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Abstract
Integer sequences of permutational isomers numbers ( N o) issued from placements in distinct

ways of achiral substituents among substitution sites of a parent dodecahedrane skeleton are
derived under the /, group action. The construction of eight associated Sylvester’s denumerants

of type N, :ZaG W , decomposing these numbers as sum of symmetry adapted isomers
& U8

J
numbers (4G, s+ g -+ (lG/ ) scaled by the weights WCY?]g, of the subgroups Gj of I is used

as a novel method for symmetry itemized enumeration of coisomeric substituted DDH
derivatives and DDH heteroanalogues.

1 Introduction

The enumeration of dodecahedrane (DDH) skeletons under the /; group action reported
by Fujita are based on Unit Subduced Cycle Indices (USCI) and Restricted Partial Cycle Index
(RPCI) methods ™7 which require like Polya’s classical isomers inventories 12 the
transformation of cycle indices into generating functions expanded with high power series. The
application of such complex mathematical procedures to the enumeration of 3D- structures is a
dunting problem for chemists. To simplify its solution and in continuation of part I presenting
the algorithm for bipartite enumeration of chiral and achiral isomers of DDH derivatives and

DDH heteroanalogues we propose in this paper the formulation of Sylvester’s denumerants!'>!4l
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of the I, group and their applications to symmetry itemized enumeration of these compounds.
Such an accessible mathematical approach is needed for subsequent stereochemical studies and

molecular design of these series of topologically spherical molecules.

2 Classification of coisomeric DDH substituted derivatives and

DDH heteroanalogues

Let us consider homogeneous arrangements of substituents among 20 positions of the
spherical orbit of DDH as placements in distinct ways of objects of the same kind among a given
set of positions and heterogeneous arrangements of substituents as placements in distinct ways
of objects of different kinds among a given set of positions. With regard to these characteristics
of arrangements of achiral substituents one can divide into 4 groups DDH substituted derivatives

and their heteroanalogues as follows:

1- Homosubstituted DDH derivatives C,,H 20-q%X4 8¢ issued from homogeneous arrangements

of ¢X substituents of the same kind among 20 substitution sites of DDH submitted to

permutations induced by distinct symmetry operations of /, .

2- DDH homo hetero-analogues (CH)zo.q X, are issued from homogeneous arrangements

putting, in accord with the obligatory minimum valency (OMV) restriction (OMV=3), ¢X

trivalent heteroatoms of the same kind among 20 CH groups permuted by distinct symmetry

operations of 7, .

3- Heterosubstituted DDH derivatives C

oty Xg Xy 2y, aTE issued from heterogeneous

Tk
arrangements of g,H and ¢;X...,4;Y,...,q;Z substituents of different kinds among 20 tertiary

carbon atoms positions permuted by distinct symmetry operations of 7, .

4- DDH hetero hetero-analogues (CH) o Xay- gLy, ATC obtained from heterogeneous

arrangements putting in accord with the obligatory minimum valency restriction (OMV=3)

qpH and q;X...,q;Y,...,q;Z trivalent heteroatoms of different kinds among 20CH groups

permuted by distinct symmetry operations of /.
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3 Mathematical formulation of symmetry itemized enumeration

from the denumerants of I group

3.1 Permutations of carbon and hydrogen atoms of DDH under the I, group
action
Let us represent the structure of DDH by a tridimensional hydrogen depleted graph given

in fig.1 part I where 20 equivalent black vertices of degree 3 symbolizing 20 carbon atoms

indicated by alphabetical labels form a spherical orbit denoted
Cy = (a,b,c,d,e,f,g,h,i, jab'cde f.g'h'i’j'). The 20 hydrogen atoms (not indicated in the graph)
attached to this set of carbon atoms are located on an external spherical orbit Hao. This special

geometrical feature connecting 20H to 20 interconnected C atoms form a cluster of 20CH groups

giving rise to a cage shaped hydrocarbon of /; symmetry defined by equation 1.

