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Abstract

Let G be a simple connected graph of order n with m edges and diameter d. Let
W , WW , H, and RCW be the Wiener index, hyper-Wiener index, Harary index,
and reciprocal complementary Wiener index of G. The multiplicative version of
Wiener index (π-index) is equal to the product of the distances between all pairs
of vertices. We compare H and RCW . For bipartite graph of order n > 5, we
prove that π > 2WW . In any connected graph, if d ≥ 4 and m ≤ 285W−6624

287 , then
π ≥ 2WW . Some additional relations between W , WW , H, and RCW are also
obtained.

1 Introduction

Let G be a simple connected graph on n vertices with edge set E(G) (|E(G)| = m), where

the vertex set V (G) = {v1, v2, . . . , vn}. If the vertices vi and vj are adjacent, we write

vivj ∈ E(G). For any vertex vi ∈ V (G), let NG(vi) be the neighbor set of vi and then

∗In Summer 2020, this paper was accepted for publication in ”Ars Combinatoria”. After this journal
announced that it has a backlog of about 3 years, and taking into account the limits of human life, the
paper was withdrawn from ”Ars Combinatoria” and re-submitted here.

†Corresponding author

MATCH
Communications in Mathematical

and in Computer Chemistry

MATCH Commun. Math. Comput. Chem. 86 (2021) 375-393
                         

                                          ISSN 0340 - 6253 



the degree of the vertex vi is equal to |NG(vi)|, and will be denoted by di. The distance

between two vertices vi, vj ∈ V (G), denoted by, dG(vi, vj), is defined as the length of a

shortest path between vi and vj in G. The diameter of the graph G is denoted by d and

is defined as d = max{dG(vi, vj) : vi, vj ∈ V (G)}.

The join G1 ∨G2 of graphs G1 and G2 is the graph obtained from the disjoint union

of G1 and G2 by adding all edges between V (G1) and V (G2). The complement of G

is denoted by G. As usual, Kn, Kp,q (p + q = n), Pn, and Cn denote, respectively, the

complete graph, the complete bipartite graph, the path, and the cycle graph on n vertices.

The Wiener index of G, defined as

W = W (G) =
∑

{vi,vj}⊆V (G)

dG(vi, vj) ,

is perhaps the most studied topological index, both from a mathematical point of view

and of its applications [6, 17, 20,33,34,40].

The hyper-Wiener index is defined for all connected graphs as [32]

WW = WW (G) =
1

2

∑
{vi,vj}⊆V (G)

[
dG(vi, vj)

2 + dG(vi, vj)
]
.

If we denote by d(G, k) the number of vertex pairs of G, whose distance is equal to k,

then the hyper-Wiener index of G can be expressed as

WW (G) =
1

2

∑
k≥1

(k2 + k) d(G, k) . (1)

Recall that d(G, 1) = m. The maximum value of k for which d(G, k) is non-zero, is the

diameter of the graph G.

Mathematical properties of the hyper-Wiener index were much studied, see [4, 5, 18,

19, 23, 37, 40] and the references cited therein. The papers [21, 22] are concerned with

relations between the Wiener and hyper-Wiener indices.

In [24,25], the multiplicative version of the Wiener index of G was put forward as

π = π(G) =
∏

{vi,vj}⊆V (G)

dG(vi, vj) ,

which can be written also as

π(G) =
∏
k≥2

kdG(G,k) .
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Recently, Hua et al. [27,28] studied the mathematical properties of π. In [8], the present

authors reported results on comparing W and π.

In 1993, Plavšić et al. [36] and Ivanciuc et al. [31] independently introduced the Harary

index, named in honor of Frank Harary on the occasion of his 70th birthday. The Harary

index is defined as:

H = H(G) =
∑

{u,v}⊆V (G)

1

dG(u, v)
.

For its basic mathematical properties, including various lower and upper bounds, see

[14,15,40] and the references cited therein.

In 2000, Ivanciuc [30] introduced the reciprocal complementary Wiener index, defined

as:

RCW = RCW (G) =
∑

{u,v}⊆V (G)

1

d+ 1− dG(u, v)
,

where d is the diameter of the graph G. Recently, several mathematical investigations of

RCW were communicated [3, 40,41].

