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Abstract

For a connected graph G = (VG, EG), the cover cost and the reverse cover
cost of a vertex v in G are, respectively, defined as CCG(v) =

∑
u∈VG

Hvu and
RCG(v) =

∑
u∈VG

Huv, where Huv is the expected hitting time for random walk
starting at u to visit v. Georgakopoulos and Wagner [J. Graph Theory 84 (2017)
311-326] characterized the unique tree with the maximum and the minimum cover
cost (resp. reverse cover cost) among all n-vertex trees. In this paper, the second
and the third largest and smallest cover cost (resp. reverse cover cost) of a vertex
in an n-vertex trees are determined. All the corresponding extremal trees are also
identified.

1 Introduction

Let G = (VG, EG) be a tree with VG the vertex set and EG the edge set. The neighborhood

of a vertex v, written by NG(v), is the set of vertices adjacent to v in G. The degree of

v is defined to be dG(v) = |NG(v)|. The distance between vertices u and v, denoted by

dG(u, v), is the length of a shortest path connecting them. For simplicity, when there is

no danger of confusion, we omit the subscripts G for our notation. We follow the notation

and terminologies in [4] except otherwise stated.
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In 1947, Wiener [27] introduced an important graph parameter related to distance,

defined by W (G) =
∑
{u,v}⊆VG

d(u, v) which is also called Wiener index. It has been

extensively studied and has found applications in chemistry, communication theory, and

elsewhere. To learn more about it, one may be referred to [10, 12, 17, 21, 29] and the

references therein for details. The centrality (also known as the transmission) of a vertex

x in G is defined as D(v) =
∑

u∈VG
d(u, v). Then it is obvious that W (G) = 1

2

∑
v∈VG

D(v).

For a graph G, we define the random walk on G as the Markov chain Xk, k ≥ 0, that

from its current vertex u jumps to an adjacent vertex with probability 1/d(u). The hitting

time (also known as the first passage time) Tv of the vertex v is the minimum number of

steps that the random walk takes to reach that vertex:

Tv = inf{k ≥ 0 : Xk = v}.

The expected hitting time of random walks is an important parameter of graphs [2,20],

which has been studied extensively. There are many results about the expected hitting

time of random walks on graphs. For example, vertex transitive graphs (see [1,9,26]), edge

transitive graphs (see [24,25]), distance regular graphs (see [3,11]), graphs with cutpoints

(see [7]) and some others (see [5, 6, 16, 18,28,30]) related information.

The cover cost (see [14]) of a vertex v in G is defined as the sum of the expected

hitting times from v to all other vertices, that is,

CCG(v) =
∑
u∈VG

Hvu.

It is well known that the cover cost is closely related to the cover time of a graph (see [14]),

which is defined as the expected number of the steps taken for random walk beginning at

v to visit all vertices of the graph.

In analogy to CC(v), Georgakopoulos and Wagner [15] proposed the reverse cover

cost of a vertex v in G, which is defined as the sum of the expected hitting times from all

other vertices to v, i.e.,

RC(v) =
∑
u∈VG

Huv.

Georgakopoulos and Wagner [15] exhibited a beautiful relationship between the cover

cost (resp. reverse cover cost) of a vertex, the Wiener index, and related graph invariants.

Furthermore, the maximum and the minimum values together with the corresponding

extremal graphs of the hitting time, the cover cost, and the reverse cover cost for trees
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were characterized. In 2019, Huang, Li, and Xie [19] determined the sharp upper and

lower bounds on the cover cost (resp. reverse cover cost) of a vertex among all n-vertex

unicyclic graphs and identified all the corresponding extremal graphs. Recently, Li and

Wang [22] studied the cover cost and reverse cover cost of trees with given segment

sequence. More specifically, they characterized the unique tree with the minimum cover

cost (resp. reverse cover cost) and the maximal reverse cover cost among all trees with

given segment sequence.

In this paper, we continue to study the extremal value of cover cost and reverse cover

cost of trees. We determine the second and the third largest and smallest cover cost

(resp. reverse cover cost) of a vertex among all n-vertex trees and characterize all the

corresponding extremal trees, respectively. The paper is organized as follows. In Section

2, we recall some important known results. In Section 3, we respectively determine the

unique n-vertex tree having the second and the third smallest, the second and the third

largest cover cost, whereas in Section 4, we do the parallel work for the reverse cover cost.

2 Preliminaries

In this section, we give some preliminary results, which will be used to prove our main

results. If x ∈ VT , then T −x denotes the graph obtained from T by deleting the vertex x

and all its incident edges. If xy /∈ ET , then T + xy is a graph obtained from T by adding

an edge xy. For xy ∈ ET , T − xy denotes the graph obtained from T by deleting the edge

xy.

The following lemma comes from [15], which gives a beautiful relationship between

CC(v), RC(v), D(v) and W (T ).

Lemma 2.1 ( [15]). Let T be a tree on n vertices with x ∈ VT . Then

(i) CCT (x) + DT (x) = 2W (T );

(ii) (2n− 1)DT (x)−RCT (x) = 2W (T ).