1,=E,20C3,15C,,24Cs, i, 205,24,150 (1)

The 1, group action on DDH skeleton consisting to apply 8 distinct classes of symmetry
operations g, €/, to the spherical orbits Hzp and C2y generate the permutations representations

PI”HZ,, and P Cx given in eqs.2-3 :

Ly _ o E c c c i 55 s -

P"H,,=P H,),P ZHZ(),P j1120,}) SHZ(),P H,,,P (HZ()’P ”)HZ()’P Hy, (2)
L. _ E c c c i 55 s -

PCyp =P Cop, P2 Cp, PP C o, P Cp, P Cy, P Clp, P71 Cp, P7Cy (©))

The right-hand side terms of Egs. 2 and 3 are distinct types of permutations induced by 8
conjugacy classes of symmetry operations of /; group. These permutations are written in cycle
structure notation as follows:

PPH,, =17, PO H,, =2", PO H,, =1"3°, PO H,, =5", @
PH, =2" PYH, =2'6’, PPm,, =107, P H, =1'2"

PEC,, =17, P©2C,, =2", PCC,, =173°, PEC,,=5",

‘ ®)
P'Cyy =2, P Cy, =2'6°, P"C,, =107, P7C,, =1"2°
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One may notice that the right-hand side terms of types P*C,, = P* H,, in eqs.4-5 are

equivalent. Therefore phc 50 and Pl 50 are two sets of congruent permutations written in

cycle structure notation as follows:

Pty =rCy =[], 20[ P2 ] 15[2°] 24[5"] [2°] [26'] 24[10° | 15[12°] (o)

3.2 Determination of permutational isomers numbers for homo-or hetero-
polysubstituted DDH derivatives and DDH heteroanalogues.

Let Ng[ denote the number of permutomers i.e., the number of arrangements of achiral

substituents of the same kind or different kinds among 20 substitution sites of DDH submitted

to 8 distinct classes of permutations defined in eq.6. For 8 distinct conjugacy classes of

symmetry operations g, €/, one obtains an 8 entries row vector of permutomer numbers

[%:IZNE, Ng» Ng» Ng» N Ng»Ns > N which are derived in accordance with the

placements of achiral substituents of the same kind or different kinds.

Rule 1 : Permutational isomers numbers for homopolysubstituted DDH derivatives C,,H,, X,

and DDH homo hetero-analogues(CH),, X, or number of distinct ways of putting ¢

20-q “q

substituents of the same kind among 20 positions submitted to permutation permutations of

20
classes ¢ ¢ , 1263, 2'63and 1*2% are derived from binomial theorem as follows :

17— NE:[Z{)],f:J @)
q
10
2‘°—>NC2=N,.: g | =2 ®)
2
4
54> Ne,=|q | =5 ©
5
2
0% Ny =l g | =10 (10)
10

i ga) (4 8
14.23—>N0=ZT(4,01)T(8,2)—2( j gd |# (11)

a=0



3
1
2.6 >Ny = Y (a) q-2a" (12)
a"=0,1 6
6
1°3° > N, = i (2} (13)
. C3 - q—a
N5

Rule 2: Permutational isomers numbers for heteropolysubstituted DDH derivatives

Cyt, X, Y, 2, and DDH hetero hetero-analogues (CH) a Xay- Yy Zq, OF numbers of distinct

ways of putting q,H and q;X...,q,Y,...,q,Z achiral substituents of different kinds among 20

20
positions submitted to permutations of classes ¢ ¢ , 123% 2163 and 142® are derived from

multinomial theorem as follows:

20
120—>NE= =1 (14)
49054959k
10
2% Ne =N, = @ @ | (=2 15)
27272
\ 4
S Ne =gy @ @] =3 (16)
57575
2
100N, =| q, ¢ ¢, | (=0 (17
107107 10°
12.36—>NC22(, ’ j( o ) (18)
3 AN\ PO D rPf q0 - Gjreer qy
k k 4P,
with the restrictions X pj =2, X q; =6, ¢} = (19)
i=0 i=0 3

2'6' —> N :Z(M g )( " ) (20)
6 A\ P)ro Dirs Pl 405 dis s
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k k 9; =20,
with the restrictions 2 pf=1 X ¢/=3, ¢/=—— (21)
=0 =0 6
A I @
I\ DOl J\ oG] s q%
k k 4; ,p;

with the restrictions 2 pj =4 X ¢/ =8, ¢/ = (23)
=) =)

14 1=
The N, o calculated from eqs.7-13 and 14-22 are collected to form the permutomers count vector
for MX denoted -
PCV(MX) =( Ny, Ny, N, Ny, N, Ny, N, | (24)

where MX=C,,H,, X ,(CH)

20-g°"q?

