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Abstract

The Wiener polarity index Wp(G) of a graph G, proposed by Wiener in 1947, is

the number of unordered pairs of vertices {u, v} of G such that the distance between

u and v is 3. As one of the classic topological indices, properties of Wp(G) have

been extensively studied for various graphs. We survey some recent development

on the Wiener polarity index and related results.

1 Introduction

A (chemical) topological index is a real number calculated from chemical graphs. Graphs

are used to model chemical compounds and drugs. In the graphs, each vertex represents

an atom of molecule and edges between the corresponding vertices are used to represent

covalent bounds between atoms. The topological indices have received much attention

in recent years, as they provide a strong correlation between a chemical compound’s

molecular structure and its properties. There exist several types of such indices, especially

those based on vertex and edge distances. One of the oldest and well-studied such indices
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is the Wiener index, defined as the sum of distances over all unordered vertex pairs in a

graph G [55] and denoted by

W (G) =
∑

{u,v}⊆V (G)

dG(u, v)

where dG(u, v) (or simply d(u, v)) is the distance between u and v in G.

Throughout the years the Wiener index has been extensively studied and has become

one of the best known topological indices. For more results on the Wiener index, we refer

the readers to the survey paper [21] written by Dobrynin, Entringer and Gutman. In the

same paper, another topological index was also introduced by Wiener, called the Wiener

polarity index Wp(G), which is defined as the number of unordered pairs of vertices that

are at distance 3 in G:

Wp(G) = |{(u, v)|dG(u, v) = 3, u, v ∈ V (G)}|. (1)

Like the Wiener index, the Wiener polarity index has attracted much attention in

recent years. By using the Wiener polarity index, Lukovits and Linert [43] demonstrated

quantitative structure-property relationships in a series of acyclic and cycle-containing

hydrocarbons. Hosoya [30] found a physical-chemical interpretation of the Wiener polarity

index. Du, Li and Shi [24] described a linear time algorithm for computing the Wiener

polarity index of trees and characterized the trees maximizing the index among all the

trees of the given order. Later, the extremal Wiener polarity index of (chemical) trees

with given different parameters (e.g. order, diameter, maximum degree, the number of

leaves, etc.) were studied, see [17, 18, 20, 37, 38, 40]. While for cycle-containing graphs,

the maximum Wiener polarity index of unicyclic graphs and the corresponding extremal

graphs were determined in [31]. For other classes of graphs, such as fullerenes, hexagonal

systems, lattices and cactus graphs, we refer to [8,14,15,19,44,46]. There are some results

of the Wiener polarity index of the graph operations and the relations with other indices,

such as [32, 45, 58]. In addition, the more results on bounding the Wiener polarity index

were described in [57].

In this paper, We survey the results on the Wiener polarity index. Section 2 discusses

the Wiener polarity index for trees and trees with certain restrictions. In Section 3,

we consider the unicyclic graphs and the extremal problem with respect to the Wiener
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polarity index. Section 4 presents some results on the Wiener polarity index of graph

products and the Nordhaus-Gaddum-type inequality. In Section 5 we discuss the Wiener

polarity index in terms of other graph invariants such as the Wiener index, hyper-Wiener

index, first Zagreb index, second Zagreb index, etc.. Finally in Section 6 we summarize

the generalization of the Wiener polarity index and related extremal problems.

Additional notation is as follows. Given a graph G = (V (G), E(G)), we use |G| to

denote the number of vertices, e(G) the number of edges, δ(G) the minimum degree, ∆(G)

the maximum degree, and G the complement graph of G, respectively. For any v ∈ V (G),

let dG(v) and NG(v) denote the degree and neighborhood of v in G, respectively. The

girth of a graph with a cycle is the length of its shortest cycle. A graph with no cycle has

infinite girth. For u, v ∈ V (G), the distance from u to v (i.e., the length of a shortest u−v
path) in G is denoted by d(u, v); if no such path exists, we set d(u, v) :=∞. The greatest

distance between any two vertices in G is the diameter of G, denoted by diam(G). Let

[k] = {1, 2, . . . , k}. We use Sn, Pn and Cn to denote the star, the path and the cycle on n

vertices, respectively. Let Km,n denote the complete bipartite graph in which the orders

of its bipartition sets are m and n. A tree is a connected acyclic graph. We call a tree

nontrivial, if it is not an isolated vertex. The vertices with degree 1 in a tree are its leaves.

A unicyclic graph is a connected graph containing exactly one cycle.

LetG be a graph with t componentsG1, G2, . . . , Gt. Obviously, Wp(G) =
∑t

i=1Wp(Gi).

So it suffices to consider the Wiener polarity index of connected graphs. Some graph trans-

formations that decrease or increase the Wiener polarity index of connected graphs are

very useful for studying Wiener polarity index, see [57].

2 The Wiener polarity index of trees

It is well known that for any two vertices u and v in a tree T , there exists exactly one

path between u and v in T . Thus, the distance between two vertices u and v in T is the

length of the path between u and v in T . By the good property, Du, Li and Shi [24] get

a linear time algorithm and a formula for computing the Wiener polarity index of a tree.

Lemma 2.1 ( [24]) Let T = (V,E) be a tree. Then Wp(T ) =
∑
uv∈E

(dT (u)−1)(dT (v)−1).

Let T (n) denote the set of the trees on n vertices. By the definition of Wiener polarity
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index, one can readily check that Wp(Sn) = 0 and Wp(T ) > 0 for any T ∈ T (n)\{Sn}.
Du, Li, Shi [24] and Liu, Liu [40] obtained the maximum and the second smallest Wiener

polarity index in T (n), respectively. To state their results, we define some specific trees.

Let T (k1, k2, k3, l1, . . . , lm) be a tree with diameter 4 as in Figure 1, with ki ≥ 0

(i = 1, 2, 3), m ≥ 1 and k1 + k2 + k3 + l1 + · · · + lm = n − 5 − m. Let T3(n) :=

{T ∈ T (n)| diam(T ) = 3,Wp(T ) = bn−2
2
cdn−2

2
e} and T4(n) := {T (k1, k2, k3, l1, . . . , lm) ∈

T (n)| m + k2 + 1 = bn−2
2
c or dn−2

2
e}. A double star Sa,b is obtained from Sa and Sb

by connecting the center of Sa with that of Sb. A general double star P (k; a, b) is a tree

obtained from a path Pk = v1 . . . vk (k ≥ 3) by attaching a pendent vertices and b pendent

vertices to the vertices v1 and vk, respectively. A capillary tree CT (x1, . . . , xk−1) is a tree

obtained from a path Pk+1 = v0v1 . . . vk by attaching xi pendent vertices to the vertices

vi for i ∈ [k − 1].

lm︷ ︸︸ ︷
l1︷ ︸︸ ︷

k1︷ ︸︸ ︷
k3︷ ︸︸ ︷

︷︸︸︷

k2

v0 v1

v2

v3 v4

u1 um

Figure 1: The tree T (k1, k2, k3, l1, . . . , lm).