Let T be a tree with x ∈ VT and e ∈ ET . Denote by Ax(e) the set of vertices in the

same connected component of T − e as x and Bx(e) = VT \Ax(e) the complement. Then

the following Lemma is an equivalent form of Lemma 2.1 (i).

Lemma 2.2 ( [15]). Let T be a tree with x ∈ VT . Then

CC(x) =
∑
e∈ET

(2|Ax(e)| − 1)|Bx(e)|.
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Lemma 2.3 ( [15]). Let T be a tree on n vertices with r ∈ VT . Let r1, r2, . . . , rk be all

neighbors of r and let T1, T2, . . . , Tk be the associated branches. Then

CC(r) = 2
k∑

i=1

W (Ti) + 2
∑

1≤i<j≤k

(
DTi

(ri)|Tj|+ DTj
(rj)|Ti|+ 2|Ti||Tj|

)
+

k∑
i=1

DTi
(ri) + n− 1.

Let Tn be the set of all trees with n vertices. Denote by Pn and Sn the path and the star

of order n, respectively. The eccentricity ε(v) of a vertex v is defined as maxu∈VG
d(u, v),

whereas a vertex with minimal eccentricity is called a center (vertex) of G. Let Sp,q be

the graph obtained from Sp and Sq by joining an edge between their centers and P ′n be

the graph obtained from Pn−1 by attaching a pendant edge to its penultimate vertex. A

vertex is called a pendant vertex if it is of degree 1, whereas an edge is called a pendant

edge if it contains a pendant vertex. A pendant vertex of a tree is also called a leaf.

The following two lemmas is about the maximum and minimum, the second largest

and smallest of Wiener index among all n-vertex trees.

Lemma 2.4 ( [13]). Let T be a tree on n vertices. Then

(n− 1)2 ≤ W (T ) ≤ n3 − n

6
.

The lower bound holds with equality if and only if T ∼= Sn, whereas the upper bound holds

with equality if and only if T ∼= Pn.

Lemma 2.5 ( [8]). Let T be a tree with T ∈ Tn \ {Sn, Pn}. Then

n2 − n− 2 ≤ W (T ) ≤ n3 − 7n + 18

6
.

The lower bound holds with equality if and only if T ∼= S2,n−2, whereas the upper bound

holds with equality if and only if T ∼= P ′n.

3 Trees with the second (resp. third) smallest and

largest cover cost

The minimum and maximum cover cost among all trees with n vertices have been deter-

mined by Georgakopoulos and Wagner [15] (see Theorem 3.1 in the following). In this

section, we investigate the second (resp. third) smallest and largest cover cost of among

all trees with n vertices.
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Theorem 3.1 ( [15]). Let T be a tree on n ≥ 2 vertices with v ∈ VT . Then

2n2 − 6n + 5 ≤ CC(v) ≤ n3 − n

3
−
⌊
n2

4

⌋
.

The lower bound holds with equality if and only if T ∼= Sn with v as one of its leaves,

whereas the upper bound holds with equality if and only if T ∼= Pn with v as a center of it.

Let T be a tree on n vertices with v ∈ VT . Assume that ε(v) = t, then it is obvious

that

D(v) ≤ 1 + 2 + · · ·+ t + (n− t− 1)t

=
t(t + 1)

2
+ (n− t− 1)t

=
−t2 + (2n− 1)t

2
. (3.1)

Note that f(x) = −x2+(2n−1)x
2

is a increasing function of x for 1 ≤ x ≤ n − 1. Then

the following two lemmas about the maximum and the second largest of D(v) among all

n-vertex trees is a direct consequence of (3.1).

Lemma 3.2. Let T be a tree on n ≥ 2 vertices with v ∈ VT . Then D(v) ≤ n(n−1)
2

with

equality if and only if T ∼= Pn with d(v) = 1.

Lemma 3.3. Let T be a tree on n ≥ 4 vertices with v ∈ VT , and assume that we do not

have T ∼= Pn with d(v) = 1. Then D(v) ≤ (n−2)(n+1)
2

with equality if and only if T ∼= P ′n

with v being the farthest leaf from the vertex of degree 3.

Lemma 3.4. Let T be a tree obtained from Pn1 , Pn2 , Pn3 and an isolated vertex v by

joining an edges between v and v1, v2, v3, respectively, where vi is one of the leaves of

Pni
(i = 1, 2, 3). Put T ∗ = T − bc + cd, where c (resp. d) is the leaf of Pn3 (resp. Pn2)

other than v3 (resp. v2) and b is the neighbor of c. If n2 ≥ n3, then CCT ∗(v) > CCT (v).

Proof. It is routine to check that

DT ∗(v)−DT (v) = dT ∗(v, c)− dT (v, c) = n2 − n3 + 1

and

W (T ∗)−W (T ) = DT ∗(c)−DT (c) = n1(n2 − n3 + 1).
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Then it follows from Lemma 2.1 that

CCT ∗(v)− CCT (v) = 2(W (T ∗)−W (T ))− (DT ∗(v)−DT (v))

= (2n1 − 1)(n2 − n3 + 1) > 0.

This completes the proof.

Now we are ready to determine the second and the third smallest cover cost among

all trees with n vertices.

