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Abstract

The Wiener index W (G) of a connected graph G is defined as

W (G) =
∑

{u,v}∈V (G)

dG(u, v) ,

where dG(u, v) is the distance between the vertices u and v in G. For S ⊆ V (G),
the Steiner distance d(S) of the vertices of S, introduced by Chartrand et al. in
1989, is the minimum size of a connected subgraph of G whose vertex set contains
S. For an integer k ≥ 1, the Steiner k-Wiener index SWk(G) of G, introduced
by Li, Mao, and Gutman, is

∑
S⊆V (G),|S|=k d(S). Clearly, SW2(G) = W (G) for a

connected graph G. Li, Mao, and Gutman proved that for any tree T ,

SWk(T ) =
∑

e∈E(T )

k−1∑
i=1

(
n1(e)

i

)(n2(e)
k−i
)
.

Using Vandermonde’s convolution formula, we reformulate it as

SWk(T ) = (n− 1)
(
n
k

)
−

∑
e∈E(T )

[
(n1(e)

k

)
+
(n2(e)

k

)
]

for any tree T of order n. Thereby, we determine the minimum and the maximum
Steiner k-Wiener index of trees with given bipartition. This extends the results on
Wiener index of trees with given bipartition due to Du (International Journal of
Quantum Chemistry 112 (2012) 1598-1605).
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1 Introduction

All graphs in this paper are undirected, finite, and simple. We refer to [2] for graph

theoretical notation and terminology not described here. Let G be a graph. For two

vertices u, v ∈ V (G), the distance d(u, v) = dG(u, v) between u and v is the length of a

shortest path connecting u and v. For more details on this subject, one may see [3, 9].

The Wiener index W (G) of a connected graph is defined by

W (G) =
∑

u,v∈V (G)

dG(u, v).

Mathematicians studied this graph invariant since the 1970s in [8]. Information on chem-

ical applications of the Wiener index can be found in [19, 20]. The Steiner distance of a

graph, introduced by Chartrand et al. in [5] in 1989, is a natural and nice generalization

of the concept of the classical graph distance. For a graph G = (V,E) and a set S ⊆ V ,

an S-Steiner tree or a Steiner tree connecting S ( or simply, an S-tree ) is a subgraph

H = (V ′, E ′) of G that is a tree with S ⊆ V ′. The Steiner distance d(S) among the ver-

tices of S (or simply the distance of S) is the minimum size of a connected subgraph of G

such that S ⊆ V (H). It is clear that H must be a tree, and if |S| = k, then d(S) ≥ k− 1.

For more details on Steiner distance, we refer to [1, 4–6,9, 17].

As a generalization of Wiener index, the Steiner k-Wiener index of a connected graph

G, denoted by SWk(G), was introduced by Li, Mao, Gutman in [11]:

SWk(G) =
∑

S⊆V (G),|S|=k

d(S).

It is clear that for a connected graph G of order n,

SW1(G) = 0, SW2(G) = W (G), SWn(G) = n− 1.

For various results on Steiner Wiener index, we refer to a survey paper [14] and [10, 11,

15,16,18].

A bipartite graph G is a graph whose vertices can be partitioned into two disjoint

subsets V1(G) and V2(G) such that every edge connects a vertex in V1(G) to one in V2(G).

If |V1(G)| = p and |V2(G)| = q with p ≥ q ≥ 1, then we say G has a (p, q)-bipartition.

Let H(r;x, y) be the tree obtained by attaching x and y pendant vertices, respectively,

to the two end vertices of the path of order r, where r ≥ 1, x ≥ y ≥ 0. For integers p, q
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with p ≥ q ≥ 1, let S(p, q) = H(2; p− 1, q − 1). Obviously, S(p, q) has (p, q)-bipartition.

Du [7] showed that for any tree T with (p, q)-bipartition,

W (S(p, q)) ≤ W (T ) ≤ W (H(2q − 1;x, y)),

where x = dp−q+1
2
e, y = bp−q+1

2
c.

In this paper, we extend the above results to Steiner k-Wiener index by showing the

following result for any k ≥ 2: for a tree T with (p, q)-bipartition,

SWk(S(p, q)) ≤ SWk(T ) ≤ SWk(H(2q − 1;x, y)),

where x = dp−q+1
2
e, y = bp−q+1

2
c.

2 Minimum Steiner Wiener index of trees

We start with some useful notation. For a graph G = (V (G), E(G)) and an edge

e = xy ∈ E(G), let

N1(e) = {u| u ∈ V (G), d(u, x) < d(u, y)}, N2(e) = {u| u ∈ V (G), d(u, x) > d(u, y)},

and let n1(e) = |N1(e)| and n2(e) = |N2(e)|, respectively. The k-Steiner transmission

sσk(G, v) of a vertex v ∈ V (G),

sσk(G, v) =
∑

S⊆V (G),|S|=k,v∈S

d(S).