20g Xq2CooH g X g Yy 2y OF (CH) X, .Y, .2

q;""" 4y
3.3 The Sylvester’s denumerants of the icosahedral group

The combinations of different symmetry operations g, € /, given in the right-hand side of eq.1
generate a sequence of subgroups for /, (SSGIh) listed in table 1 and summarized in eq.25.

Table 1. Sequence of subgroups of the icosahedral point group 7, .

C= Gy =ECy0,,i Cs;=E, 4C5,i, 48y
C,=EC, Cs=E 4C;s T=E3C,,4C!, 4C}
Cs=Eo, D; = 3¢5, 2C5 Dsy =E,3C,2C3,304,1, 255
C,=Ei C;, =E 2C3,30,4 D;, =E5C5,4Cs,50,i,4S,
Cy=E.2¢4 Cs; = E 2C3,i, 254 T}, = E.4C3,4C2,3C,, i,454,45; 30,
D,, = E,3C,,i,3
D,=E, 3C, Dzh_ . 502 4’C % [=E 20C,, 24C;, 15C,
Cy, =ECy,2 S A - ;
IR s 1, = E, 20C;, 24C,, 15C, i, 205, ,24S,,, 150

SSG[h =(C1.C,.C,.C,.C3,D,,C,,,C,,,C5,D;,C,, Csy, Dy, D5, Cs, C, T.D;. Dy T, 11 ) (25)
Let us consider ﬂgiegj and 'ugidh as the respective multiplicities of a symmetry operation

g, €G,and g, el givenin table 1. We define the weight WGj,g/; of a subgroup G, e SSG I,
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. . . . lug eG
calculated with respect to a symmetry operation g, € G; as the quotient of the ratios 7 and

\G.

!

Hg,er
ﬁ where ‘ ]h‘ and ‘G/‘ are the orders of these groups.
h

17

X forgZeG-,g el;,G; e SSG
_ Jrel =th 1]

WG,,gp - 'unglh ‘G/‘ !

0 forg, G,

lug(EGj
(26)

For 8 distinct conjugacy classes of symmetry operations g €1, and 22 subgroups G, €85G,
given in table 1 one obtains 176 distinct values WGj,gg which are the elements of the matrix
of the weights of subgroups for , denoted :

W, =1Wg,e)  where G, eSSG,. g, eG andg, <l, 27)

1

The 22 x 8 numerical values of the entries WG,,g/ of the matrix WIh given in eq.27’ are

equivalent to the marks of coset representations of Fujita.[!]

If Ng[ permutomers of a DDH derivative (MX) are distributed among the subgroups Gj € SSGI,,

such a partition has 22 indeterminates symmetry adapted isomers numbers @; which form an
J

itemized isomer count vector Z/CV for MX denoted:

ae Q. 4. ,d; A 4, ,Ac de e ,d, ,de
IICV (MX) — CI CZ C\‘ CI C5 DZ CZ» C_/t CS D3 C}L (28)
aC.n ’aDzh ’aDs ’acsv ’acsr ’aT’and 'aDSd 'aTh 4 'alh
The relation between IICV[MX]and PCV[MX] is the dot product: [16-18]
TICVIMX ] x W,h = PCV[MX] 29)

explicitly denoted:



-92-

1ICV[MX]

(a IJa Z’ac,iyaCIIaC],aDZ

CZ\' ’ Clh ’ CS ’ DJ ’ C}v

X

SSG-I, | E 15C2 | 20C3 | 24Cs | @ 20S6 | 24S10 | 150
Ci 120 |0 0 0 0 0 0 0
C: 60 |4 0 0 0 0 0 0
Cs 60 |0 0 0 0 0 0 4
Ci 60 |0 0 0 60 |0 0 0
Cs 40 |0 4 0 0 0 0 0
D2 30 |6 0 0 0 0 0 0
Cay 30 |2 0 0 0 0 0 4
C2n 30 |2 0 0 30 |10 0 2
Cs 24 10 0 4 0 0 0 0
D3 20 |4 2 0 0 0 0 0
= Cav 20 10 2 0 0 0 0 4
Csi 20 |10 2 0 20 |2 0 0
D2n 15 |3 0 0 15 10 0 3
Ds 12 |4 0 2 0 0 0 0
Csv 12 |0 0 2 0 0 0 4
GCsi 12 |0 0 2 12 |0 2 0
T 10 |2 4 0 0 0 0 0
D3a 10 |2 1 0 10 |1 0 2
Dsa 6 2 0 1 6 0 1 2
Th 5 1 2 0 5 2 0 1
1 2 2 2 2 0 0 0 0
In 1 1 1 1 1 1 1 1