Theorem 2.1 ( [24]) Let T be a tree of order n. Then

Wp(T ) ≤
⌊
n− 2

2

⌋⌈
n− 2

2

⌉

with equality if and only if T ∈ T3(n) ∪ T4(n).

Theorem 2.2 ( [40]) Suppose that T ∈ T (n)\{Sn}. Then

Wp(T ) ≥ n− 3

with equality if and only if T ∼= P (k; a, b), where a+ b = n− k.

In the following, we introduce some results of the Wiener polarity index of trees with

given different parameters, such as maximum degree, diameter and the number of leaves.
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2.1 Maximum degree

Let T M(n,∆) be the set of all trees with n vertices and maximum degree ∆. Given

T ∈ T M(n,∆), let V (∆)(T ) = {v ∈ V (T )| dT (v) = ∆} and N (∆)(T ) = ∪v∈V (∆)(T )NT (v).

Let h = n− (∆ + 1) and T0 = S∆+1, we construct Ti from Ti−1 by attaching a vertex to

one vertex of N (∆)(Ti−1)\V (∆)(Ti−1) for i = 1, 2, . . . , h. The set of all possible Th after h

steps is denoted by Tmax(n,∆).

Liu, Hou and Huang [38] characterized the trees minimizing (resp. maximizing) the

Wiener polarity index among all trees T ∈ T M(n,∆).

Theorem 2.3 ( [38]) (1) T M(n, 2) = {Pn}, and Wp(Pn) = n− 3;

(2) T M(n, n− 1) = {Sn}, and Wp(Sn) = 0;

(3) T M(n, n− 2) = {P (2;n− 3, 1)}, and Wp(P (2;n− 3, 1)) = n− 3.

Theorem 2.4 ( [38]) Let T ∈ T M(n,∆), where 3 ≤ ∆ ≤ n− 3. Then

n− 3 ≤ Wp(T ) ≤ (n−∆− 1)(∆− 1).

The left equality holds if and only if T ∼= P (n − ∆ + 1 − l; ∆ − 1, l) where 0 ≤ l ≤
min{∆− 1, n−∆− 2}, while the right equality holds if and only if T ∈ T Mmax(n,∆).

Note that Theorem 2.1 can be regarded as a corollary of Theorem 2.4.

2.2 Diameter

Let T ∈ T D(n, d) be the set of trees of order n with diameter d. It is easy to see that

Wp(G) = 0 if diam(G) ≤ 2. For 3 ≤ diam(G) ≤ n− 1, we have the following theorems.

Theorem 2.5 ( [20]) Let T ∈ T D(n, d), where 3 ≤ d ≤ n− 1. Then

Wp(T ) ≥ n− 3

with equality if and only if T ∼= P (d− 1; r, t) where r > 0, t > 0, r+ t = n−d+ 1 if d > 3

and T ∼= P (2;n− 3, 1) if d = 3.

Tang and Deng [50] characterized the trees with the first three smallest Wiener polarity

indices in TD(n, d).

Note that the trees with the maximal Wiener polarity index among all trees of order

n and diameter d = 3, 4 were characterized in Theorem 2.1.
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Theorem 2.6 ( [20]) Let T ∈ T D(n, d), where 5 ≤ d ≤ n− 1. Then

Wp(T ) ≤
⌊
n− d− 1

2

⌋⌈
n− d− 1

2

⌉
+ 2n− d− 4.

Moreover, the equality holds if and only if T ∼= CT (0, . . . , 0, xi, xi+1, xi+2, 0, . . . , 0), where

2 ≤ i ≤ d − 4, xi + xi+1 + xi+2 = n − d − 1, xi ≥ 0, xi+2 ≥ 0 and xi+1 = bn−d−1
2
c or

dn−d−1
2
e.

2.3 The number of leaves

Let T L(n, k) be the set of all trees with n vertices and k leaves. It is obvious that 2 ≤
k ≤ n − 1. The trees minimizing and maximizing Wp(T ) in T L(n, k) were characterized

by Liu, Hou, Huang [38] and Deng, Xiao [18], respectively.

Theorem 2.7 ( [18,38]) (1) T L(n, 2) = {Pn}, and Wp(Pn) = n− 3;

(2) T L(n, n− 1) = {Sn}, and Wp(Sn) = 0;

(3) T L(n, n − 2) = {P (2;n1, n2) | n1 + n2 = n − 2 and n1 ≥ n2 > 0}. Then for

T ∈ T L(n, n− 2), n− 3 ≤ Wp(T ) ≤ bn−2
2
cdn−2

2
e, where the left equality holds if and only

if T ∼= P (2;n− 3, 1), and the right equality holds if and only if T ∼= P (2; dn−2
2
e, bn−2

2
c).

Theorem 2.8 ( [38]) Let T ∈ T L(n, k), where 3 ≤ k ≤ n− 3. Then

Wp(T ) ≥ n− 3

with equality if and only if T ∼= P (n− k;n1, k − n1), where 0 < n1 ≤ k − n1.

Theorem 2.9 ( [18]) Let T ∈ T L(n, k), where k + 2 ≤ n ≤ 2k and n ≥ 4. Then

Wp ≤
⌊
n− 2

2

⌋⌈
n− 2

2

⌉

with equality if and only if (i) T ∼= T (k1, k2, k3, l1, . . . , ls) where k2 = k + 1 − bn
2
c or

k2 = k + 1− dn
2
e), or (ii) T ∼= P (2; bn−2

2
c, dn−2

2
e).

This result shows that the maximum Wiener polarity index is independent of k when

k + 2 ≤ n ≤ 2k.

Theorem 2.10 ( [18]) Let T ∈ T L(n, k). If n ≥ 2k + 1, then

Wp(T ) ≤ k2 − 3k + n− 1

with equality if and only if T is a star-like tree of order n in which the lengths of all

pendant chains are at least 2.
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2.4 Chemical trees

A chemical graph is a graph with maximum degree no more than 4. Deng [17] obtained

the maximum Wiener polarity index among chemical trees on n vertices.