Topological indices are graph invariants and are used for quantitative structure-

activity relationship (QSAR) and quantitative structure-property relationship (QSPR)

studies. Many topological indices have been defined in the literature and several of them

have found applications as means to model physical, chemical, pharmaceutical, and other

properties of molecules. Comparison between various topological graph invariants have

received much attention over the past few years, see e.g., [7,10–13,35]. Moreover, several

relations have been obtained between distance-based and degree-based topological indices

of graphs, see [1, 2, 9, 29,39] and the references cited therein.

This paper is organized as follows. In the next section, we give a lower bound on

Harary index for starlike trees. In Section 3, we compare the Harary and reciprocal

complementary Wiener indices. In Section 4, we compare the hyper-Wiener and the

multiplicative Wiener indices. In Section 5, we present some additional relations between

distance–based topological indices W , WW , RCW , and H.

2 Lower bound on Harary index for starlike trees

Let Pn denote the path on n vertices. By S(n1, n2, . . . , nk) we denote the starlike tree

which has a vertex v0 of degree k ≥ 3 and which has the property

S(n1, n2, . . . , nk)− v0 = Pn1 ∪ Pn2 ∪ . . . ∪ Pnk
.
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This tree has n1 + n2 + · · · + nk + 1 = n vertices. Clearly, the parameters n1, n2, . . . , nk

determine the starlike tree up to isomorphism. In what follows, it will be assumed that

n1 ≥ n2 ≥ . . . ≥ nk ≥ 1. We say that the starlike tree S(n1, n2, . . . , nk) has k branches,

the lengths of which are n1, n2, . . . , nk.

We now calculate H(S) and RCW (S) for any starlike tree. For this we define

HR = HR(G) =
∑

{u,v}⊆V (G)

ΥG(u, v) ,

where

ΥG(u, v) =
1

a dG(u, v) + b
for {u, v} ⊆ V (G) ,

and a, b are any real numbers. Thus we have

HR(G) =

 H(G) if (a, b) = (1, 0),

RCW (G) if (a, b) = (−1, d+ 1) .
(2)

Theorem 1. Let S(n1, n2, . . . , nk) be a starlike tree of order n = n1 + n2 + · · · + nk + 1

(n1 ≥ n2 ≥ · · · ≥ nk). Then

HR(S) =
k∑

i=1

ni∑
j=1

ni + 1− j

aj + b
+

k−1∑
i=1

k∑
j=i+1

ni∑
r=1

nj∑
s=1

1

(r + s)a+ b
. (3)

Proof. We obtain

HR(S) =
∑

{u,v}⊆V (G)

1

a dG(u, v) + b

=
k∑

i=1

 ∑
v∈V (Pni )

1

a dG(v0, v) + b
+

∑
u,v∈V (Pni ),

u ̸=v

1

a dG(u, v) + b



+
k−1∑
i=1

k∑
j=i+1

∑
u∈V (Pni )

v∈V (Pnj )

1

a dG(u, v) + b

=
k∑

i=1

[
ni

a+ b
+

ni − 1

2a+ b
+

ni − 2

3a+ b
+ · · ·+ 2

a(ni − 1) + b
+

1

a ni + b

]

+
k−1∑
i=1

k∑
j=i+1

[( 1

2a+ b
+

1

3a+ b
+ · · ·+ 1

(nj + 1)a+ b

)

+
( 1

3a+ b
+

1

4a+ b
+ · · ·+ 1

(nj + 2)a+ b

)
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+ · · ·+
( 1

(ni + 1)a+ b
+

1

(ni + 2)a+ b
+ · · ·+ 1

(ni + nj)a+ b

)]

=
k∑

i=1

ni∑
j=1

ni + 1− j

aj + b
+

k−1∑
i=1

k∑
j=i+1

ni∑
r=1

nj∑
s=1

1

(r + s)a+ b
.

Corollary 1. Let S(n1, n2, . . . , nk) be a starlike tree of order n = n1 + n2 + · · ·+ nk + 1

(n1 ≥ n2 ≥ · · · ≥ nk). Then

H(S) =
k∑

i=1

ni∑
j=1

ni + 1− j

j
+

k−1∑
i=1

k∑
j=i+1

ni∑
r=1

nj∑
s=1

1

r + s
. (4)

Proof. Setting (a, b) = (1, 0) in Theorem 1 and using (2), we get the required result in

(4).