PCV[MX]

(NE’NQ’NQ’NQ’NPNS(,’NSW’N”)

Ao e L0 ,a, 0 ,aQ,aDZh,aDs,aCSv,acﬁ,a,,aDm,aDSd,aTh,a,,a,h)

(297

We replace the Ng/ of PCV(MX) by their equivalent algebraic expressions given in eqs.7-13

and 14-23. The expansion of eq.29’ gives rise to § associated partition equations 30-37 and 38-

45 called Sylvester’s denumerants of permutomers numbers Ngé for 1, -based derivative MX.
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For coisomeric series of homopolysubstituted DDH derivatives Coptl X, and DDH homo

hetero-analogues (CH),, , X, :

120a,, + 60, +60. +60a,, +40., +30,, +30d., +30d,, +24d,, +20a, + 20,

Np= ‘ ] oo

+20(lcji + 15dDZh + 12(1”5 + ]2(165‘: + IZGCJ’_ + 10CZT + IO(IDM + 6d05(l + Sdrh + Za[ + th

B 4a62 +6LIDZ +2acz‘y -¢-2[lcy1 -*-4(103 +3aDM +4d05 + B 10 31
NCz - |4
ZaT +2aDM +2aDM +aTh +2a, + a,h 2
2 6
Np =4a. ++2a, +2a, +2a. +4a,+a, +2a, +2d,+a, = z N g (32)
L N T ¥ ey R o i
a=0 3
N, =4a, +2a, +2 2 2 =(? (33)
cs aL,S + aDS + acjv + acﬁ +aD5d +2d; +th =la
5
N;=60a. +30a., +20a. «I15a, +12a. «l10a, ~+6a, +5a, +a, = {anj (34)
o0 5 " 54 sa 4
| 3
NS(, = lecsi +dp o+ ZElTh Ay, = Z (a”j q-2a" (3%5)
a"=0,1
6
2
Ny, =2ac +a, +a; =| q (36)
10
47y 8
N, =da +4a. +2a. +4a. +3a, +4a. +24, +2a, +d, +q; = Z [a!) g-a' (37)
a'=0 2

For coisomeric series of heteropolysubstituted DDH derivatives CoHy X, X, 2, and DDH

hetero hetero-analogues (CH) w0 Koy YaZq,

. 12()acl +6{)aC: + 6()aC‘ + 6{)aq +40acj +30aDZ *30‘1% + 3()aCM + 24‘1(5 + ZOaDj +2{)aij _[ 20 j (38)
+2()acj’ + 15%2,, + 12(1D5 + IZaij‘ + 12acjy + IOaT + IOaD“ + 6%5,, + 5ar,, +2a; + a, Qo409
4aCJ + 6a,)2 + Zach + Zacm + 4a,)] + 3“172,, + 4anS + 10 (39)
Ne, = e & a
2a,+2a,,}d +2a,)5d+arh+2a,+a,~ 2 0Ty
2 6 (40)
N(3 = 4a() I \Zani . 2“% . za((v vdag ap,, 201,/v ' 201,h ra;, = Z,:(p,', llllll p,’,. pLJ[ q(,) 44444 q:) B q;{j

N, =4a 2a 2a, 2a a 2a, +a, = ‘ 41)
s cg T etp, el el U, Tl 8 T 9 G
5
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_ (o “2)
N; = 60a<.} + SOaL.m + 20a[§ + 15an‘/ +12a. +10a, , +6anr/ + 5“7, wa =g 4 a
2 i 2h i 3d 3d 4 4 e ey
1 3 (43)
7\ Py Pioeos Pr)\bo>>- Disreeers 9k
2
- - 44
Nsm Zac)_’ ta, +a Q@ 4 9% (44)
1077107 10
N, :4626‘ +4ach +2aczh +4aij +3(1D% +4(,1C5V +2aDM +2aDjj +a7;1 +th :Z[ ) 4” ”j[ . 8 ”j (45)
2P0 Pise-s Pk J\Dosr-- Girs-eers 9k

The integer values N, <, and an satisfy the following conditions : (a)-for permuting degrees of

homopolysubstitution g, 20-g in the molecular formulas  CyHy, X, and CyyH X, -

N, g4 K g0.20-q

and an,q = any 20-q (46)
(b)-for permuting partial degrees of heteropolysubstitution  (g,,g,....q;,...q,) and