Theorem 2.11 ( [17]) Let T be a chemical tree of order n (≥ 7). Then

Wp(T ) ≤ 3n− 15.

Du and Ali [23] determined all chemical trees on n vertices having maximum Wp.

Theorem 2.12 ( [23]) For every n ≥ 8, only chemical trees which satisfy every vertex

of degree 2 (if exists) is adjacent to one vertex of degree 1 and one vertex of degree 4, and

every vertex of degree 3 (if exists) is adjacent to two vertices of degree 1 and one vertex

of degree 4 have maximum Wiener polarity index 3n− 15.

Ashrafi and Ghalavand [6] determined the first three minimum Wp values and charac-

terized the trees attaining the first two minimum Wp values among n-vertex chemical trees

for n ≥ 7. Subsequently, Ali, Du and Ali [4] characterized the chemical trees with the

third minimum Wp value in the collection of all n-vertex chemical trees for n ≥ 7. Note

that the chemical trees attaining the first minimum Wp values have been characterized in

Theorem 2.4.

Theorem 2.13 ( [4, 6]) For fixed n ≥ 8, Figures 2 and 3 are the only chemical trees

with the second, the third minimum Wp values, which are n−2, n−1, respectively, among

all the n-vertex chemical trees.
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Figure 2: The chemical trees with the second minimum Wp value.

Figure 3: The chemical trees with the third minimum Wp value.

Furthermore, Du and Ali [22] proved that for every integer n− 3 ≤ t ≤ 3n− 15, there

exists an n-vertex chemical tree T such that Wp(T ) = t.

Deng and Xiao [19] also identified the maximum Wiener polarity index of chemical

trees with n vertices and k leaves.

Theorem 2.14 ( [19]) Let T be a chemical tree with n ≥ 7 vertices and k ≥ 2 leaves.
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Then

Wp(T ) =





n− 3, if k = 2;

n− 1, if k = 3;

n+ 5k − 17, if k is even and 4 ≤ k ≤ 2
5
(n+ 1);

3n− 15, if k is even and k ≥ 2
5
(n+ 1);

n+ 5k − 18, if k is odd and 5 ≤ k ≤ 2n+1
5

;

3n− 16, if k is odd and k = 2n+3
5
≥ 5;

3n− 15, if k is odd and k ≥ 2n+5
5
.

A vertex of degree greater than 2 is called a branching vertex. A segment of a tree

T is a path-subtree S whose terminal vertices have degrees different from 2 in T and

every internal vertex (if exists) of S has degree 2 in T . Rencently, Noureena, Bhattia and

Ali [48] obtained the best possible sharp upper and lower bounds on the Wiener polarity

index Wp for the chemical trees of order n with a given number of branching vertices or

segments, and characterized the corresponding extremal chemical trees.

2.5 Other results

2.5.1 Hückel trees

The trees with perfect matching, of which all vertices have degrees not greater than 3, are

referred to as the Hückel trees. Wang [54] considered the smallest and the largest Wiener

polarity index among all Hückel trees on 2n vertices and characterized the corresponding

extremal graphs.

Let TH(2n) denote the set of Hückel trees on 2n vertices satisfying the following

properties:

(i) All the lengths of pendent chains are no more than 2.

(ii) If P is a path of a Hückel tree with both ends of degree 3, then all internal vertices

of P are of degree 3.

(iii) All the vertices of degree 2 are on the pendent chains.

Theorem 2.15 ( [54]) Suppose T is a Hückel tree on 2n vertices. Then

2n− 3 ≤ Wp(T ) ≤ 4n− 8,

the left equality holds if and only if T = P2n and the right equality holds if and only if

T ∈ TH(2n).
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2.5.2 Given degree sequences

Liu, Liu [41] and Lei, Li, Shi, Wang [37] studied trees with a given degree sequence, and

characterized the extremal graphs attaining the maximum value of the Wiener polarity

index. Lei, Li, Shi and Wang [37] also characterized the extremal graphs attaining the

minimum value of the Wiener polarity index.

Definition 2.1 (Greedy Tree) With given vertex degrees, the greedy tree is constructed

through the following “greedy algorithm”:

(i) Label the vertex with the largest degree as v (the root);

(ii) Label the neighbors of v as v1, v2, ..., assign the largest degrees available to them such

that d(v1) ≥ d(v2) ≥ . . .;

(iii) Label the neighbors of v1 (except v) as v11,v12,...,such that they take all the largest

degrees available and that d(v11) ≥ d(v12) ≥ . . ., then do the same for v2, v3, ...;

(iv) Repeat (iii) for all the newly labeled vertices. Always start with the neighbors of the

labeled vertex with largest degree whose neighbors are not labeled yet.

Figure 4 shows an example of a greedy tree.

v

v1 v2 v3 v4

v11 v12 v13 v21 v22 v23 v31 v32 v41 v42

Figure 4: A greedy tree with degree sequence (4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 1, . . . , 1).

Definition 2.2 (Alternating greedy tree) Given the non-increasing sequence

(d1, d2, . . . , dm) of internal vertex degrees, the alternating greedy tree is constructed through

the following recursive algorithm:
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• If m − 1 ≤ dm, then the alternating greedy tree is simply obtained by a tree rooted

at r with dm children, dm − m + 1 of which are leaves and the rest with degrees

d1, . . . , dm−1;

• Otherwise, m−1 ≥ dm+1. We produce a subtree T1 rooted at r with dm−1 children

with degrees d1, . . . , ddm−1;

• Consider the alternating greedy tree S with degree sequence (ddm , . . . , dm − 1), let v

be a leaf with the smallest neighbor degree. Identify the root of T1 with v.

Theorem 2.16 ( [37,41]) Among all trees with a given degree sequence, Wp(T ) is max-

imized by the greedy tree and is minimized by the alternating greedy tree.

2.5.3 Quasi-trees

A connected graph G = (V,E) is called a quasi-tree, if there exists u0 ∈ V (G) such that

G− u0 is a tree. Denote QT (n, d0) = {G: G is a quasi-tree graph of order n with G− u0

being a tree and dG(u0) = d0}. The concept of quasi-tree graphs was first introduced by

Liu and Lu [42].

Tang and Liang [51] obtained the maximal and the second smallest Wiener polarity

index of quasi-tree graphs of order n. Note that the smallest Wiener polarity index among

all quasi-tree graphs of order n is 0.

Theorem 2.17 ( [51]) Let G ∈ QT (n, d0) with n ≥ 4 and d0 ≥ 2.

(1) If n ∈ {4, 5, 6}, then Wp(G) ≤ n− 3.