Theorem 3.5. Let T be a tree on n ≥ 4 vertices with v ∈ VT , and assume that we do not

have T ∼= Sn with v one of its leaves. Then CC(v) ≥ 2n2 − 5n + 2 with equality if and

only if T ∼= S2,n−2 with v the farthest leaf from the vertex of degree n− 2.

Proof. Choose a tree T and v ∈ VT such that CC(v) is as small as possible, where we

do not have T ∼= Sn with d(v) = 1. If T ∼= Sn with v as its center, then it follows from

Lemma 2.1 that

CC(v) = 2W (S2,n−2)−D(v) = 2n2 − 5n + 3 > 2n2 − 5n + 2.

Therefore, T � Sn.

Then we show that v is a leaf of T . Suppose to the contrary that d(v) = h ≥ 2.

Let NT (v) = {v1, v2, . . . , vh} and Fi be the connected component of T − vvi containing

vi, i = 1, 2, . . . , h. Without loss of generality, assume that |F1| ≥ |F2| ≥ · · · ≥ |Fh|. After

a short calculation, we obtain

DT (v) = (DF1(v1) + |F1|) + (DF2(v2) + |F2|) + · · ·+ (DFh
(vh) + |Fh|)

and

DT (v2) = (DF1(v1) + 2|F1|) + DF2(v2) + · · ·+ (DFh
(vh) + 2|Fh|) + 1,

Therefore,

D(v2)−D(v) = |F1|+ |F3|+ · · ·+ |Fh| − |F2|+ 1 ≥ |F1| − |F2|+ 1 > 0.

Combining with Lemma 2.1, one has CC(v2) < CC(v), a contradiction to the choice of

v.
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Since T � Sn, εT (v) ≥ 3. Let vv1v2v3 be a path of length 3 in T . If T � Sp,q for any

p + q = n, then put T ′ = T − {v2w : w ∈ N(v2) \ v1}+ {v1w : w ∈ N(v2) \ v1}. Thus we

do not have T ′ ∼= Sn with d(v) = 1. It is routine to check that

W (T )−W (T ′) = (|Av1(v1v2)| − 1)(|Av2(v1v2)| − 1), DT (v)−DT ′(v) = |Av2(v1v2)| − 1.

Note that {v, v1} ⊆ Av1(v1v2), {v2, v3} ⊆ Av2(v1v2). Then |Av1(v1v2)| ≥ 2 and |Av2(v1v2)| ≥

2. Again by Lemma 2.1, we have

CCT (v)− CCT ′(v) = (2|Av1(v1v2)| − 3)(|Av2(v1v2)| − 1) > 0,

that is, CCT ′(v) < CCT (v), a contradiction to the choice of T .

Therefore, T ∼= Sp,q with v as a leaf of it. Without loss of generality, assume that

v ∈ VSp . Then

W (T ) = (n− 1)(n− 2) + pq, D(v) = 2p + 3q − 4.

Again by Lemma 2.1,

CC(v) = 2pq − 2p− 3q + 2n2 − 6n + 8 (3.2)

= −2p2 + (2n + 1)p + 2n2 − 9n + 8
(
since p + q = n

)
≥ min

{
2n2 − 5n + 2, 2n2 − 4n− 2

} (
since 2 ≤ p ≤ n− 2

)
= 2n2 − 5n + 2 (3.3)

for n ≥ 4. The equality in (3.3) holds if and only if p = 2. Consequently, CC(v) ≥

2n2 − 5n + 2 with equality if and only if T ∼= S2,n−2 with v being the farthest leaf from

the vertex of degree n− 2 and the proof is complete.

Theorem 3.6. Let T be a tree on n ≥ 6 vertices with v ∈ VT . If neither T ∼= Sn with

d(v) = 1 nor T ∼= S2,n−2 with v the farthest leaf from the vertex of degree n − 2, then

CC(v) ≥ 2n2 − 5n + 3 with equality if and only if T ∼= Sn with v as its center.

Proof. Choose a tree T with v ∈ VT such that CC(v) is as small as possible, where neither

T ∼= Sn with d(v) = 1 nor T ∼= S2,n−2 with v the farthest leaf from the vertex of degree

n− 2.

If T ∼= Sn with v as its center, then by Lemma 2.1, one has

CC(v) = 2W (Sn)−D(v) = 2(n− 1)2 − (n− 1) = 2n2 − 5n + 3.
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In the following, assume that T ∈ Tn \ {Sn} and v ∈ VT . If T ∼= S2,n−2, then v is one of

the leaves adjacent to the vertex of degree n− 2. After a direct calculation, we have

CC(v) = 2W (S2,n−2)−D(v) = 2(n− 2)(n+ 1)− 2(n− 1) = 2n2− 4n− 2 > 2n2− 5n+ 3

for n ≥ 6. Therefore, T � S2,n−2.

Consequently, as a similar proof in the former theorem, we have T ∼= Sp,q with v as a

leaf of it for some p + q = n and 3 ≤ p ≤ n− 3. Without loss of generality, assume that

v ∈ VSp . Then by (3.2), we have

CC(v) = 2pq − 2p− 3q + 2n2 − 6n + 8

= −2p2 + (2n + 1)p + 2n2 − 9n + 8

≥ min
{

2n2 − 3n− 7, 2n2 − 2n− 13
}

> 2n2 − 5n + 3

for n ≥ 6 and we are done.