Lemma 2.1. Let G be a graph obtained from graph H1 and graph H2 by identifying a

vertex v of H1 and a vertex u of H2. Then

SWk(G) =
2∑

i=1

SWk(Hi) +
k−2∑
i=1

sσi+1(H1, v)sσk−i(H2, u) +
k−1∑
i=1

sσi+1(H1, v)sσk−i+1(H2, u).

Proof. Let G be a graph as defined in the statement of the theorem. Let us consider an

arbitrary S ⊆ V (G) with |S| = k. One can see that each S can be classified into four

parts:

(I) S ⊆ V (H1),

(II) S ⊆ V (H2),

(III) S ∩ V (H1) 6= ∅, S ∩ V (H2) 6= ∅ and u(v) ∈ S,

(IV) S ∩ V (H1) 6= ∅, S ∩ V (H2) 6= ∅ and u(v) /∈ S.
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It is clear that

(1) type-I S contribute SWk(H1) to SWk(G);

(2) type-II S contribute SWk(H2) to SWk(G);

(3) for type-III S, since u ∈ S, we shall choose k−1 vertices from V (H1)∪V (H2)\{u}:

i vertices from V (H1) and k− i− 1 vertices from V (H2), where i run over all elements in

{1, 2, . . . , k − 2}. Hence, such S contribute
∑k−2

i=1 sσi+1(H1, v)sσk−i(H2, u) to SWk(G) in

all.

(4) for type-IV S, since S ∩ V (H1) 6= ∅, S ∩ V (H2) 6= ∅ and u(v) /∈ S, we choose k

vertices except u(v): i vertices from V (H1) and k−i vertices from V (H2), where i run over

all elements in {1, 2, . . . , k−1}. Hence, such S contribute SWk(G) by
∑k−1

i=1 sσi+1(H1, v)s

σk−i+1(H2, u) in all.

Summing up the above, we arrive at our conclusion.

Corollary 2.1. Let G, H be two nontrivial connected graphs with u, v ∈ V (G), w ∈ V (H).

Let GuH (GvH, respectively) be the graph obtained from G and H by identifying u (v,

respectively ) with w. For any 2 ≤ k ≤ |V (G)|, if
∑k

i=2 sσk(G, u) <
∑k

i=2 sσk(G, v), then

SWk(GuH) < SWk(GvH).

Proof. It is immediate from the Lemma 2.1 above.

Let us recall the classical result of Wiener.

Theorem 2.1. (Wiener [13]) For any tree T ,

W (T ) =
∑

e∈E(T )

n1(e)n2(e).

Li, Mao and Gutman [11] established the following theorem on Steiner k-Wiener index

of a tree, which generalizes the above result.

Theorem 2.2. (Li, Mao and Gutman [11]) Let k ≥ 2 be an integer. For any tree T ,

SWk(T ) =
∑

e∈E(T )

k−1∑
i=1

(
n1(e)

i

)(
n2(e)
k−i

)
.

Using the well-known Vandermonde’s convolution formula we reformulate the above

theorem in the following way.
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Theorem 2.3. Let k be an integer such that 2 ≤ k ≤ n. For any tree T of order n,

SWk(T ) = (n− 1)
(
n
k

)
−
∑

e∈E(T )

[
(
n1(e)
k

)
+
(
n2(e)
k

)
].

Proof. Vandermonde’s convolution formula says that

k∑
i=0

(
n1

i

)(
n2

k−i

)
=
(
n1+n2

k

)
.

By Theorem 2.2,

SWk(T ) =
∑

e∈E(T )

k−1∑
i=1

(
n1(e)

i

)(
n2(e)
k−i

)
=
∑

e∈E(T )

[
k∑

i=0

(
n1(e)

i

)(
n2(e)
k−i

)
−
(
n1(e)
k

)
−
(
n2(e)
k

)
]

=
∑

e∈E(T )

[
(
n1(e)+n2(e)

k

)
−
(
n1(e)
k

)
−
(
n2(e)
k

)
]

= (n− 1)
(
n
k

)
−
∑

e∈E(T )

[
(
n1(e)
k

)
+
(
n2(e)
k

)
].

As usual, we use Pn and Sn(∼= K1,n−1) to denote the path and stars of order n,

respectively. Li, Mao, Gutman determined the Steinter k-Wiener indices of two special

types of graphs.