Corollary 2. Let S(n1, n2, . . . , nk) be a starlike tree of order n = n1 + n2 + · · ·+ nk + 1

(n1 ≥ n2 ≥ · · · ≥ nk). Then

RCW (S) =
k∑

i=1

ni∑
j=1

ni + 1− j

n1 + n2 + 1− j
+

k−1∑
i=1

k∑
j=i+1

ni∑
r=1

nj∑
s=1

1

n1 + n2 + 1− r − s
. (5)

Proof. The diameter of S(n1, n2, . . . , nk) is equal to d = n1+n2. Setting (a, b) = (−1, d+

1) in Theorem 1 and using (2), we get the required result in (5).

We now give a lower bound on H(S).

Theorem 2. Let S(n1, n2, . . . , nk) be a starlike tree of order n = n1 + n2 + · · · + nk + 1

(n1 ≥ n2 ≥ · · · ≥ nk ≥ 6). Then

H(S) ≥ 5.78 (n− 1)− 34.21 k +
408 k

n1 + 12
− 2n1 + (k − 1) (k − 2)nk

+
k (k − 1)

8

[
6

n1 + 1
− 5− 4n2

1

nk

]
. (6)

Proof. Since ni ≥ 6 (i = 1, 2, . . . , k) and

ni−5∑
s=1

s(ni − s+ 1) = (ni + 1)

ni−5∑
s=1

s−
ni−5∑
s=1

s2 =
(ni − 5)(ni − 4)(ni + 12)

6
,

by weighted arithmetic–harmonic–mean inequality, we get

ni∑
j=6

ni + 1− j

j
≥

(
ni−5∑
s=1

s

)2

ni−5∑
s=1

s(ni − s+ 1)

=

[
(ni−4)(ni−5)

2

]2
(ni−5) (ni−4)(ni+12)

6
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=
3 (ni − 5)(ni − 4)

2 (ni + 12)
=

3

2

[
ni − 21 +

272

ni + 12

]
. (7)

Again, by the weighted arithmetic–harmonic–mean inequality,

nj−1∑
s=1

s

s+ 1
≥

(
nj−1∑
s=1

s

)2

nj−1∑
s=1

s(s+ 1)

=

[
(nj−1)nj

2

]2
(nj−1)nj (nj+1)

3

=
3nj (nj − 1)

4(nj + 1)
.

Moreover,
nj∑
s=1

nj − s+ 1

nj + s
≥ 1

2nj

nj∑
s=1

s =
nj + 1

4

and
ni−nj∑
r=1

nj+r−1∑
s=r

1

nj + s+ 1
≥ nj (ni − nj)

ni + nj

if ni ≥ nj + 1 .

Using the above results, one can easily see that

ni∑
r=1

nj∑
s=1

1

r + s
=

nj−1∑
s=1

s

s+ 1
+

nj∑
s=1

nj − s+ 1

nj + s

if ni = nj, whereas

ni∑
r=1

nj∑
s=1

1

r + s
=

nj−1∑
s=1

s

s+ 1
+

nj∑
s=1

nj − s+ 1

nj + s
+

ni−nj∑
r=1

nj+r−1∑
s=r

1

nj + s+ 1

if ni ≥ nj + 1. Thus,

ni∑
r=1

nj∑
s=1

1

r + s
≥ 3nj (nj − 1)

4 (nj + 1)
+

nj + 1

4
+

nj (ni − nj)

ni + nj

= 2nj +
3

2 (nj + 1)
− 5

4
−

2n2
j

ni + nj

.

Now,

k−1∑
i=1

k∑
j=i+1

2nj = 2
[
n2 + 2n3 + · · ·+ (k − 1)nk

]
≥ 2(n− 1− n1) + (k − 1)(k − 2)nk ,

k−1∑
i=1

k∑
j=i+1

3

2 (nj + 1)
≥ 3 k (k − 1)

4 (n2 + 1)
≥ 3 k (k − 1)

4 (n1 + 1)
,

and
k−1∑
i=1

k∑
j=i+1

2n2
j

ni + nj

≤ k(k − 1)n2
2

2nk

≤ k(k − 1)n2
1

2nk

.
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This implies

k−1∑
i=1

k∑
j=i+1

ni∑
r=1

nj∑
s=1

1

r + s
≥

k−1∑
i=1

k∑
j=i+1

[
2nj +

3

2(nj + 1)
− 5

4
−

2n2
j

ni + nj

]