The following two results give the second and third largest values of cover cost for

trees with given order; all the corresponding extremal graphs are also characterized.

Theorem 3.7. Let T be a tree on n ≥ 6 vertices with v ∈ VT , and assume that we do not

have T ∼= Pn with v being its center. Then

CC(v) ≤

{
4n3−3n2−4n−9

12
, if n is odd;

4n3−3n2−4n−24
12

, if n is even

with equality if and only if T ∼= Pn with v being the vertex of distance
⌈
n
2

⌉
− 2 from one

of its end vertices.

Proof. Choose a tree T and v ∈ VT such that CC(v) is as large as possible, where we

do not have T ∼= Pn with v being its center. Let N(v) = {v1, v2, . . . , vk} and Ti be the

connected component of T − vvi containing vi with |Ti| = ni, i = 1, 2, . . . , k. Without loss

of generality, assume that n1 ≥ n2 ≥ · · · ≥ nk. In view of Lemma 2.3, we have

CC(v) = 2
k∑

i=1

W (Ti) + 2
∑

1≤i<j≤k

(
DTi

(vi)nj + DTj
(vj)ni + 2ninj

)
+

k∑
i=1

DTi
(vi) + n− 1. (3.4)
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Together with Lemmas 2.4-2.5 and Lemmas 3.2-3.3, we obtain either Ti
∼= Pni

with

dTi
(vi) = 1 or Ti

∼= P ′ni
with vi being the farthest leaf from the vertex of degree 3. In

addition, if Ti
∼= P ′ni

with vi being the farthest leaf from the vertex of degree 3 for some

i, then Tj
∼= Pnj

with dTj
(vj) = 1 for any j 6= i. Then we proceed by distinguishing the

following two cases to complete the proof.

Case 1. Ti
∼= Pni

with dTi
(vi) = 1 for 1 ≤ i ≤ k. By Lemma 2.2, we have

CC(v) =
∑
e∈ET

(2|Av(e)| − 1)|Bv(e)|. (3.5)

If k ≥ 4, then put T ′ = T − vv2 + av2, where a is a leaf of Tk other than vk. Obviously,

T ′ � Pn. Note that for any edge e ∈ ET \ (ETk
∪ {vvk}), the sizes of Av(e) and Bv(e)

are not modified, whereas for e ∈ ETk
∪ {vvk}, its contribution to (3.5) changes from

(2A− 1)B to (2(A− n2)− 1)(B + n2), where A = |Av(e)|, B = |Bv(e)| (as defined for T

before the modification). Thus in view of (3.5), we have

CCT ′(v)− CCT (v) =
∑

e∈ETk
∪{vvk}

[(2(A− n2)− 1)(B + n2)− (2A− 1)B]

=
∑

e∈ETk
∪{vvk}

[
2n2

(
A−B − n2 −

1

2

)]
(3.6)

It is routine to check that A ≥ n1 + n2 + · · ·+ nk−1 + 1 and B ≤ nk. Then

A−B ≥ n1 + n2 + · · ·+ nk−1 − nk + 1 ≥ n1 + n2 − nk + 1 ≥ n2 + 1.

Combining with (3.6), one has CCT ′(v) > CCT (v), which leads to a contradiction.

.
.
.
 .
.
.


a
 b
 d
 g


h


.
.
.
 .
.
.


a
 b
 j
 g


h


.
.
.
 .
.
.


a
 b
 k
 g


h


m
 n
 o


Figure 1. Graphs H1, H2 and H3 considered in Theorem 3.7.

If k = 3, then in a similar way as in the proof above, we know that n1 = n−1
2

when n is odd and n1 ∈
{

n
2
− 1, n

2

}
when n is even. In view of Lemma 3.4, CCT (v) ≤

CCH1(u1) when n is odd and CCT (v) ≤ max {CCH2(u2), CCH3(u3)} when n is even,

where H1, H2, H3 are the graphs as depicted in Fig. 1 and u1 ∈ VH1 , u2 ∈ VH2 , u3 ∈ VH3

are the vertices labeled n+1
2
, n
2

and n+2
2

, respectively. By some direct calculations, it is not
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difficult to find that

CCH1(u1) =
4n3 − 9n2 + 26n− 33

12
<

4n3 − 3n2 − 4n− 9

12

for n ≥ 5 and

max
{
CCH2(u2), CCH3(u3)

}
=

4n3 − 9n2 + 26n− 24

12
<

4n3 − 3n2 − 4n− 24

12

for n ≥ 6. Note that Hi � Pn(i = 1, 2, 3), which leads a contradiction again.

Consequently, k = 1 or k = 2. Both lead to T ∼= Pn. Since CC(v) is as large as

possible and v is not a center of Pn, v is the vertex at distance
⌈
n
2

⌉
− 2 from one of its

end vertices by applying Lemma 2.1. By some direct calculations, one has

DPn(v) =

{
n2+3
4

, if n is odd;
n2+4
4

, if n is even.

Together with Lemmas 2.1 and 2.4, we have

CCPn(v) = 2W (Pn)−DPn(v) =

{
4n3−3n2−4n−9

12
, if n is odd;

4n3−3n2−4n−24
12

, if n is even.