(2) If n = 7, then Wp(G) ≤ 7.

(3) If n = 8, then Wp(G) ≤ 9.

(4) If n = 9, then Wp(G) ≤ 12.

(5) If n ≥ 10, then Wp(G) ≤ bn2−6n+9
3
c.

Theorem 2.18 ( [51]) Let G ∈ QT (n, d0). If Wp(G) > 0 and d0 ≤ n− 3, then

Wp(G) ≥ n− d0 − 2.
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3 The Wiener polarity index of unicyclic graphs

A unicyclic graph of order n is a connected graph with n vertices and n edges. It is

well-known that every unicyclic graph has exactly one cycle. Let U(n) denote the class

of unicyclic graphs on n vertices. Let Cg = u1u2 . . . ugu1 be a cycle of order g(≥ 3). Let

Cg(k1, . . . , kg) denote a caterpillar cycle, which is a unicyclic graph obtained from Cg by

attaching ki vertices to vertex ui, where ki ≥ 0 for i ∈ [g]. When there is exactly one

i ∈ [g] such that ki 6= 0, we write Cg(ki) for short. Let EC3 denote the caterpillar cycle

C3(k1, k2, k3) with |ki − kj| ≤ 1 (i, j = 1, 2, 3) of order n.

We first present a formula of the Wiener polarity index of unicyclic graphs.

Lemma 3.1 ( [40]) Let U = (V,E) be a unicyclic graph and let C denote the unique

cycle of U . If g(U) = 3 with V (C) = {u1, u2, u3}, then

Wp(U) =
∑

uv∈E

(dU(u)− 1)(dU(v)− 1) + 9− 2dU(u1)− 2dU(u2)− 2dU(u3).

If g(U) = 4 and V (C) = {u1, u2, u3, u4}, then

Wp(U) =
∑

uv∈E

(dU(u)− 1)(dU(v)− 1) + 4− dU(u1)− dU(u2)− dU(u3)− dU(u4).

If g(U) ≥ 5, then

Wp(U) =





∑
uv∈E

(dU(u)− 1)(dU(v)− 1)− 5, if g(U) = 5;
∑
uv∈E

(dU(u)− 1)(dU(v)− 1)− 3, if g(U) = 6;
∑
uv∈E

(dU(u)− 1)(dU(v)− 1), if g(U) ≥ 7.

To illustrate the following results, we define some special unicyclic graphs.

• Let Cj
g,l1,l2

be a unicyclic graph obtained from Cg by attaching l1 and l2 pendant

vertices to ui and ui+j respectively, where i, i+ j ∈ {1, . . . , g (mod g)}.

• Let Cg(Pn−g+1) be the unicyclic graph on n vertices formed by attaching one pendent

vertex of Pn−g+1 to one vertex of Cg.

• Let Cg(P (t + 1; 0, n − g − t)) be a unicyclic graph obtained from a cycle Cg and

P (t+ 1; 0, n− t− g) by identifying a vertex of Cg and v1.
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• Let Cj
g(P (t + 1; 0, n − g − t − s), s) be a unicyclic graph obtained from a cycle Cg

by attaching the vertex v1 of P (t+ 1; 0, n− g − t− s) and s pendant vertices to ui

and ui+j respectively, where i, i+ j ∈ {1, . . . , g (mod g)}.

Liu and Liu [40] considered the smallest and second smallest Wiener polarity indices

among all unicyclic graphs of order n.

Theorem 3.1 ( [40]) Suppose U ∈ U(n), then Wp(U) ≥ 0, where the equality holds if

and only if U ∼= C3(n− 3) or C4 or C5.

Theorem 3.2 ( [40]) Suppose U ∈ U(n)\{C3(n − 3), C4, C5}, then Wp(U) ≥ n − 4,

where the equality holds if and only if U ∼= C3(n − 4, 1, 0) or C4(n − 4) or C2
4,`,n−4−`

(1 ≤ ` ≤ n− 5) or C5(1).

Fang, Ma, Chen and Dong [26] determined the third smallest Wiener polarity index

of unicyclic graphs and characterized the corresponding extremal graphs.

Theorem 3.3 ( [26]) Suppose U ∈ U(n). Then the third smallest Wiener polarity index

Wp(U) = n− 3, the equality holds if and only if U ∼= C6, C3(2, 2, 0), Cj
3(P (t; 0, s), n− t−

s−2) with j = 0, 1, C1
4,1,1, C2

4(P (t; 0, s), n−t−s−3), C5(2), C2
5,1,1, C5((P (t; 0, , n−t−4)),

where t ≥ 3.

Hou, Liu and Huang [31] first obtained an upper bound for the Wiener polarity index

of unicyclic chemical graphs.

Theorem 3.4 ( [31]) Let U be a unicyclic chemical graph with n(≥ 5) vertices. Then

Wp(U) ≤ 3n+ 12.

Recently, an ordering of chemical unicyclic graphs of order n with respect to the

Wiener polarity index was given by Ghalavand and Ashrafi [27].

Hou, Liu and Huang [31] determined the maximum Wiener polarity index of unicyclic

graphs and characterized the corresponding extremal graphs. In particular, they proved

the following result for n ≥ 12.

Theorem 3.5 ( [31]) Let U be a unicyclic graph of order n ≥ 12. Then

Wp(U) ≤ Wp(EC3)

with equality if and only if U ∼= EC3.
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In the following, Huang, Hou, Liu [34] and Ma, Shi, Yue [44] considered the Wiener

polarity index of unicyclic graphs with given different parameters, girth, the number of

leaves, the maximum degree and diameter.

Now for unicyclic graphs with a given girth, let UG(n, g) be the set of unicyclic graphs

of order n with girth g.

Theorem 3.6 ( [34]) Suppose n ≥ 9. Then

(1) UG(n, n) = {Cn}, and Wp(Cn) = n;

(2) UG(n, n− 1) = {Cn−1(1)}, and Wp(Cn−1(1)) = n+ 1;

(3) UG(n, n− 2) = {Cn−2(P3), Cn−2(2), Cj
n−2,1,1}, where 1 ≤ j ≤ bn−2

2
c.

And Wp(C
1
n−2,1,1) = n+3 > n+2 = Wp(Cn−2(P3)) = WP (Cn−2(2)) = Wp(C

j
n−2,1,1), where

1 < j ≤ bn−2
2
c.

Theorem 3.2 together with Theorem 3.7 determined the minimum Wiener polarity

index together with its corresponding unicyclic graphs of UG(n, g) for 3 ≤ g ≤ n− 3.

