , n}, edge

set E and degrees ∆ = d1 ≥ d2 = δ2 ≥ · · · ≥ dn = δ. A graph is d-regular if all its vertices

have degree d. A graph is (a, b)-regular if its vertices have degree either a or b. For all

graph theoretical terms the reader is referred to reference [22]. The Kirchhoff index is

defined as

R(G) =
∑
i<j

Rij,
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where Rij is the effective resistance between i, j ∈ v when the graph is considered as an

electric network whose edges are unit resistors. It was introduced in [9] and arguably one

of the most studied descriptors in Mathematical Chemistry. Of all aspects regarding this

descriptor, we will focus here solely on the lower bounds.

The first general lower bound for R(G) was given in [15] and it states that

R(G) ≥ R(Kn), (1)

where the equality is attained only for Kn.

The theme of lower bounds for R(G) has attracted considerable attention through the

years, and one particularly fruitful technique has been the use of majorization. Some

relevant articles devoted to this theme, though not used in this note, are [2–4,14].

In [23], Zhou and Trinajstić reported, among other lower bounds for R(G), the follow-

ing inequality:

R(G) ≥ −1 + (n− 1)I(G), (2)

where I(G) is the inverse degree index, defined as

I(G) =
n∑
i=1

1

di
. (3)

These authors stated that the equality is attained by the complete graph Kn and the

complete bipartite graphs Kt,n−t, for 1 ≤ t ≤ dn
2
e.

In [17], we found that for d-regular graphs we have

R(G) ≥ n2 − n− d
d

, (4)

where the equality is attained by Kn and a family of graphs, later denoted Γd by E.

Milovanović and I. Milovanović, that originally was described as the set of d-regular

graphs with diameter 2 and such that the number of common neighbors between two

vertices at distance 2 is d.

It is evident that (4) is a consequence of (2), and therefore our only real new contri-

bution in [17] was to exhibit the family Γd, which attains the equality in (2), and that we

showed to be nonempty by exhibiting specific examples. Later in [19] we reviewed these

examples and noticed that they were all equal to the complete r-partite graph Ks,s,...,s for

some r and s such that rs = n, and could not find any other examples.

E. Milovanović, I. Milovanović and their collaborators, found in a series of articles

( [5, 6, 8]) a new generation of lower bounds for R(G) where the equalities are attained
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by a large collection of graphs, which includes the family Γd, and that are given either in

terms of a few parameters or in terms of other indices. Also in [7] they found some lower

bounds expressed in terms of the number of spanning trees. Specifically, of interest for

our purposes is this bound on two parameters found in [6]:

R(G) ≥ n2(n− 1)

2|E|
− 1, (5)

where the equality is attained by Kn, Kn
2
,n
2
, or G ∈ Γd.

Also, in [6] there is a collection of lower bounds depending on at most four parameters

from the set of parameters n, |E|, ∆, ∆2 and δ, and where the equality is attained by a

slightly larger set of graphs than that of (5). For example they have these two bounds:

R(G) ≥ n− 1−∆

∆
+
n− 1

δ
+

(n− 1)(n− 2)2

2|E| −∆− δ
, (6)

and

R(G) ≥ n− 1−∆

∆
+
n− 1

∆2

+
(n− 1)(n− 2)2

2|E| −∆−∆2

, (7)

where the equalities are attained by Kn, K1,n, Kn
2
,n
2
, and G ∈ Γd.

When discussing a bound for a certain descriptor we can distinguish three aspects:

(i) the universe of graphs for which the bound applies (for instance, in (2) the universe

is the set of all graphs, in (4), only those which are regular); (ii) the set of parameters

involved (for instance, in (2) the parameters are the degrees of all vertices, whereas in (4)

the parameters are n and d); when the set of parameters for two bounds are the same,

the authors in [6] say that bounds belong to the same class; (iii) the set of graphs for

which the equality in the bound is attained, and that for lack of a better word we will

call henceforth the scope of the bound.

In this note we identify the family Γd precisely as the set of all complete r-partite

graphs Ks,s,...,s such that rs = n, thus clarifying what the scope is for many lower bounds

of R(G) in the literature. Also, we extend the scope of the lower bound (2) to include

the complete r-partite graphs Kp1,p2,...,pr such that
∑

i pi = n and the complete graph

minus two non-adjacent edges, K−−n . It should be noted that previously, in [5], they had

extended this scope to include the graphs in Γd and K−n , the complete graph minus one

edge. Also, we find a lower bound for R(G) in terms of four parameters, different from

the parameters used in the bounds in [6] (thus our bound is not in the same class of any

of their bounds), but with the same scope. Finally, we take a quick look at some further
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lower bounds for R(G) in terms of other descriptors, like the Hyper-Zagreb index and the

first and second Zagreb indices.