Case 2. Ti
∼= P ′ni

with vi being the farthest leaf from the vertex of degree 3 for some

i and Ts
∼= Pns with dTs(vs) = 1 for any s 6= i. Let T̃ be the tree satisfying T̃j

∼= P ′nj

with vj being the farthest leaf from the vertex of degree 3 for some j and T̃s
∼= Pns with

dT̃s
(vs) = 1 for any s 6= j. Then it is routine to check that

W (Ti)−W (T̃i) = 3− ni, DTi
(vi)−DT̃i

(ṽi) = −1,

W (Tj)−W (T̃j) = nj − 3, DTj
(vj)−DT̃j

(ṽj) = 1

and W (Ts) = W (T̃s), DTs(vs) = DT̃s
(ṽs) for s ∈ {1, 2, . . . , k} \ {i, j}. By Lemma 2.3, one

has CCT (v) = CCT̃ (ṽ). Therefore, without loss of generality, assume that T1
∼= P ′n1

with

v being the farthest leaf from the vertex of degree 3 and Ts
∼= Pns with dTs(vs) = 1 for

any s 6= 1.

If k ≥ 3, then put T ′′ = T − vv2 + bv2, where b is a leaf of Tk other than vk. It is

obvious that T ′′ � Pn. Just similar as the proof in Case 1, we obtain CCT ′′(v) > CCT (v),

leading to a contradiction to the choice of T . Consequently, k ≤ 2 and then T ∼= P ′n.

Since CC(v) is as large as possible, v must be the vertex at distance bn
2
c − 2 from the

vertex of degree 3 by Lemma 2.1 again. It is not hard to get that

DP ′n(v) =

{
n2−5
4

, if n is odd;
n2−4
4

, if n is even.
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Together with Lemmas 2.1 and 2.5, we have

CCP ′n(v) = 2W (P ′n)−DP ′n(v)

=

{
4n3−3n2−28n+87

12
, if n is odd;

4n3−3n2−28n+84
12

, if n is even
(3.7)

<

{
4n3−3n2−4n−9

12
, if n is odd;

4n3−3n2−4n−24
12

, if n is even

for n ≥ 5 and we are done.

Theorem 3.8. Let T be a tree on n ≥ 8 vertices with v ∈ VT . If neither T ∼= Pn with v

as its center nor T ∼= Pn with v being the vertex of distance
⌈
n
2

⌉
− 2 from one of its end

vertices, then

CC(v) ≤

{
4n3−3n2−4n−45

12
, if n is odd;

4n3−3n2−4n−72
12

, if n is even

with equality if and only if T ∼= Pn with v being the vertex of distance
⌈
n
2

⌉
− 3 from one

of its end vertices.

Proof. Choose a tree T and v ∈ VT such that CC(v) is as large as possible, where neither

T ∼= Pn with v as its center nor T ∼= Pn with v being the vertex of distance
⌈
n
2

⌉
− 2 from

one of its end vertices. Let N(v) = {v1, v2, . . . , vk} and Ti be the connected component

of T − vvi containing vi with |Ti| = ni, i = 1, 2, . . . , k. Without loss of generality, assume

that n1 ≥ n2 ≥ · · · ≥ nk. Equality 3.4 together with Lemmas 2.3, 2.4-2.5 and 3.2-3.3

yields that either Ti
∼= Pni

with dTi
(vi) = 1 or Ti

∼= P ′ni
with vi being the farthest leaf

from the vertex of degree 3. Furthermore, if Ti
∼= P ′ni

with vi being the farthest leaf from

the vertex of degree 3 for some i, then Tj
∼= Pnj

with dTj
(vj) = 1 for any j 6= i.

Case 1. Ti
∼= Pni

with dTi
(vi) = 1 for 1 ≤ i ≤ k. If k ≥ 4, then put T ′ = T −vv2+hv2,

where h is a leaf of Tk other than vk. Obviously, T ′ � Pn. Similarly, CCT ′(v) > CCT (v),

which is impossible.

.
.
.
 .
.
.


a
 b
 p
 g


h


r


.
.
.
 .
.
.


a
 b
 q
 g


h


s


Figure 2. Graphs H4 and H5 considered in Theorem 3.8.

If k = 3, then in a similar way as in the proof of the above theorem, we have

n1 ∈
{

n−1
2
, n−3

2

}
when n is odd and n1 ∈

{
n
2
− 1, n

2
, n
2
− 2
}

when n is even. Thus,
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as a consequence of Lemma 3.4, one has CCT (v) ≤ {CCH1(u1), CCH4(u4)} when n

is odd and CCT (v) ≤ max {CCH2(u2), CCH3(u3), CCH5(u5)} when n is even, where

H1, H2, H3, H4, H5 are the graphs as depicted in Fig. 1-Fig. 2 and u1 ∈ VH1 , u2 ∈ VH2 , u3 ∈

VH3 , u4 ∈ VH4 , u5 ∈ VH5 are the vertices labeled n+1
2
, n
2
, n+2

2
, n−1

2
, n−2

2
, respectively. It can

be obtained by some direct calculations that

max
{
CCH1(u1), CCH4(u4)

}
=

4n3 − 9n2 + 26n− 33

12
<

4n3 − 3n2 − 4n− 45

12

for n ≥ 7 and

max
{
CCH2(u2), CCH3(u3), CCH5(u5)

}
=

4n3 − 9n2 + 26n− 24

12
<

4n3 − 3n2 − 4n− 72

12

for n ≥ 8. Note that Hi � Pn for 1 ≤ i ≤ 5, a contradiction is obtained again.