≥ 2(n− 1− n1) + (k − 1)(k − 2)nk +
k(k − 1)

8

(
6

n1 + 1
− 5− 4n2

1

nk

)
and

k∑
i=1

ni∑
j=1

ni + 1− j

j
=

k∑
i=1

[
ni +

ni − 1

2
+

ni − 2

3
+

ni − 3

4
+

ni − 4

5
+

ni∑
j=6

ni + 1− j

j

]

≥
k∑

i=1

[
2.28ni − 2.71 +

3

2

(
ni − 21 +

272

ni + 12

)]
(by (7))

≥ 3.78 (n− 1)− 34.21 k +
408 k

n1 + 12
.

The above results with Corollary 1 directly leads to (6).

3 Comparing Harary index and reciprocal comple-

mentary Wiener index

In this section we compare the Harary and reciprocal complementary Wiener indices of

graphs.

Example 3. Let Pn be the path of order n. Then

H(Pn) = n− 1 +
n− 2

2
+

n− 3

3
+ · · ·+ 2

n− 2
+

1

n− 1

and

RCW (Pn) =
n− 1

n− 1
+

n− 2

n− 2
+

n− 3

n− 3
+ · · ·+ 2

2
+

1

1
= n− 1 .

Thus, H(Pn) > RCW (Pn).

Example 4. For T ∼= K1,n−1 (n > 4),

H(T ) =
1

4
(n− 1)(n+ 2) <

1

2
(n− 1)2 = RCW (T ) .

Example 5. For G ∼= Kn − e,

H(G) =
(n+ 1)(n− 2) + 1

2
>

(n− 1)(n− 2)

4
+

n

2
= RCW (G) .

-381-



Denote by DSp, q (p ≥ q ≥ 1, n = p+ q+2), a double star of order n which is constructed

by joining the central vertices of two stars K1,p and K1,q.

Example 6. Let T ∼= DSp,q (p+ q + 2 = n, p ≥ q ≥ 1). Then

H(T ) = p+ q + 1 +
p2 + p+ q2 + q

4
+

p q

3

and

RCW (T ) = p q +
p2 + p+ q2 + q

4
+

p+ q + 1

3
.

If q = 1 or p = q = 2, then H(T ) > RCW (T ). If p = 3 , q = 2, then H(T ) = RCW (T ).

Otherwise, H(T ) < RCW (T ).

From the above examples, we conclude that in the general case, H and RCW are

incomparable. Recall that a graph G = (V, E) is said to be a difference graph if there

exist real numbers a1, a2, . . . , an associated with the vertices of G and a positive real

number t such that (1) |ai| < t for i = 1, 2, . . . , n; (2) distinct vertices vi and vj are

adjacent if and only if |ai − aj| ≥ t. We now compare H(G) and RCW (G) for the

difference graph. In order to obtain such results we will need the next lemma.

Lemma 7. [26] Let G be a bipartite graph with bipartition V = X ∪ Y . Then G is

a difference graph if and only if there exist such a labeling of the vertices of set X that

NG(vi) ⊆ NG(vi+1) for i = 1, 2, . . . , |X| − 1, where vi ∈ X.

Theorem 3. Let G (� Kp,q) be a connected, bipartite, difference graph with bipartition

V = X ∪ Y , |X| = p and |Y | = q (p+ q = n). If the number of edges of G is m ≥ pq/2,

then H(G) ≥ RCW (G), otherwise, H(G) < RCW (G). For G ∼= Kp,q, we have H(G) ≥

RCW (G) if pq ≥ n(n− 1)/4, and H(G) < RCW (G), otherwise.

Proof. First we consider the case G ∼= Kp,q. Then

H(G) = pq +
1

2

[
n(n− 1)

2
− pq

]
and RCW (G) =

n(n− 1)

2
− pq +

1

2
pq .

Therefore H(G) ≥ RCW (G) if pq ≥ n(n−1)
4

, and H(G) < RCW (G), otherwise.