(4.9, q,) in the molecular formulas CopHly Xy Y, 2, and (CH)q,, D SR A

N, (oG- G- Gh) =N, (G Gy Gy G) A0 Qg (G, G- Gpooen i) = A (@1, Gy GorTi) (A7)

Selection rules: The selection rules for forbidden and allowed symmetries G /j € SSG],, are applied

to find numerical values of the indeterminates g ,x =>0.
J

1- For Ng/‘W :Zan W(WGJ'& =0 where Wijg/ >0, the symmetry itemized isomers numbers

J

Qg 1 0 such equations are nil an e =0. These nil values are reported in the ZICV(MX) to
. .

indicate G; symmetries (in the subscripts) forbidden to the molecular system MX.

2- For Ng/ MY =Zan,mWGj >0 where ij}gé > 0 all positive integers an x>0 indicate the

J
numbers of stereoisomers assigned to distinct symmetries G; (written in the subscripts) which
are allowed to the molecular system MX. For the sake of comparison the numbers Ay and

Aac,mx found from bipartite enumeration (part I of this study) and the set of symmetry itemized

isomers numbers an x Tound from this pattern inventory satisfy eq.48-50.

Ay = ZaG; . :(acl $Ae Qe +Ae + Ay +A, +d, + 4, +a,) (48)
G i
J
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Agertx = Z a e
w7 mx
GV

where a. >0 and e >(are respectively the numbers of chiral symmetries Cf and achiral
J i
symmetries Gj “allowed to a DDH derivative MX. Diastereoisomers numbers A diamx for In-

based molecules MX are obtained from eq.50 and their values match up with Polya’s

coefficients derived from cycle indices.

Adia,]l/[X = Ac,A/LX + Aac,]\/D{ = ;aG;mMX + ;an/chX (50)
g g

4 Applications to symmetry itemized enumeration of substituted

DDH derivatives and DDH heteroanalogues

Example 1: Symmetry itemized enumeration of homosubstituted DDH derivatives C20H20-4X4
and DDH homo hetero-analogues (CH)20.4X; where 0<g¢<20. By applying the Sylvester

denumerants given in eqs.30-37 and the selection rules to these series characterized by the

complementarity of the degrees of substitution ¢ and 20-¢q, one derives the following results:

For ¢g=0, 20-g =20

() n{2) )
R RN RN X

PCV(CyyH,y) = (1,1,1,1,1,1,1,1)

1ev (C,yH,,) =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1)

This trivial result predicts the occurrence of one DDH skeleton of 7, symmetry. The other
subgroups of J, are forbidden.
For g=1, 20-q =19

_ (20— 5, v — —[#)(8) =
o=, ()20 3, s, ()
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2 . .
N. =2a, = ( )(3) =2a, = 1 the other symmetries are forbidden.

C3 Csv 1\o

Ne¢

Z:chzNi:NsézNszo

PCV(CyyH 19X ) =(20,0,2,0,0,0,0,4)
1Cv (CyyH 1% ) = (0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)
For g=2, 20-q =18

Ng =60a,, +60a, +30a. +10a, =(220) =190,

Ne, =4a,_ +2a, +2a, :(11”) =10, N, :(j)(g) =a, =1

N, =da. +4a. +2a, =(3)(f) +(;)(§) =14, Ng, =Ng =Ng =0
N, =10a, =(110) =10

a. =1,a. =1, a. =2,a, =1 the other symmetries are forbidden.

C Coy > D3y
PCV(CyyH 14X, ) =(190,10,1,0,10,0,0,14)
1V (CypH 15X, ) = (0,1,1,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0)

For g=3, 20-g=17

2\(6
N, =4ac, +2a., = (0)(1) =6,

=8 ac =1, a, =1 the other symmetries are forbidden.
Py (C,H,,X,) = (1140.0,6,0,0,0,0,36)

ucv(c,H, X, )= (5.0.8.0.1,0,0,0,0,0.1,0,0,0,0,0,0,0,0,0,0,0)

For g=4, 20-q=16
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20
Np = IZOaCl + 60acz + 60a(.c + 40”(‘3 + 30a(,:v + 30aC2h + 20"% + 15aDZh +10ap = ( 4 ) = 4845