2 The results

We prove now that for fixed n, the family Γd consists of all the complete r-partite graphs

Ks,s,...,s such that rs = n for some r and s. In [19] we noticed that all strongly regular

graphs with parameters (n, d, ν, d) belong to Γd. Using proposition 3.1 in [12] we see that

the parameters must satisfy n − 2d + ν = 0 and this implies by proposition 3.5 in the

same article that G must be complete multipartite. We can do better, without assuming

the graph to be strongly regular. In fact, if we call N(i) the set of neighbors of the vertex

i, we can prove the following

Proposition 1 Let G be an n-vertex d-regular diameter 2 graph such that |N(i)∩N(j)| =

d whenever i and j are not neighbors. Then G is a complete r-partite graph Ks,s,...,s such

that n = rs and d = (r − 1)s.

Proof. Notice first that the condition |N(i)∩N(j)| = d actually implies N(i) = N(j).

Indeed, if k is a neighbor of i which is not in N(j) then the degree of i is at least d + 1,

which is a contradiction to the fact that G is d-regular. A symmetric argument works if

k is a neighbor of j which is not in N(i).

Now let ∼ be the relation defined among the vertices of G by i ∼ j if and only if i and

j are not neighbors. It is clear that ∼ is reflexive and symmetric. Now assume that i ∼ j

and j ∼ k. This implies that N(i) = N(j) and N(j) = N(k) and therefore N(i) = N(k).

Since the sets of neighbors of i and neighbors of k is the same and i is not a neighbor of

i then k cannot be a neighbor of i. Therefore i ∼ k and the relation is transitive, and

moreover it is an equivalence relation. Now G is a multipartite complete graph, the parts

being the equivalence classes of ∼. Indeed, if C1, . . . , Cr are the r classes, with |Cj| = sj,

and if v ∈ Cj, then v must be a neighbor of all vertices in
⋃
i 6=j Ci, and the degree of v is

d(v) = d =
∑
i 6=j

si = n− sj.

Therefore all the cardinalities of the classes are equal: sj = n− d = s, from where n = rs

and d = n− s = rs− s = (r − 1)s •
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In light of this result, several of the inequalities in [5], [6], [8] and [19] need an update,

replacing mentions of “Γd” with “complete r-partite Ks,s,...,s such that rs = n”.

Our next result concerns the seminal inequality (2): we can extend its scope to include

the complete r-partite graphs Kp1,p2,...,pr as well as the complete graph minus two non-

adjacent edges, denoted K−−n .

Proposition 2 The equality in (2) is attained by the complete r-partite graphs Kp1,p2,...,pr

and by K−−n .

Proof. It was shown in [1] that

R(Kp1,p2,...,pr) = r − 1 + n
r∑
i=1

pi − 1

n− pi
.

Then we can write

R(Kp1,p2,...,pr) = r − 1 + n
r∑
i=1

pi
n− pi

− n
r∑
i=1

1

n− pi

= r − 1 + (n− 1)
r∑
i=1

pi
n− pi

+
r∑
i=1

−n+ pi
n− pi

= (n− 1)I(R)− 1,

on account of the fact that there are pi vertices with degree n− pi, for 1 ≤ i ≤ r.

Also, it is not difficult to compute that R(K−−n ) = n− 1 + 4
n−2

(see for instance [16]),

whereas I(K−−n ) = 4
n−2

+ n−4
n−1

. A little algebra shows R(K−−n ) = −1 + (n− 1)I(K−−n ) •

The symmetric division deg index of G, defined by

SDD(G) =
∑

(i,j)∈E

(
di
dj

+
dj
di

)
, (8)

was introduced by Vukičević and Gašperov in [21] as one of the 148 so-called Adriatic

indices, with a good predictive power for the total surface area of polychlorobiphenyls.

The applicability of this index relative to other vertex-degree-based indices is studied

in [11].

The following result gives a lower bound for R(G) in terms of SDD(G).