Next we assume that G � Kp,q. From the definition of the difference graph G, we

can assume that X = {v1, v2, . . . , vp} and Y = {vp+1, vp+2, . . . , vp+q} such that d1 ≤ d2 ≤

· · · ≤ dp = q and dp+1 ≤ dp+2 ≤ · · · ≤ dp+q = p as G is connected. Moreover, the
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diameter of G is 3 as G � Kp,q. The number of edges of G is m = d(G, 1) =
∑p−1

i=1 di+ q.

In addition,

d(G, 2) =
p (p− 1) + q (q − 1)

2
and d(G, 3) =

p−1∑
i=1

(q − di) =

q−1∑
i=p+1

(p− di) .

Therefore

H(G) =

p−1∑
i=1

di + q +
p(p− 1) + q(q − 1)

4
+

1

3

p−1∑
i=1

(q − di)

=
p(p− 1) + q(q − 1)

4
+

2
p−1∑
i=1

di + pq + 2q

3

and

RCW (G) =

p−1∑
i=1

(q − di) +
p(p− 1) + q(q − 1)

4
+

1

3

p−1∑
i=1

di + q

=
p(p− 1) + q(q − 1)

4
+

−2
p−1∑
i=1

di + 3pq − 2q

3
.

Thus,

H(G) ≥ RCW (G) ⇐⇒ m = q +

p−1∑
i=1

di ≥
pq

2
.

This completes the proof.

Theorem 4. Let G be a connected graph obtained by deleting p (p ≤ n − 1) edges from

the complete graph Kn. Then H(G) > RCW (G).

Proof. Since p ≤ n− 1, then the diameter of G is at most 3. The number of edges of G

is m = n(n− 1)/2− p. If d = 2, then

H(G) =
n(n− 1)

2
− p+

p

2
> p+

1

2

[
n(n− 1)

2
− p

]
= RCW (G) as p ≤ n− 1 .

Otherwise, d = 3. In this case p must be equal to n− 1 and only one pair of vertices has

distance three. Again since p ≤ n− 1, we have

H(G) =
n(n− 1)

2
− p+

p− 1

2
+

1

3
> 1 +

p− 1

2
+

1

3

[
n(n− 1)

2
− p

]
= RCW (G) .
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Let T be a tree of order n with diameter d = 4. Then there exists a vertex v in T

(the center of T ), such that

T − {v} = K1,a1 ∪K1,a2 ∪ · · · ∪K1,aq ∪ pK1 (p ≥ 0, q ≥ 2, ai ≥ 1, i = 1, 2, . . . , q) .

Note that the degree of the vertex v is equal to p + q and thus the order of T is n =

1 + p+ q +
q∑

i=1

ai.

Theorem 5. If T is a tree as specified above, and if∑
1≤i<j≤q

ai aj <
1

11

[
(n− 1)(n+ 11)− 4(p+ q)(n− p− q)

]
,

then H(T ) > RCW (T ). Otherwise, H(T ) ≤ RCW (T ).

Proof. The number of edges of T is n− 1. We have

d(T, 2) =
1

2

q∑
i=1

ai(ai + 1) +
(p+ q)(p+ q − 1)

2

d(T, 3) = (p+ q − 1)

q∑
i=1

ai

d(T, 4) =
∑

1≤i<j≤q

ai aj .

Then

H(T ) = n− 1 +
1

4

q∑
i=1

ai(ai + 1) +
(p+ q)(p+ q − 1)

4
+

(p+ q − 1)

3

q∑
i=1

ai

+
1

4

∑
1≤i<j≤q

ai aj

and

RCW (T ) =
n− 1

4
+

1

6

q∑
i=1

ai(ai + 1) +
(p+ q)(p+ q − 1)

6
+

(p+ q − 1)

2

q∑
i=1

ai

+
∑

1≤i<j≤q

ai aj .

Thus we have H(T ) > RCW (T ) ⇐⇒

n− 1 +
1

4

q∑
i=1

ai(ai+1) +
(p+q)(p+q−1)

4
+

(p+q−1)

3

q∑
i=1

ai +
1

4

∑
1≤i<j≤q

ai aj
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>
n− 1

4
+

1

6

q∑
i=1

ai(ai+1) +
(p+q)(p+q−1)

6
+

(p+q−1)

2

q∑
i=1

ai +
∑

1≤i<j≤q

ai aj

⇐⇒

9 (n− 1) + (p+ q) (p+ q − 1) +

q∑
i=1

a2i > (2p+ 2q − 3)

q∑
i=1

ai + 9
∑

1≤i<j≤q

ai aj .