Proposition 2.1. (Li, Mao, Gutman [11]) Let Pn be the path of order n (n ≥ 3), and let

k be an integer with 2 ≤ k ≤ n. Then

SWk(Pn) = (k − 1)
(
n+1
k+1

)
.

Proposition 2.2. (Li, Mao, Gutman [12]) Let T be a graph obtained from a path Pt

and a star Sn−t+1 by identifying a pendant vertex of Pt and the center v of Sn−t+1, where

1 ≤ t ≤ n− 1 and k ≤ n. Then

SWk(T ) = t
(
n−1
k

)
−
(

t
k+1

)
−
(

n
k+1

)
+
(
n−t+1
k+1

)
+ (k + 1)

(
n
k

)
.

Theorem 2.4. Let T = H(r;x, y) be the tree obtained by attaching x and y pendant

vertices, respectively, to the two end vertices of the path of order r, where r ≥ 1, x ≥ y ≥ 0.
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Then

SWk(T ) = f(x) + f(y)− 2
(

r
k+1

)
− (k − 1)

(
r+1
k+1

)
+ (k + r − 1)

k−1∑
i=1

(
x
i

)(
y

k−i

)
+

k−2∑
i=1

k−i−1∑
j=1

(
x
i

)(
r
j

)(
y

k−i−j

)
(k + r − j − 1),

where

f(t) = r
(
t+r−1

k

)
−
(
t+r
k+1

)
+
(
t+1
k+1

)
+ (k + 1)

(
t+r
k

)
.

Proof. Label the vertices of the path of order r by v1, v2, . . . , vr successively. The x (y, re-

spectively) pendant vertices which joined to v1 (vr, respectively) denoted by u1, u2, . . . , ux

(w1, w2, . . . , wy, respectively). Let

V1 = {vi| i = 1, 2, . . . , r}, V2 = {ui| i = 1, 2, . . . , x}, V3 = {wi| i = 1, 2, . . . , y}.

Let us consider an arbitrary set S ⊆ V (T ) with |S| = k. One can see that each S can be

classified into four types:

(I) S ⊆ V1 ∪ V2,

(II) S ⊆ V1 ∪ V3,

(III) S ⊆ V2 ∪ V3, S ∩ V2 6= ∅, and S ∩ V3 6= ∅,

(IV) S ⊆ V1 ∪ V2 ∪ V3, and S ∩ Vi 6= ∅, i = 1, 2, 3.

By Proposition 2.2, it is clear that

(1) type-I S contribute to SWk(T ) by r
(
x+r−1

k

)
−
(

r
k+1

)
−
(
x+r
k+1

)
+
(
x+1
k+1

)
+ (k+ 1)

(
x+r
k

)
;

(2) type-II S contribute to SWk(T ) by r
(
y+r−1

k

)
−
(

r
k+1

)
−
(
y+r
k+1

)
+
(
y+1
k+1

)
+ (k+ 1)

(
y+r
k

)
;

(3) for type-III S, we shall choose k vertices from V2 ∪ V3: i vertices from V2 and

k − i vertices from V3, where i run over all elements in {1, 2, . . . , k − 1}. Hence, such S

contribute SWk(T ) by (k + r − 1)
∑k−1

i=1

(
x
i

)(
y

k−i

)
in all.

(4) for type-IV S, since S ⊆ V1 ∪ V2 ∪ V3, and S ∩ Vi 6= ∅, i = 1, 2, 3, we choose k

vertices: i vertices from V2, j vertices from V1 and k − i − j vertices from V3, where i

run over all elements in {1, 2, . . . , k − 2}, j run over all elements in {1, 2, . . . , k − i− 1}.

Hence, such S contribute SWk(T ) by
∑k−2

i=1

∑k−i−1
j=1

(
x
i

)(
r
j

)(
y

k−i−j

)
(k + r − j − 1) in all.

(5) If S ⊆ V1, then we compute d(S) twice in type-I and type-II. By Proposition 2.1,

we can get
∑

s⊆V1
d(S) = (k − 1)

(
r+1
k+1

)
Summing up the above (1) to (4) and subtracted (5), the result follows.
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Theorem 2.5. Let p, q be two integers with p ≥ q ≥ 1 and let k ∈ {2, . . . , p + q}. For

any tree T with (p, q)-bipartition,

SWk(T ) ≥ (k − 1)[
k−2∑
i=0

(
p−1
i

)(
q−1

k−i−2

)
+
(
p−1
k−1

)
+
(
q−1
k−1

)
] + 2k

k−2∑
i=1

(
p−1
i

)(
q−1

k−i−1

)
+ (k + 1)

k−1∑
i=1

(
p−1
i

)(
q−1
k−i

)
,

with equality if and only if T ∼= S(p, q).