Consequently, k ≤ 2. Lead to the fact that T ∼= Pn. Since neither T ∼= Pn with v as

its center nor T ∼= Pn with v being the vertex of distance
⌈
n
2

⌉
− 2 from one of its end

vertices and CC(v) is as large as possible, v is the vertex at distance
⌈
n
2

⌉
− 3 from one of

its end vertices by applying Lemma 2.1. By some direct calculations, one has

DPn(v) =

{
n2+15

4
, if n is odd;

n2+24
4

, if n is even.

Together with Lemmas 2.1 and 2.4, we have

CCPn(v) = 2W (Pn)−DPn(v) =

{
4n3−3n2−4n−45

12
, if n is odd;

4n3−3n2−4n−72
12

, if n is even.

Case 2. Ti
∼= P ′ni

with vi being the farthest leaf from the vertex of degree 3 for some

i and Ts
∼= Pns with dTs(vs) = 1 for any s 6= i. Just similar as the proof in the above

theorem, we have k ≤ 2 and then T ∼= P ′n. Since CC(v) is as large as possible, it can be

obtained from lemma 2.1 that v must be the vertex at distance
⌊
n
2

⌋
− 2 from the vertex

of degree 3. By virtue of (3.7), one has

CCP ′n(v) =

{
4n3−3n2−28n+87

12
, if n is odd;

4n3−3n2−28n+84
12

, if n is even

<

{
4n3−3n2−4n−45

12
, if n is odd;

4n3−3n2−4n−72
12

, if n is even

for n ≥ 8 and the proof is complete.
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4 Trees with the second (resp. third) smallest and

largest reverse cover cost

Trees with the minimum and the maximum reverse cover cost have been determined by

Georgakopoulos and Wagner [15] (see Theorem 4.1 in the following). In this section, the

second (and the third) smallest and largest reverse cover cost among all trees with n

vertices are discussed.

Theorem 4.1 ( [15]). Let T be a tree on n ≥ 2 vertices with v ∈ VT . Then

n− 1 ≤ RCT (v) ≤ n(n− 1)(4n− 5)

6
.

The lower bound holds with equality if and only if T ∼= Sn with v being a center of it,

whereas the upper bound holds with equality if and only if T ∼= Pn with v being one of its

end vertices.

Lemma 4.2. Let x be a leaf of an n-vertex tree T and put T0 = T − x. Then RCT (x) =

RCT0(y) + (n− 1)(2n− 3), where y is the unique neighbor of x in T .

Proof. By short calculations, we obtain

DT (x) = DT0(y) + n− 1, W (T ) = W (T0) + DT (x) = W (T0) + DT0(y) + n− 1.

Together with Lemma 2.1, one has

RCT (x) = (2n− 1)DT (x)− 2W (T )

= (2n− 3)DT0(y)− 2W (T0) + (n− 1)(2n− 3)

= RCT0(y) + (n− 1)(2n− 3),

as desired.

The graph transformation in the next lemma will be used repeatedly in the following

proofs.

Lemma 4.3. Let T be a tree with u ∈ VT and dT (u) ≥ 2. Denote T ′ = T − uu1 + vu1,

where v, u1 ∈ NT (u). Then RCT ′(v) < RCT (v).
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Proof. Let T be a tree on n vertices. By a direct calculation, we have

DT (v)−DT ′(v) = |Au1(uu1)|

and

W (T )−W (T ′) = |Au1(uu1)|(|Av(uv)| − |Au(uv)|+ |Au1(uu1)|).

In view of Lemma 2.1, one has

RCT (v)−RCT ′(v) = (2n− 1)(DT (v)−DT ′(v))− 2(W (T )−W (T ′))

= |Au1(uu1)|(2n− 2|Av(uv)|+ 2|Au(uv)| − 2|Au1(uu1)| − 1)

= |Au1(uu1)|(4|Au(uv)| − 2|Au1(uu1)| − 1).

Note that 1 ≤ |Au1(uu1)| ≤ |Au(uv)|−1. Then the above equality indicates that RCT ′(v) <

RCT (v), as desired.

We are now in a position to establish the second smallest reverse cover cost of a vertex

among all n-vertex trees.

Theorem 4.4. Let T be a tree on n ≥ 5 vertices with v ∈ VT , and assume that we do

not have T ∼= Sn with v being its center. Then RC(v) ≥ n+ 4 with equality if and only if

T ∼= S2,n−2 with d(v) = n− 2.

Proof. Choose a tree T with v ∈ VT such that RC(v) is as small as possible, where we do

not have T ∼= Sn with d(v) = n − 1. In order to complete the proof, it suffices to show

the following two claims.

Claim 1. εT (v) = 2.