Since

(n− 1− p− q)2 =

(
q∑

i=1

ai

)2

=

q∑
i=1

a2i + 2
∑

1≤i<j≤q

ai aj ,

from which we get

H(T ) > RCW (T ) ⇐⇒
∑

1≤i<j≤q

ai aj <
1

11

[
(n− 1)(n+ 11)− 4(p+ q)(n− p− q)

]
.

This completes the proof of the theorem.

4 Comparing hyper-Wiener index and multiplicative

Wiener index

From the definition of the indices WW and π, we see that both depend on the distances

between pairs of vertices. Therefore, it may be of some interest to compare them. This

indeed was done by extensive numerical testing [24, 25], but no mathematical relation

between WW and π was found until now.

By direct checking it can be seen that π(G) < 2WW (G) for G ∼= K3,2. On the other

hand, we have the following result:

Theorem 6. Let G be a connected bipartite graph of order n > 5. Then π(G) >

2WW (G).

Proof. Since G is bipartite, we have m ≤ ⌈n
2
⌉⌊n

2
⌋. We consider the following two cases:

Case 1. d(G, 4) = 0. In this case G has diameter at most 3.

Subcase 1.1. d = 2. Since G is bipartite, G ∼= Kp,q (p ≥ q ≥ 1, p+ q = n). Then

π(G) = 2n(n−1)/2−pq and WW (G) =
3

2
n(n− 1)− 2pq .

For n = 6, we have G ∼= K3,3, G ∼= K4,2, and G ∼= K5,1. One can easily check that

π(G) > 2WW (G) holds. Otherwise, n ≥ 7. We have to show that π(G) > 2WW (G),
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that is, 2
n(n−1)

2
−pq > 3n(n − 1) − 4pq, that is, 16

(
n(n−1)

2
− pq − 3

)
> 3n(n − 1) − 4pq,

that is, 5n(n− 1) > 12pq + 48, which is true for pq ≤
⌈
n
2

⌉⌊
n
2

⌋
and n ≥ 7.

Subcase 1.2. d = 3. We have d(G, 1) = m. Let d(G, 2) = p and d(G, 3) = q. Then

p+ q +m = n(n− 1)/2, implying

π(G) = 2p 3q and WW (G) = m+ 3p+ 6q =
1

2
n(n− 1) + 2p+ 5q .

For n = 6, p + q = d(G, 2) + d(G, 3) ≥ 7 and d(G, 3) ≥ 1. One can easily check that

π(G) > 2WW (G). For n = 7, p + q = d(G, 2) + d(G, 3) ≥ 10 and d(G, 3) ≥ 1, again

one can easily check that π(G) > 2WW (G). Otherwise, n ≥ 8. We have to show that

π(G) > 2WW (G), that is, 2p 3q > 2m+6p+12q, that is, 6 (2p+3q−5) > 2m+6p+12q,

that is, 6p+ 6q > 2m+ 30, that is, n2 − 3n− 30 > 0, which is true as n ≥ 8.

Case 2. d(G, 4) ≥ 1. For any non-negative real numbers k and x, we have kx ≥ kx.

Using this we have∏
k≥2

kd(G,k) = 2d(G,2) 3d(G,3) 4d(G,4)
∏
k≥5

kd(G,k)

= 24× 2d(G,2)−1 3d(G,3)−1 4d(G,4)−1
∏
k≥5

kd(G,k)

≥ 24

[
2d(G,2)−1 + 3d(G,3)−1 + 4d(G,4)−1 +

∑
k≥5

kd(G,k)

]

= 24

[
(22)

d(G,2)−1
2 + (32)

d(G,3)−1
2 + (42)

d(G,4)−1
2 +

∑
k≥5

(k2)
d(G,k)

2

]

≥ 24

[
22

d(G, 2)− 1

2
+ 32

d(G, 3)− 1

2
+ 42

d(G, 4)− 1

2
+
∑
k≥5

k2 d(G, k)

2

]

≥ 12

[∑
k≥2

k2 d(G, k)− 29

]

= 2
∑
k≥1

k2 d(G, k) + 10
∑
k≥2

k2 d(G, k)− 2m− 348 . (8)

Since d(G, 4) ≥ 1 and m ≤ ⌈n/2⌉⌊n/2⌋, one can easily see that∑
k≥2

k2 d(G, k) ≥ 4

[
n(n− 1)

2
−m− 3

]
+ 18 + 16 ≥ (n− 1)2 + 21 .
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Together with (8), we get∏
k≥2

kd(G,k) ≥
∑
k≥1

(k + k2)d(G, k) + 10 (n− 1)2 − 2
⌈n
2

⌉⌊n
2

⌋
− 138

>
∑
k≥1

(k + k2)d(G, k) as n > 5 .