Theorem 3.7 ( [34]) Let U ∈ UG(n, g), where 5 ≤ g ≤ n− 3. Then

Wp(U) ≥





n+ 2, if g ≥ 7;

n− 1, if g = 6;

n− 3, if g = 5,

with all equalities if and only if U ∼= Cg(P (t+ 1; 0, n− t− g)) with t ≥ 2, n− t− g ≥ 1.

As for maximizing the Wiener polarity index, we have the following.

Theorem 3.8 ( [34]) Let U ∈ UG(n, g), where 5 ≤ g ≤ n− 3. Then

Wp(U) ≤
⌊
n− g

2

⌋⌈
n− g

2

⌉
+





2n− 10, if g(U) = 5;

2n− 9, if g(U) = 6;

2n− g, if g(U) ≥ 7.

with equality if and only if U ∼= Cg(k1, k2, k3, 0, . . . , 0), where k1, k2, k3 ≥ 0,
∑3

i=1 ki =

n− g, and k2 = bn−g
2
c or dn−g

2
e.

Let C4(k1, k2, k3, 0)
⊗

(t) denote the unicyclic graph obtained from t isolated vertices

and C4(k1, k2, k3, 0) by attaching each of the t isolated vertices to any pendant vertices of

NC4(k1,k2,k3,0)(u2), where k1, k2, k3 ≥ 0 and t ≥ 1.
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Theorem 3.9 ( [34]) Let U ∈ UG(n, 4). Then

Wp(U) ≤
⌊
n− 4

2

⌋⌈
n− 4

2

⌉
+ n− 4

with equality if and only if U ∼= C4(k1, k2, k3, k4), where k1, k2, k3, k4 ≥ 0 and n− 4− k1−
k3 = k2 + k4 = bn−4

2
cordn−4

2
e, or U ∼= C4(k1, k2, k3, 0)

⊗
(t), where k1, k2, k3 ≥ 0, t ≥ 1,

and n− 4− k1 − k3 − t = k2 = bn−4
2
c or dn−4

2
e.

Theorem 3.10 ( [34]) Let U ∈ UG(n, 3), where n ≥ 11. Then

Wp(U) ≤
{

1
3
(n− 3)2, if n = 0 (mod 3);

1
3
(n− 2)(n− 4), if n 6= 0 (mod 3),

with equality if and only if U ∼= EC3.

Let UL(n, k) be the set of unicyclic graphs on n vertices with k leaves. The next result

determined the minimum Wiener polarity index in UL(n, k) for any k.

Theorem 3.11 ( [34]) Suppose n ≥ 9. Then

(1) UL(n, 0) = {Cn}, and Wp(U) = n;

(2) UL(n, 1) = {Cg(Pn−g+1)} (n > g ≥ 3), where Wp(Cn−1(1)) = n+ 1 and

Wp(Cg(Pn−g+1)) = n+ 2 for g ≤ n− 2;

(3) Let U ∈ UL(n, n−3). Then Wp(U) ≥ 0 with equality if and only if U ∼= C3(n−3);

(4) Let U ∈ UL(n, n−4). Then Wp(U) ≥ n−4 with equality if and only if U ∼= C4(n−4)

or C2
4,l,n−4−l, where 1 ≤ l ≤ n− 5;

(5) If 2 ≤ k ≤ n− 5 and U ∈ UL(n, k), then Wp(U) ≥ n− 3.

It is worth noting that, for 2 ≤ k ≤ n− 5, the extremal unicyclic graphs of Theorem

3.11 were also characterized in [34].

Now let UM(n,∆) be the set of unicyclic graphs on n vertices with maximum degree

∆. Clearly, 2 ≤ ∆ ≤ n − 1. It is easy to see that UM(n, 2) = {Cn} and UM(n, n − 1) =

{C3(n− 3)}. For 3 ≤ ∆ ≤ n− 2, we have the following theorem.

Theorem 3.12 ( [34]) Let U ∈ UM(n,∆) and n ≥ 7.

(1) If 3 ≤ ∆ < dn
2
e, then Wp(U) ≥ n− 3.

(2) If dn
2
e ≤ ∆ ≤ n− 2, then Wp(U) ≥ n− 4 with equality if and only if U ∼= C1

3,n−4,1 or

C4(n− 4) if ∆ = n− 2, and U ∼= C2
4,∆−2,n−2−∆ if dn

2
e ≤ ∆ ≤ n− 3.
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Since Wp(Cn) = n and Wp(C3(n − 3)) = 0 for n ≥ 7, Theorem 3.12 determines the

minimum Wiener polarity index in UM(n,∆) for arbitrary ∆. The extremal unicyclic

graphs for 3 ≤ ∆ < dn
2
e of Theorem 3.12 were also characterized in [34].

Next let UD(n, d) be the set of unicyclic graphs with order n and diameter d. For

d ≥ 3, we first introduce the following graphs defined in [44]:

Let U3(s, t) (s+t = n−d−3) be a unicyclic graph, obtained from a path P = v0v1 . . . vd

of length d by adding s pendant vertices to v1, t pendant vertices to vd−1, and identifying

a vertex of a triangle with v1 or vd−1 (see Figure 5).

Figure 5: The unicyclic graphs U3(s, t).

Let U ′3(a′1, a
′
2, a
′
3) (a′1 + a′2 + a′3 = n− d− 2) be a unicyclic graph in UD(n, d)(d ≥ 4),

which is obtained from a path P = v0v1 . . . vd by identifying two vertices u2 and u3 of a

triangle C = w1w2w3 with vf and vf+1 (if d ≥ 5, then 2 ≤ f ≤ d − 3; if d = 4, then

f = 1), and adding a′i(i ∈ [3]) pendant vertices to wi (see Figure 6).

Figure 6: The unicyclic graphs U ′3(a′1, a
′
2, a
′
3).

Ma, Shi and Yue [44] characterized the extremal graphs among all the unicyclic graphs

with order n and diameter d.

Theorem 3.13 ( [44]) Let U be a unicyclic graph in UD(n, d) (d ≥ 3).

(1) If d = 3, then Wp(U) ≥ n− 3 with equality if and only if U ∼= U3(0, t) (t = n− 6).

(2) If d = 4, then Wp(U) ≥ n−3 with equality if and only if U ∼= U3(s, t) (s+t = n−7).
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(3) If d ≥ 5, then Wp(U) ≥ n − 3 with equality if and only if U ∼= U3(s, t) (s + t =

n− d− 3), C4(P (d− 2; 0, n− d− 1)), C5(P (d− 2; 0, n− d− 2)).