Proof. Let T be a tree with the minimum Steiner k-Wiener index among all trees with

(p, q)-bipartition. It suffices to show that diameter of T is 3. Suppose, on the contrary,

that the diameter of T is at least 4. Let P = u1u2 . . . ut be a longest path of T . Trivially,

both u1 and ut are leaves of T . Let S be the set of neighbors of u4 in T different from u3.

Let H1 (H2, respectively) be the component of T−S (T−{u3u4}, respectively) containing

u4. Then, T can be obtained from H1 and H2 by identifying u4 ∈ V (H1) with u4 ∈ V (H2).

Let T ′ be the tree obtained from H1 and H2 by identifying u2 ∈ V (H1) with u4 ∈ V (H2).

Clearly, T ′ also has (p, q)-bipartition. Let H3 be the component of T −{u2u3} containing

u2. Denote the order of Hi by ni for each i ∈ {1, 2, 3}. A simple calculation shows that

sσk(H1, u4)− sσk(H1, u2) = 2
(
n3−1
k−1

)
+

k−2∑
i=1

(
n3−1

i

)(
n1−n3−1
k−i−1

)
> 0.

It follows that
∑k

i=2 Sσi(H1, u4) >
∑k

i=2 Sσi(H1, u2), and by Corollary 2.1, we have

SWk(T ) > SWk(T ′),

a contradiction. This shows that the diameter of T is 3, and thus T ∼= S(p, q).

3 Maximum Steiner Wiener index of trees

In this section, we determine the maximum Steiner Wiener index of trees with given

bipartition.

Theorem 3.1. (Li, Mao, Gutman [11]) Let T be a tree of order n, and let k be an integer

with 2 ≤ k ≤ n. Then

(n− 1)
(
n−1
k−1

)
≤ SWk(T ) ≤ (k − 1)

(
n+1
k+1

)
,

with the left side of equality if and only if T ∼= Sn, and with the right side of equality if

and only if T ∼= Pn.
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Theorem 3.2. Let p and q be two integers with p ≥ q ≥ 1. If T is a tree with a

(p, q)-bipartition, then

SWk(T ) ≤ f(x) + f(y)− 2
(
2q−1
k+1

)
− (k − 1)

(
2q
k+1

)
+ (k + 2q − 2)

k−1∑
i=1

(
x
i

)(
y

k−i

)
+

k−2∑
i=1

k−i−1∑
j=1

(
x
i

)(
2q−1
j

)(
y

k−i−j

)
(k + 2q − j − 2),

where

f(t) = (2q − 1)
(
t+2q−2

k

)
−
(
t+2q−1
k+1

)
+
(
t+1
k+1

)
+ (k + 1)

(
t+2q−1

k

)
,

and x = dp−q+1
2
e, y = bp−q+1

2
c,

with equality if and only if T ∼= H(2q − 1;x, y), where x = dp−q+1
2
e, y = bp−q+1

2
c.

Proof. Let T be a tree such that SWk(T ) is maximized among all trees with (p, q)-

bipartition. We show that T ∼= H(2q − 1;x, y), where x = dp−q+1
2
e, y = bp−q+1

2
c. If

p = q or p = q + 1, then by Theorem 3.1, T is a path. Since H(2q − 1;x, y) ∼= Pp+q,

the result follows. Next assume that p > q + 1. Take a longest path P = u1u2 . . . ut

of T . Clearly both u1 and ut are leaves of T . To show T ∼= H(2q − 1;x, y), where

x = dp−q+1
2
e, y = bp−q+1

2
c, we first show that u2 and ut−1 are only two vertices with degree

greater than two. Suppose that there exists other vertex which has degree at least 3 and

is distinct from u2 and ut−1. Let ui be the vertex of P with d(ui) > 2 such that i is

the smallest integer greater than 3. Let H1 (H2, H3 respectively) be the component of

T − {uiui+1} (T − {ui−2ui−3}, T − {ui−1, ui+1} respectively), containing ui+1 (ui−3, ui

respectively). Let S be the set of neighbors of ui in T different from ui−1, ui+1. We denote

the order of Hi by ni for i ∈ {1, 2, 3}.

First assume that n1 > n2. Let T ′ = T \ {uiv| v ∈ S})∪ {ui−2v| v ∈ S}. By Theorem

2.3, we have

SWk(T ′)− SWk(T ) =
(
n1+n3+1

k

)
+
(
n2+1
k

)
−
(
n1+1
k

)
−
(
n2+n3+1

k

)
+
(
n1+n3

k

)
+
(
n2+2
k

)
−
(
n1+2
k

)
−
(
n2+n3

k

)
> 0,

contradicting the choice of T .