Proposition 3 For any n vertex graph G we have

R(G) ≥ (SDD(G) + n2)(n− 1)

2|E|
− n. (9)

The equality is attained by Kn, K
−
n , K

−−
n (for n ≥ 5) and the complete r-partite graphs

Kp1,p2,...,pr .
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Proof. We showed in [18] that

SDD(G) ≤ 2|E|(1 + I(G))− n2, (10)

where the equality is attained by regular graphs, (n−1, d)-regular graphs for 1 ≤ d < n−1

and complete r-partite graphs Kp1,p2,...,pr . This fact, together with (2) and proposition 2,

and considering the intersection of the scopes of (2) and (10) (notice that both K−n and

K−−n , for n ≥ 5, are (n− 1, n− 2)-regular), yields the result •

As a corollary, we prove a lower bound for R(G), in terms of only four parameters,

with the same scope as the bounds (6) and (7) and several others in [6].

Proposition 4 For any n vertex graph G with p pendent vertices and δ1 the minimum

non-pendent vertex degree we have

R(G) ≥

(
n2 + p(δ1−1)2

δ1

)
(n− 1)

2|E|
− 1. (11)

The equality is attained by Kn, the star K1,n and the complete r-partite graphs Ks,s,...,s

with rs = n.

Proof. It was shown in [13] that

SDD(G) ≥ p

(
δ2

1 + 1

δ1

)
+ 2(|E| − p), (12)

where the equality is attained by the star graph K1,n and all regular graphs.

Inserting (12) into (9) we get

R(G) ≥

(
p
(
δ21+1

δ1

)
+ 2(|E| − p) + n2

)
(n− 1)

2|E|
− n

=

(
n2 + p (δ1−1)2

δ1
+ 2|E|

)
(n− 1)

2|E|
− n

=

(
n2 + p(δ1−1)2

δ1

)
(n− 1)

2|E|
− 1.

Taking the intersection of the scopes of (12) and (9) ends the proof •

Remarks. Since p(δ1−1)2

δ1
≥ 0, (11) is always stronger than (5). Indeed, setting

p(δ1−1)2

δ1
= 0 above we get

R(G) ≥ n2(n− 1)

2|E|
− 1 ≥ n2 − n−∆

∆
,
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recovering (4) and (5).

By lemma 1 in [20] we can replace the term p(δ1−1)2

δ1
with 2p

3
, but that improves the

bound only when δ1 = 2.

The bound (11) is not in the same class as those in [6], and for completeness we can

see that it is not comparable to (6) or (7). For the path graph Pn, (11) becomes n2

2
− 1

2

whereas (6) and (7) become n2

2
+ n

4
+ · · · On the other hand, if we take the tricyclic

graph consisting of a cycle with two extra edges chosen so that ∆ = 3, ∆2 = δ = 2, and

|E| = n+ 2, (11) becomes n2

2
− n+ · · · whereas (6) and (7) become n2 − 17

12
n+ · · ·

The Hyper-Zagreb index, defined as

HM(G) =
∑
uv∈E

(du + dv)
2,

is used in [13] to give further lower bounds for SDD(G), allowing us in turn to give more

lower bounds for R(G) in terms of HM(G). We show one of these bounds and refer to [13]

for further details:

Proposition 5 For any n vertex graph G we have

R(G) ≥

(
n2 +

√
n2HM(G)
|E| − 4|E|2

(
∆
δ
− δ

∆

)2
)

(n− 1)

2|E|
− 2n+ 1. (13)

The equality is attained by Kn and the complete r-partite graphs Ks,s,...,s with rs = n.

Likewise, from lower bounds for SDD(G) in terms of other indices obtained in [10],

we can get lower bounds for R(G) similar in form but with a scope slightly larger than

the one in the previous proposition. For example, it is shown in [10] that if M1(G) and

M2(G) are the first and second Zagreb indices of G then

SDD(G) ≥ M1(G)2

M2(G)
− 2|E|, (14)

where the equality is attained by regular graphs and semiregular bipartite graphs.

Then (14) together with (9), and intersecting the scopes of these two bounds proves

the following

Proposition 6 For any n vertex graph G we have

R(G) ≥

(
n2 + M1(G)2

M2(G)

)
(n− 1)

2|E|
− 2n+ 1. (15)

The equality is attained by Kn, the complete bipartite graphs Kt,n−t, for 1 ≤ t ≤ dn
2
e, and

the complete r-partite graphs Ks,s,...,s with rs = n.
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We refer the reader to [10] for other lower bounds for SDD(G) that yield more lower

bounds for R(G) in the manner described above.
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