Theorem 3.14 ( [44]) Let U be a unicyclic graph in UD(n, d) (d ≥ 4, n ≥ d + 8), and

U∗ denote the unicyclic graph with the maximum Wiener polarity index.

(1) If d = 4, then U∗ ∼= U
′
3(a′1, a

′
2, a
′
3) with |a′1 + 1 − a′i| ≤ 1 (i = 2, 3), |a′2 − a′3| ≤ 1,

and

Wp(U
∗) =





(n−6)(n−1)
3

+ 3, if a′1 + a′2 + a′3 = 0 (mod 3);

n(n−7)
3

+ 5, if a′1 + a′2 + a′3 = 1 (mod 3);

(n−8)(n+1)
3

+ 8, if a′1 + a′2 + a′3 = 2 (mod 3).

(2) If d ≥ 5, then U∗ ∼= U ′3(a′1, a
′
2, a
′
3) with |a′i − a′j| ≤ 1 (i, j ∈ [3]), and

Wp(U
∗) =





(n−d−2)(n−d+4)
3

+ d, if a′1 + a′2 + a′3 = 0 (mod 3);

(n−d−3)(n−d+5)
3

+ d+ 2, if a′1 + a′2 + a′3 = 1 (mod 3);

(n−d−4)(n−d+6)
3

+ d+ 5, if a′1 + a′2 + a′3 = 2 (mod 3).

Ou, Feng and Liu [49] also determined the minimum Wiener polarity index of unicyclic

graphs with any given maximum degree and girth, and characterized extremal graphs.

In [54], the following theorem was shown by Wang.

Theorem 3.15 ( [54]) Let U be a unicyclic Hückel graph of 2n vertices, where n ≥ 4.

Then

2n− 7 ≤ Wp(U) ≤ 4n+ 4.

Du, Li and Shi [24] presented an algorithm which computes the index Wp(G) for any

given connected graph G on n vertices in time O(M(n)), where M(n) denotes the time

necessary to multiply two n × n matrices of small integers (which is currently known

to be O(n2.376) [16]). For further results on the Wiener polarity index of other classes

of graphs, one may see [46] (bicyclic graphs), [15] (cactus graphs), [8] (fullerenes and

hexagonal systems), [14] (various lattices), [33,36] (some chemical structures), [5]( silicate

and oxide networks), [39](dendrimers), [2](polyomino chains), [3](nanostar dendrimers).
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4 Graph products and the Nordhaus-Gaddum-type

inequalities

4.1 Graph products

Various products of graphs often appear in the study of chemical graphs. Let G and H

be two simple connected graphs. The join G+H is defined as V (G+H) = V (G)∪V (H)

and E(G+H) = E(G) + E(H) + {uv|u ∈ V (G), v ∈ V (H)}.

Definition 4.1 Let G and H be two simple connected graphs. The Cartesian product

G�H, strong product G�H, lexicographic product G[H], direct product G×H, symmetric

difference G4H, and disjunction G ∨H are defined with vertex set V (G) × V (H) and

edge set as follows:

• E(G�H) = {(a, x)(b, y) : ab ∈ E(G) and x = y, or xy ∈ E(G) and a = b};

• E(G�H) = {(a, x)(b, y) : a = b and xy ∈ E(H), or ab ∈ E(G) and x = y,

or ab ∈ E(G) and xy ∈ E(H)};

• E(G[H]) = {(a, x)(b, y) : ab ∈ E(G), or a = b and xy ∈ E(H)};

• E(G×H) = {(a, x)(b, y) : ab ∈ E(G) and xy ∈ E(H)};

• E(G4H) = {(a, x)(b, y) : ab ∈ E(G) or xy ∈ E(H) not both };

• E(G ∨H) = {(a, x)(b, y) : ab ∈ E(G) or xy ∈ E(H)}.

The corona product of two graphs G and H is the graph G ◦H formed from one copy

of G and |G| copies of H where the ith vertex of G is adjacent to every vertex in the ith

copy of H.

It is an easy fact that the Wiener polarity index of any graph with diameter less than

3 is zero. So the Wiener polarity index of join G + H, symmetric difference G4H and

the disjunction G ∨H are zero.

Faghani, Ashrafi, Ori [25] and Ma, Shi, Yue [45] studied the Wiener polarity index on

the graph products of two non-trivial connected graphs. We list some results as follows.

For a given connected graph G, we define W2(G) := |{{u, v} | d(u, v) = 2, u, v ∈
V (G)}|, which is the number of unordered pairs of vertices {u, v} of G such that dG(u, v) =

2. Note that W2(G) can be computed in polynomial time.
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Theorem 4.1 ( [45]) Let G and H be two non-trivial connected graphs. Then

(1) Wp(G�H) = Wp(G)|H|+Wp(H)|G|+ 2W2(G)e(H) + 2W2(H)e(G).

(2) Wp(G�H) = Wp(G)[2Wp(H) + 2W2(H) + 2e(H) + |H|] +Wp(H)[2W2(G)

+ 2e(G) + |G|].

(3) Wp(G×H) = 2Wp(G)Wp(H) + 2Wp(H)e(G) + 2Wp(G)e(H).

(4) Wp(G[H]) = Wp(G)|H|2.

Theorem 4.2 ( [25]) Let G and H be two graphs. Then Wp(G◦H) = Wp(G)+
∑|G|

i=1 ti+

e(G)|G|2 in which ti = |⋃b∈NG(vi)
[NG(b)−NG(vi)]| − 1.

4.2 The Nordhaus-Gaddum-type inequalities

Nordhaus-Gaddum-type results are bounds of the sum or the product of a parameter for

a graph and its complement. For the Wiener polarity index, by Lemma 4.1, it is nontrival

to consider the Nordhaus-Gaddum-type inequality of a graph G and its complement G in

the case both diam(G) = 3 and diam(G) = 3.

Lemma 4.1 ( [9]) Let G be a graph. If diam(G) > 3, then diam(G) < 3.

Denote by G∗ and G∗∗ the graphs of order n ≥ 5 obtained from joining n−4 vertices to

each internal vertex of the path P4 such that V (G∗)\V (P4) is a clique and V (G∗∗)\V (P4)

is any graph of order n − 4, respectively. Let S∗a,b be a graph containing a double star

Sa,b, such that any two vertices both in V (Sa) or both in V (Sb) may be adjacent. From

the definition of the Wiener polarity index, we easily obtain that

Wp(G
∗) = 1, Wp(G∗) = 1

and

Wp(S
∗
a,b) = (a− 1)(b− 1), Wp(S∗a,b) = 1.