Proof of Claim 1. Suppose to the contrary that there exists a vertex u ∈ VT such

that d(v, u) = 3. Assume that vw1w2u is the unique path connecting v and u. Put

T ′ = T − w1w2 + vw2. Then T ′ � Sn. By Lemma 4.3, we have RCT ′(v) < RCT (v), a

contradiction to the choice of T .

Claim 2. There exists a unique vertex, say v′, such that d(v, v′) = 2.

Proof of Claim 2. Suppose to the contrary that there exist u1, u2 ∈ VT such that

d(v, u1) = d(v, u2) = 2. Assume that vw1u1 (resp. vw2u2) is the unique path connecting

v and u1 (resp. u2), here w1 = w2 is allowed. Let T ′′ = T −w1u1 +vu1. Then it is obvious
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that T ′′ � Sn. Again by Lemma 4.3, we know RCT ′′(v) < RCT (v), a contradiction to the

choice of T .

By Claims 1-2, we have T ∼= S2,n−2 with d(v) = n−2. Then Lemma 2.1 together with

a direct calculation yields that

RC(v) = (2n− 1)D(v)− 2W (S2,n−2) = n(2n− 1)− 2(n− 2)(n + 1) = n + 4.

This completes the proof.

Let S ′n be the graph obtained from Sn−2 by attaching two pendant edges to two of

its leaves, respectively. Then the unique tree with the third reverse cover cost among all

n-vertex trees is characterized in the following.

Theorem 4.5. Let T be a tree on n ≥ 5 vertices with v ∈ VT . If neither T ∼= Sn with

d(v) = n− 1 nor T ∼= S2,n−2 with d(v) = n− 2, then RC(v) ≥ n + 9 with equality if and

only if T ∼= S ′n with d(v) = n− 3.

Proof. Choose a tree T with v ∈ VT such that RC(v) is as small as possible, where neither

T ∼= Sn with d(v) = n− 1 nor T ∼= S2,n−2 with d(v) = n− 2. Then we complete the proof

by showing the following two claims.

Claim 1. εT (v) = 2.

Proof of Claim 1. Suppose to the contrary that there exists a vertex u ∈ VT such

that d(v, u) = 3. Assume that vw1w2u is the unique path connecting v and u. Let

n1, n2, n3, n4 be the order of the components of T −{vw1, w1w2, w2u} containing v, w1, w2

and u, respectively. Obviously, n1 + n2 + n3 + n4 = n. Let T ′ = T − w2u + w1u. Then

T ′ /∈ {Sn, S2,n−2}. On the other hand, it is routine to check that

DT (v)−DT ′(v) = n4, W (T )−W (T ′) = n4(n1 + n2 − n3).

The above equalities together with Lemma 2.1 give

RCT (v)−RCT ′(v) = (2n− 1)(DT (v)−DT ′(v))− 2(W (T )−W (T ′))

= n4(2n− 2n1 − 2n2 + 2n3 − 1)

= n4(4n3 + 2n4 − 1) > 0.

Consequently, RCT ′(v) < RCT (v), a contradiction to the choice of T again.
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Claim 2. There are exactly two vertices with distance 2 from v in T .

Proof of Claim 2. Suppose to the contrary that there exist u1, u2, u3 ∈ VT such that

d(v, u1) = d(v, u2) = d(v, u3) = 2. Assume that vw1u1, vw2u2 and vw3u3 are, respectively,

the unique path connecting v and u1, u2, u3, here w1 = w2 = w3 or w1 = w2 6= w3 is

allowed. Let T ′′ = T − w1u1 + vu1. It is obvious that T ′′ /∈ {Sn, S2,n−2}. By Lemma 4.3,

RCT ′′(v) < RCT (v), a contradiction again.

It follows from Claims 1-2 that either T ∼= S ′n with d(v) = n − 3 or T ∼= S3,n−3 with

d(v) = n− 3. By a direct calculation, we get

W (S ′n) = n2 − 5 DS′n(v) = DS3,n−3(v) = n + 1, W (S3,n−3) = n2 − 7.

In view of Lemma 2.1,

RCS′n(v) = n + 9 < n + 13 = RCS3,n−3(v).

This completes the proof.

The second largest of reverse cover cost together with its corresponding extremal tree

among all trees n vertices are given in the following.

Theorem 4.6. Let T be a tree on n ≥ 5 vertices with v ∈ VT , and assume that we do not

have T ∼= Pn with v one of its leaves. Then

RC(v) ≤ 4n3 − 9n2 + 5n− 30

6
.

The equality holds if and only if T ∼= P ′n with v being the farthest leaf from the vertex of

degree 3.

Proof. We proceed by induction on n. For n = 5, it is routine to check that T5 =

{P5, P
′
5, S5}. Let P5, P

′
5, S5 be the graphs with ai ∈ VP5 (i = 1, 2), aj ∈ VP ′5

(3 ≤ j ≤

6), al ∈ VS5 (l = 7, 8) as depicted in Fig. 2. By a direct calculation, we have

RCP5(a1) = 14, RCP5(a2) = 23, RCP ′5
(a3) = 45, RCP ′5

(a4) = 22,

RCP ′5
(a5) = 9, RCP ′5

(a6) = 36, RCS5(a7) = 4, RCS5(a8) = 32.
(4.1)

a
 b


i


c
 d
 e
 f


j


g
 h


k


Figure 3. Graphs P5, P
′
5 and S5 considered in Theorem 4.6.
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Then RC(v) ≤ 45 with equality if and only if T ∼= P ′5 and v = a3, which implies that

the assertion holds for n = 5. Suppose the assertion holds for every tree T with order

smaller than n which does not satisfy T ∼= Pm with v one of its leaves, where m is the

order of T . Choose an n-vertex tree T � Pn or T ∼= Pn with d(v) 6= 1 such that RC(v) is

as large as possible.