Next we consider the case when n1 ≤ n2. Let ui be the vertex with d(ui) > 2 such

that i is the largest integer less than t− 1. By a similar argument as above, let H ′1 (H ′2,

H ′3 respectively) be the component of T − {ui+2ui+3} (T − {ui−1ui}, T − {ui−1, ui+1}

respectively), containing ui+3 (ui−1, ui respectively). Let S be the set of neighbors of ui
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in T different from ui−1, ui+1. We denote the order of H ′i by n′i for i ∈ {1, 2, 3}. Then

n′1 ≤ n1 − 2, n′2 ≥ n2 + 2, so n′1 < n′2. Let T ′ = T \ {uiv| v ∈ S}) ∪ {ui+2v| v ∈ S}. By

Theorem 2.3, we have

SWk(T ′)− SWk(T ) =
(
n′
2+n′

3+1
k

)
+
(
n′
1+1
k

)
−
(
n′
2+1
k

)
−
(
n′
1+n′

3+1
k

)
+
(
n′
2+n′

3
k

)
+
(
n′
1+2
k

)
−
(
n′
2+2
k

)
−
(
n′
1+n′

3
k

)
> 0,

contradicting the choice of T .

This shows T ∼= H(r;x, y).

Claim 1. It is clear that the following statements are equivalent:

(1) x+ y = p− q + 1.

(2) t = 2q + 1.

(3) The diameter of T is 2q.

(4) All the leaves of T belongs to the same color class.

Proof of Claim 1. The equivalence of (1), (2), (3) can be easily deduced from the fact

that the diameter of T is t− 1, and x+ y + t− 2 = p+ q. Furthermore, either (2) or (3)

implies (4).

Now, we use (4) implies (1). Let V (T ) = V1 ∪ V2, where Vi is a color classes, i = 1, 2

and S = {v| v ∈ V (T ), d(v) = 1}. Without loss of generality, suppose |V1| = p, |V2| = q.

Since p > q + 1 and S is contained in the same color class, S ⊂ V1. Thus, x + y = |S| =

|V1| − |V2|+ 1 = p− q + 1.

This completes the proof of the claim.

Next we show that (1) of Claim 1: x+ y = p− q + 1.

If x+y < p−q+1, then t = p+q− (x+y)+2 > 2q+1. Thus |{ui| i is even }| ≥ q+1

and |{ui| i is odd }| ≥ q + 1. It follows that |V1| ≥ q + 1 and |V2| ≥ q + 1, contradicting

the assumption that T has (p, q)-bipartition.

Assume now that x + y = l > p − q + 1. Let S1 = {u| u ∈ N(u2), d(u) = 1}, S2 =

{w| w ∈ N(ut−1), d(w) = 1}. Since (1) and (4) are equivalent by Claim 1, S1 and S2 are

contained in the different color classes. Let T ′ = H(r;x1, y1), where x1+y1 = p−q+1, x1 ≤

x, y1 < y. By Theorem 2.3, we have

-371-



SWk(T ′)− SWk(T ) = l[
(
p+q−1

k

)
+
(
1
k

)
] +
(
x+1
k

)
+
(
p+q−x−1

k

)
+
(
x+2
k

)
+
(
p+q−x−2

k

)
+ . . .+

(
p+q−y−1

k

)
+
(
y+1
k

)
− (p− q + 1)[

(
p+q−1

k

)
+
(
1
k

)
]−
(
x1+1
k

)
−
(
p+q−x1−1

k

)
−
(
x1+2
k

)
−
(
p+q−x1−2

k

)
− . . .−

(
p+q−y1−1

k

)
−
(
y1+1
k

)
= [
(
p+q−1

k

)
+
(
1
k

)
−
(
x1+1
k

)
−
(
p+q−x1−1

k

)
] + . . .

+ [
(
p+q−1

k

)
+
(
1
k

)
−
(
x
k

)
−
(
p+q−x

k

)
]

+ [
(
p+q−1

k

)
+
(
1
k

)
−
(
p+q−y

k

)
−
(
y
k

)
] + . . .

+ [
(
p+q−1

k

)
+
(
1
k

)
−
(
p+q−y1−1

k

)
−
(
y1+1
k

)
] > 0 .

contradicting the choice of T .

By the equivalence of (1) and (3) of Claim 1, it follows that the diameter of T is 2q.

That is, T ∼= H(2q − 1;x, y), where x+ y = p− q + 1. Furthermore, by Theorem 2.4, we

have x = dp−q+1
2
e, y = bp−q+1

2
c.

The proof of the theorem is completed.
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