Zhang and Hu [58] first established the Nordhaus-Gaddum-type inequality for the

Wiener polarity index of a graph G and its complement G, in terms of the order of G.
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Theorem 4.3 ( [58]) Let G be a graph of order n ≥ 4, and G be its complement. If

diam(G) = 3 and diam(G) = 3, then

2 ≤ Wp(G) +Wp(G) ≤
⌊n

2

⌋ ⌈n
2

⌉
− n+ 2.

Moreover, the lower bound is achieved if and only if G ∼= P4 or G is isomorphic to some

G∗; the upper bound is achieved if and only if G ∼= S∗bn
2
c,dn

2
e or G ∼= S∗bn

2
c,dn

2
e.

A better lower bound was given by Hua and Das [32].

Theorem 4.4 ( [32]) Let G be a connected graph with a connected complement G. Then

d+ d− 4 ≤ Wp(G) +Wp(G) ≤ n(n−1)(n−2)2

2
+ 2m2 + (n− 3

2
)[2(m−∆)2

n−2
−∆(n−∆)]−

m
2

(4n2 − 19n+ 17)− 2[∆2 + (2m−∆)2

n−1
+ 2(n−2)(∆2−δ)2

(n−1)2 ],

where d and d are the diameter of G and G, ∆, ∆2 and δ are the maximum degree, the

second maximum degree and the minimum degree in G, respectively. Moreover, the lower

bound holds if and only if G ∼= Pn or G ∼= G∗∗ or d = d = 2.

By Theorem 2.1, One can easily check that Wp(T ) +Wp(T ) ≤
⌊
n
2

⌋ ⌈
n
2

⌉
− n+ 2 among

all trees of order n. In addition, Zhang and Hu [58] proved

Wp(G) +Wp(G) ≤
{ ⌊

n
2

⌋ ⌈
n
2

⌉
− n+ 2, if n ≤ 8;

b (n−3)2

3
c, if n ≥ 9

for any unicyclic graph of order n.

5 The relation between the Wiener polarity index

and other indices

First we recall some of the best known chemical indices. The Wiener index W (G) is

defined as [30]

W (G) =
∑

(u,v)⊆V (G)

d(u, v)

and the hyper-Wiener index WW (G) is defined as [47]

WW (G) =
1

2
W (G) +

1

2

∑

(u,v)⊆V (G)

d2(u, v).

The first Zagreb index M1(G) and the second Zagreb index M2(G) are defined as [29]
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M1(G) =
∑

v∈V (G)

d2
G(v) and M2(G) =

∑

uv∈E(G)

dG(u)dG(v).

The Hosoya index of a graph, denoted by Z(G), is defined to be the total number of

matchings, that is,

Z(G) =
∑

k≥0

m(G; k),

where m(G; k) is the number of k-matchings in G for k ≥ 1, and m(G; 0) = 1.

Liu and Liu [40] discussed the relation between the Wiener polarity index and the

Zagreb, Wiener, hyper-Wiener indices.

Theorem 5.1 ( [40]) Let G be a graph with order n and size m. Then

Wp(G) ≤M2(G)−M1(G) +m

with equality if and only if G is a tree or g(G) ≥ 7.

Theorem 5.2 ( [40]) If G is a triangle- and quadrangle-free connected graph, whose

order is n and size is m, then

Wp(G) ≥ 2n(n− 1)−m−M1(G)−W (G)

with equality if and only if diam(G) ≤ 4.

Theorem 5.3 ( [40]) If G is a triangle- and quadrangle-free connected graph, whose

order is n and size is m, then

Wp(G) ≥ 5

4
n(n− 1)− 1

2
m− 7

8
M1(G)− 1

4
WW (G),

with equality if and only if diam(G) ≤ 4.

Behmarama, Yousefi-Azari, Ashrafi [8] and Tratnik [52] determined the relation be-

tween the Wiener polarity index and the first and second Zagreb indices of connected

graphs.

Theorem 5.4 ( [8]) Suppose G is a connected triangle- and quadrangle- free graph such

that its different cycles have at most one common edge. Let Np(G) and Nh(G) denote the

number of pentagons and hexagons of G. Then

Wp(G) = M2(G)−M1(G)− 5Np(G)− 3Nh(G) + e(G).
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The set of all cycles of length k in G is denoted as Ck(G). Let G be a graph without

cycles of length 3. If G has at least one cycle of length 4, then we define

f(G) =
∑

C=u1u2u3u4u1∈C4(G)

(dG(u1) + dG(u2) + dG(u3) + dG(u4)− 8).

Otherwise, f(G) = 0.

Theorem 5.5 ( [52]) Let G be a connected graph without cycles of length 3. Moreover,

suppose that any two distinct cycles C1, C2 ∈ C4(G) ∪ C5(G) ∪ C6(G) have at most two

common edges and any two cycles C ′1, C
′
2 ∈ C4(G) have at most one common edge. Then

it holds

Wp(G) = M2(G)−M1(G)− f(G)− 4|C4(G)| − 5|C5(G)| − 3|C6(G)|+ e(G).

By Theorems 5.4 and 5.5, Behmarama, Yousefi-Azari, Ashrafi [8] and Tratnik [52]

determined the Wiener polarity index for some special graphs, such as catacondensed

hexagonal systems, hexagonal cacti, polyphenylene chains, phenylenes and catacondensed

benzenoid graphs.

Hua and Das [32] established some upper bounds on the Wiener polarity index in

terms of the Hosoya index, independence number and the first Zagreb index.

Theorem 5.6 ( [32]) Let G be a connected triangle-free graph of order n and size m

with independence number α(G). Then

Wp(G) <
1

3

[
n(n− 1)

2
α(G) +m−M1(G)

]
.

Theorem 5.7 ( [32]) Let G be a connected graph of order n and size m. Then

Wp(G) ≤ Z(G)− 1−m

with equality if and only if G ∼= C3 or Sn or a double-star.

Theorem 5.8 ( [32]) Let G be a connected graph of size m. Then Wp(G) = Z(G)−m−2

with equality if and only if G ∼= P5 or C3(1).

In [7], the relation between the Wiener polarity index and the Zagreb indices, the

Wiener index are also considered for various graphs.
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6 Generalizations of the Wiener polarity index

For k ≥ 1, the generalized Wiener polarity index is defined as the number of unordered

pairs of vertices {u, v} of G such that the shortest distance d(u, v) between u and v is

k [35]. This is denoted by

Wk(G) = |{(u, v)|d(u, v) = k, u, v ∈ V }|.