Thus π(G) > 2WW (G).

For G ∼= Kn, Kn − e (e is any edge of Kn), we have π(G) < 2WW (G). On the other

hand, the following holds:

Theorem 7. Let G be a connected graph or order n with m edges and diameter d. If

d ≥ 4 and

m ≤ 285W (G)− 6624

287
,

then π(G) ≥ 2WW (G).

Proof. For any non-negative real numbers k and x, we have kx ≥ kx. Since d ≥ 4,

π(G) =
∏
k≥2

kd(G,k) = 2d(G,2) 3d(G,3) 4d(G,4)
∏
k≥5

kd(G,k)

= 288× 2d(G,2)−3 3d(G,3)−2 4d(G,4)−1
∏
k≥5

kd(G,k)

≥ 288

[
2d(G,2)−3 + 3d(G,3)−2 + 4d(G,4)−1 +

∑
k≥5

kd(G,k)

]

= 288

[
(22)

d(G,2)−3
2 + (32)

d(G,3)−2
2 + (42)

d(G,4)−1
2 +

∑
k≥5

(k2)
d(G,k)

2

]

≥ 288

[
22

d(G, 2)− 3

2
+ 32

d(G, 3)− 2

2
+ 42

d(G, 4)− 1

2
+
∑
k≥5

k2 d(G, k)

2

]

= 144

[∑
k≥2

k2 d(G, k)− 46

]
.

In view of Eq. (1), since if m ≤ (285W (G)− 6624)/287, then

2m ≤ 285
∑
k≥2

k d(G, k)− 6624 ≤
∑
k≥2

(143 k2 − k) d(G, k)− 6624 as k ≥ 2,

that is,

144

[∑
k≥2

k2 d(G, k)− 46

]
≥
∑
k≥1

(k2 + k) d(G, k) ,
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which yields the required result π(G) ≥ 2WW (G).

5 More relations between distance-based topological

indices

We first state a relation between W (G), WW (G), and RCW (G).

Theorem 8. Let G be a connected graph of order n > 1 with m edges and diameter d.

Then

RCW (G) >
m

d
+

1

d+ 1

[(
n

2

)
−m+

[W (G)−m]d+ 2[WW (G)−m]

(d+ 1)2

]
.

Proof. Since G is connected, we have dG(vi, vj) > 0 for any vertex pair (vi, vj). Then[
1− dG(vi, vj)

d+ 1

]−1

> 1 +
dG(vi, vj)

d+ 1
+

dG(vi, vj)
2

(d+ 1)2
.

Combining the above result with the definitions of the Wiener and hyper-Wiener indices,

we get

RCW (G) =
∑

1≤i<j≤n

1

d+ 1− dG(vi, vj)

=
∑

1≤i<j≤n
vivj∈E(G)

1

d+ 1− dG(vi, vj)
+

∑
1≤i<j≤n
vivj /∈E(G)

1

d+ 1− dG(vi, vj)

=
m

d
+

1

d+ 1

∑
1≤i<j≤n
vivj /∈E(G)

[
1− dG(vi, vj)

d+ 1

]−1

>
m

d
+

1

d+ 1

∑
1≤i<j≤n
vivj /∈E(G)

[
1 +

dG(vi, vj)

d+ 1
+

dG(vi, vj)
2

(d+ 1)2

]

=
m

d
+

1

d+ 1

(n
2

)
−m+

∑
1≤i<j≤n
vivj /∈E(G)

(d+ 1) dG(vi, vj) + dG(vi, vj)
2

(d+ 1)2


=

m

d
+

1

d+ 1

[(
n

2

)
−m+

(W (G)−m)d+ 2(WW (G)−m)

(d+ 1)2

]
.

This completes the proof of the theorem.