First we prove that if T ∼= Pn, then v cannot be a neighbor of one of its leaves.

Otherwise, assume that N(v) = {v1, v2}, where v2 is a leaf of Pn. Denote T ′ = T − vv2 +

v1v2. Then T ′ ∼= P ′n and it is routine to check that

W (T ′)−W (T ) = DT ′(v2)−DT (v2) = 3−n, DT ′(v)−DT (v) = dT ′(v, v2)−dT (v, v2) = 1.

Therefore, RCT ′(v) − RCT (v) = 4n − 7 > 0, i.e., RCT ′(v) > RCT (v), which contradicts

the choice of T .

Next we show that v is a leaf of T . If d(v) ≥ 2 with w1, w2 ∈ N(v), let T ′′ =

T − vw1 + w1w2. Then we do not have T ′′ ∼= Pn with d(v) = 1. In view of Lemma 4.3,

one has RCT ′′(v) > RCT (v), a contradiction to the choice of T .

Now assume that u is the unique neighbor of v in T . Put T0 = T −v. By the induction

hypothesis, one has

RCT (v) = RCT0(u) + (n− 1)(2n− 3) (4.2)

≤ 4(n− 1)3 − 9(n− 1)2 + 5(n− 1)− 30

6
+ (n− 1)(2n− 3) (4.3)

=
4n3 − 9n2 + 5n− 30

6
,

where (4.2) is a immediate consequence of Lemma 4.2 and (4.3) holds with equality if and

only if T0
∼= P ′n−1 and u is the farthest leaf from the vertex of degree 3. Consequently,

T ∼= P ′n with v being the farthest leaf from the vertex of degree 3 and we are done.

Denote by P ′′n the graph obtained from Pn−1 by attaching a pendant edge to its third

last vertex. Then we have the following result about the third largest reverse cover cost

among all n-vertex trees.

Theorem 4.7. Let T be a tree on n ≥ 5 vertices with v ∈ VT . If neither T ∼= Pn with

d(v) = 1 nor T ∼= P ′n with v being the farthest leaf from the vertex of degree 3. Then

RC(v) ≤ 4n3 − 9n2 + 5n− 84

6
.

-359-



The equality holds if and only if T ∼= P ′′n with v being the leaf of distance n− 4 from the

vertex of degree 3.

Proof. We proceed by induction on n. For n = 5, it follows from the proof of Theorem

4.6 that RC(v) ≤ 36 with equality if and only if T ∼= P ′′5 and v = a6, which implies that

the assertion holds for n = 5. Suppose the assertion holds for every tree T with order

smaller than n which satisfies neither T ∼= Pm with d(v) = 1 nor T ∼= P ′m with v being

the farthest leaf from the vertex of degree 3, where m is the order of T .

Choose an n-vertex tree T with v ∈ VT such that RC(v) is as large as possible, where

neither T ∼= Pn with d(v) = 1 nor T ∼= P ′n with v being the farthest leaf from the vertex

of degree 3. In a similar way as in the proof of Theorem 4.6, we know that if T ∼= Pn,

then v cannot be a neighbor of one of its leaves.

Next we prove that if T ∼= P ′n, then v cannot be the vertex which is adjacent to the

farthest leaf from the vertex of degree 3. Otherwise, let v1 be one of the leaves of P ′n

adjacent to the vertex of degree 3. By a direct calculation, we have

D(v1) =
n2 − 3n + 6

2
>

n2 − 3n + 2

2
= D(v).

In view of Lemma 2.1, RC(u) > RC(v), a contradiction to the choice of v.

Then we show that v is a leaf of T . If d(v) ≥ 2 with w1, w2 ∈ N(v), put T ′ =

T−vw1+w1w2. Then neither T ′ ∼= Pn with d(v) = 1 nor T ′ ∼= P ′n with v being the farthest

leaf from the vertex of degree 3. It follows from Lemma 4.3 that RCT ′(v) > RCT (v), which

leads to a contradiction to the choice of T .

Now assume that u is the unique neighbor of v and denote T0 = T − v. By induction,

one has

RCT (v) = RCT0(u) + (n− 1)(2n− 3) (4.4)

≤ 4(n− 1)3 − 9(n− 1)2 + 5(n− 1)− 84

6
+ (n− 1)(2n− 3) (4.5)

=
4n3 − 9n2 + 5n− 84

6
,

where (4.4) is a direct consequence of Lemma 4.2 and (4.5) holds with equality if and only

if T0
∼= P ′n−1 and u is the leaf of distance n − 5 from the vertex of degree 3. Therefore,

T ∼= P ′n with v being the leaf of distance n− 4 from the vertex of degree 3.

This completes the proof.
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