To generalize Theorem 5.1 for k ≥ 4. Lei, Li, Shi and Wang [37] defined a generalization

of the Zagreb indices

Mk(G) =
∑

d(u,v)=k−1

dG(u)dG(v)

for k ≥ 3. and proved the following result.

Theorem 6.1 ( [37]) For a tree T and integer k ≥ 3, we have

Wk(T ) = (−1)k

(
k − 1

2
M1(T ) +

k−1∑

i=2

(−1)i+1(k − i)Mi(T )− (n− 1)

)
.

Given a positive integer k ≥ 3, we define a t-broom (t ≥ 2) as follows. For even k ≥ 4,

define a t-broom to be a graph consisting of a central vertex v with t ‘brooms’ attached,

each consisting of a path of length (k− 2)/2 with leaves attached to the ends opposite v.

In this way, the leaves of different brooms will be at distance k. For odd k ≥ 3, to define

a t-broom, take a copy of Kt and attach a broom to each vertex, adjusting the length of

the path (See Figure 7).

Figure 7: A 5-broom for k = 8 and a 5-broom for k = 7.

For a tree T , Wk(T ) is just the number of paths with length k in T . If the diameter

of T is less than k, then Wk(T ) = 0. Thus the minimum value of Wk(T ) is zero, achieved

by all trees with diam(T ) < k. In [13, 35], the authors obtained the maximum value of

Wk(T ). A linear algorithm for computing Wk(T ) was also designed by Ilić and Ilić [35].
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Theorem 6.2 ( [13,35]) For a tree T of order n and every integer k, there is a t such

that the maximal value of Wk(T ) is attained for a t-broom. If k is odd, then t = 2. If k

is even, then t is within 1 of 1
4

+
√

1
16

+ n−1
k−2

.

In [53], Tyomkyn and Uzzell independently introduced the same concept, where they

considered it as a new Turán-type problem on distances of graphs: determining the maxi-

mum number of paths with length k in a tree T on n vertices. Bollobás et al. studied the

case of path with a given length [1,10–13]. In [11], it is shown that if 10 ≤
(
k
2

)
≤ m <

(
k+1

2

)
,

then the number of paths of length three in graphG of sizem is at most 2m(m−k)(k−2)/k.

In [12], the maximum number of paths of length four of graph G of size m, denoted by

p4(m), is determined.

Theorem 6.3 ( [12]) If m is sufficiently large, then

p4(m) = p4(Gm) =

{
m3

8
− 3m2

4
+m, if m is even;

m3

8
− 7m2

8
+ 15m

8
− 9

8
, if m is odd.

and Gm is the unique extremal graph. Here Gm is the complete bipartite graph Km
2
,2(m ≥

2) if m is even; or the complete bipartite graph Km−1
2
,2(m ≥ 3) if m is odd.

Yue, Lei and Shi [56] characterized the extremal trees with respect to the generalized

Wiener polarity index among all trees of order n and diameter d.

Let G be a graph and v a vertex of G. A hanging tree on the vertex v of G, denoted

by T [v], is a rooted tree whose root is the vertex v, and all other vertices are not in V (G).

These vertices of T [v] at distance t from v have height t and form the t-th level of T . Let

hmax(T [v]) be the maximum height of a rooted tree T [v].

Suppose d ≥ 2k − 3. We construct a family of graphs as follows. Take a underlying

path of length d, say P = v0v1 . . . vd. Let T [vi] be a hanging tree on the vertex vi of P

with diameter at most k − 1 for i ∈ [d − 1], and for any nontrivial T [vi] and T [vj] with

0 < j − i ≤ k − 2, the following hold:

(1) hmax(T [vi]) + hmax(T [vj]) ≤ k + i− j − 1;

(2) min{hmax(T [vi]) + i, hmax(T [vi]) + d− i} ≤ k − 1;

(3) s1 + s2 + · · · + sd−1 = n − d − 1, where si is the number of vertices of root tree

T [vi] different from the root vi for i ∈ [d− 1].
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︷
︸︸

︷

v0 v1 v2 v3 vd−1 vd

T [v1]s1 T [v2]

︷
︸︸

︷

s2 T [vd−1]

︷
︸︸

︷

sd−1

Figure 8: A graph in T 1(s1, . . . , sd−1).

Denoted the family of graphs by T 1(s1, . . . , sd−1), which is shown in Figure 8. Note that

si may be 0.

Let 4 ≤ k ≤ d ≤ 2k − 4, we construct another family of graphs as follows. Take a

underlying path of length d, say P = v0v1 . . . vd. Let T [vi] be a hanging tree on the vertex

vi of P with diameter at most k− 1 for i ∈ [d− 1], and for any nontrivial T [vi] and T [vj]

with 0 < j − i ≤ k − 2, the following hold:

(1) hmax(T [vi]) + hmax(T [vj]) ≤ k + i− j − 1;

(2) max{hmax(T [vi]) + i, hmax(T [vi]) + d− i} ≤ k − 1;

(3) s1 + s2 + · · · + sd−1 = n − d − 1, where si is the number of vertices of root tree

T [vi] different from the root vi for i ∈ [d− 1].

The family of graphs is denoted by T 2(s1, . . . , sd−1).

Theorem 6.4 ( [56]) Let T be a tree on n vertices with a given diameter d.

(1) If d ≥ 2k − 3, then

Wk(T ) ≥ n− k.

The equality holds if and only if T ∈ T 1(s1, . . . , sd−1).

(2) If k ≤ d ≤ 2k − 4, then

Wk(T ) ≥ d+ 1− k.

The equality holds if and only if T ∈ T 2(s1, . . . , sd−1).

To state the maximum generalized Wiener polarity index of trees with a given diame-

ter. First, we introduce a family of graphs, denoted by T (n, p), which is obtained from a

p-broom (p ≥ 2) with n− (d− k + 2) vertices by attaching two pendant paths of length

s and t, respectively, to two different ends opposite the central vertex in p-broom, where

s, t ≥ k − 1, s+ t = d− k + 2 and p = 2 when k is odd.
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Theorem 6.5 ( [56]) Let T be a tree on n vertices with a given diameter d ≥ 3k − 4.

(1) If k is odd, then Wk(T ) ≤
⌊
n−d−1

2

⌋ ⌈
n−d−1

2

⌉
+ (2n− d− k− 1). The equality holds

when T ∈ T (n, p).

(2) If k is even, then Wk(T ) ≤ Wk(T
∗), where T ∗ ∈ T (n, p) and p is near to

1

4
+

√
17

16
+
n− d− 1

k − 2
.
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