In [38], Radon discovered the following inequality:
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Lemma 8. (Radon’s inequality) If ak, xk > 0, k ∈ {1, 2, . . . , r}, and p > 0, then the

following inequality holds:

r∑
k=1

xp+1
k

apk
≥

(
r∑

k=1

xk

)p+1

(
r∑

k=1

ak

)p

with equality holding if
x1

a1
=

x2

a2
= · · · = xr

ar
.

Lemma 9. [16] Let a1, a2, . . . , aN and b1, b2, . . . , bN be real numbers for which there exist

real constants r and R such that r ai ≤ bi ≤ Rai hold for each i , i = 1, 2, . . . , N . Then

N∑
i=1

b2i + r R
N∑
i=1

a2i ≤ (r +R)
N∑
i=1

ai bi (9)

with equality holding if and only if for at least one i, 1 ≤ i ≤ N holds r ai = bi = Rai.

Theorem 9. Let G be a graph of order n with m edges and diameter d. Then

4d2
(
W (G)−m

)2
< 2(WW (G)−m)

[n(n− 1)(5 d2 + 4)

2

− 4d2 H(G)−m (d2 + 3)− 2WW (G) +W (G)
]
.

Proof. Suppose that each i in Lemma 9 corresponds to a vertex pair (vi, vj) for which

dG(vi, vj) ≥ 2 such that N = n(n− 1)/2−m. Setting r = 4, R = d2 and replacing each

bi by dG(vi, vj) and each ai by
1

dG(vi,vj)
, then from (9), we get

∑
1≤i<j≤n

dG(vi,vj)≥2

dG(vi, vj)
2 + 4d2

∑
1≤i<j≤n

dG(vi,vj)≥2

1

dG(vi, vj)2
≤ (d2 + 4)

[
n(n− 1)

2
−m

]
,

that is,∑
1≤i<j≤n

dG(vi,vj)≥2

[
dG(vi, vj)

2+dG(vi, vj)+
4d2

dG(vi, vj)2

]
−
[
W (G)−m

]
≤ (d2 + 4)

[
n(n−1)

2
−m

]
,

that is,

2WW (G)−W (G)−m+ 4d2
∑

1≤i<j≤n
dG(vi,vj)≥2

1

dG(vi, vj)2
≤ (d2 + 4)

[
n(n− 1)

2
−m

]
,

that is,

∑
1≤i<j≤n

dG(vi,vj)≥2

1

dG(vi, vj)2
≤

(d2 + 4)
(

n(n−1)
2

−m
)
− 2WW (G) +W (G) +m

4d2
. (10)
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Suppose that each k in Lemma 8 corresponds to a vertex pair (vi, vj) with dG(vi, vj) ≥

2 such that r = n(n−1)
2

−m. Setting p = 1, and replacing each xk by dG(vi, vj) and each

ak by dG(vi, vj)
2 + dG(vi, vj), we get ∑

1≤i<j≤n
dG(vi,vj)≥2

dG(vi, vj)

2

∑
1≤i<j≤n

dG(vi,vj)≥2

[
dG(vi, vj)2 + dG(vi, vj)

] ≤
∑

1≤i<j≤n
dG(vi,vj)≥2

dG(vi, vj)
2

dG(vi, vj)2 + dG(vi, vj)
,

that is, (
W (G)−m

)2
2
(
WW (G)−m

) ≤
∑

1≤i<j≤n
dG(vi,vj)≥2

[
1 +

1

dG(vi, vj)

]−1

.

One can easily see that[
1 +

1

dG(vi, vj)

]−1

< 1− 1

dG(vi, vj)
+

1

dG(vi, vj)2
.

Using the above two results, we have(
W (G)−m

)2
2
(
WW (G)−m

) <
∑

1≤i<j≤n
dG(vi,vj)≥2

[
1− 1

dG(vi, vj)
+

1

dG(vi, vj)2

]

=
n(n− 1)

2
−H(G) +

∑
1≤i<j≤n

dG(vi,vj)≥2

1

dG(vi, vj)2
.

Combining this with (10), we get(
W (G)−m

)2
2
(
WW (G)−m

) <
n(n−1)

2
−H(G) +

(d2 + 4)
(

n(n−1)
2

−m
)
−2WW (G)+W (G)+m

4d2
,

which gives the required result.
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