+2a. +3a +2aT=(]0)=45,

No =4a,. +2a,
(&} (&) Co Con Dy, 2

Ne, =4ac, +2a; +4ar —(1)(1)—12

10
N; =30a., +15a, = ( 5 ) =45,

2\[8 FAYK 4\(8
q o, +2aCM +4“c3,, +3aD% —(0)(2)+(2)(1)+(4)(0) =232

the other symmetries are forbidden

PCV(CyyH X, ) = (4845,45,12,0,45,0,0,77)

v (CpyH, X, ) =(28,8,13,0,1,0,3,1,0,0,2,0,1,0,0,0,1,0,0,0,0,0)
For g=5, 20-g=15

NCZ :NCI =NC5 =NS6 :NSI() =0

=1a

v

ac =112, a. =33 a = 2 the others symmetries are forbidden.

C [eN =1 acj C;

PCV(CyyH X5 ) = (15504, 0, 6, 4, 0, 0, 0, 144)
107 (CpyH X 5) = (112,0,33,0,1,0,0,0,0.0.1,0.,0,0,2,0,0.,0,0,0,0,0)
For g=6, 20-q= 14

20
Ny = 120a,, +60a,, +60a, +40a,, +30a,, +30a. +20a, +20a. +20a. +10a, =( . ) =38760

Ng, =4ac, +2a,, +2a.,

10
' +4aD3 +2aDM +2ar —(3)—120
N, =4a. +2a, +2 +2 + =?)(° =15
C aQ a’)a acxv aCJi a[)id o))

10
N; =60ac, +30a., +20a. +10a, = ( 5 ) =120

1\[3
Ns(, :Zach_ +ap —(0)(1)—3
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NC5 = Nsm =0

4\[8 AYES 4\(8
N, =4a_ +4aCZ_ +2ac7’ +4a. +2aDM =( )(3)+(2)(2)+(4)( )z 232
ac, =284, a,. =23 ac, = 2, a, =1 ac = 47, ac, =8 ey = c, =1 ey

the other symmetries are forbidden
pcv(c,H,,x, ) = (38760, 120, 15, 0, 120, 3, 0, 232)
1cv(C,H, X, ) =(284,23,47.0.2,0.8,3,0.1,1,1,0,0,0,0,0.1,0,0,0,0)

For g=7, 20-q=13

20
Np =120a., +60a, +40a. +30a, +20a. = ( ; ) = 77520
26
ch =dac, +2a. = (1)(2) =30

= tag wsae, =(2)(3)+ (3)(8) e

NC2 =Ni=NC5 =NS6 :NSm =0

ac, =6 a. =3 a, =81 theothers symmetries are forbidden.
PCv(C,H,.x,) = (77520, 0, 30, 0, 0, 0, 0, 336)

1cv (C,,H,,X, ) = (603,0.81,0.6,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0.0,0)

For g=8, 20-q= 12

Ng =120a., +60a., +60a, +60ac, +40a. +30a, +30a., +30a.,

20
+20a, +20a. +15a, +10a, +10; =( N )= 125970
N¢, =4ac, +6a, +2a. +2a.

_ _(2}[6)_
Ne, =4ac +2a, +2a. +a, +2a; = (2][2] =15

- _ (10
N; =60a. +30a., +15a, +I10a, +5a, = ( 4) =210

— _[4)[8) [4)[8) [4)(s
N, = 4acj + 4aC2v + 2aczh + 4ac3,. + 3aD2h + ZaDJd + aTh = (0)(4) + (2)(3) + (4)(2) =434

10
*4%3 +3an3h +4an; +2a, +2anM +2aD5d *“r,, +2a, +a,h :(4):210
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13
Ng, =a,,, +2ag, :(1)(1):3,

Ng, =Ne, = 0

a, =975, a

. L=43, A =24, =14, =2, 4, =1 d; =9%.0d. =9, d. =2, 4. =1,

C Con

1, a

a, =1, =1,a, =1.the other symmetries are forbidden.
Dy Dsq Ty

PCV(C

WH ,X,) = (125970, 210, 15, 0, 210, 3, 0, 434)
1y (C, 1, X, ) = (975.43,96,2,2,1,9.2,0,1,1,0,1,0,0,0,0.1,0,1,0,0)

For g=9, 20-g=11

21([6

a, =124, ac,

C,
PCV (CaH11Xs) = (167960, 0, 20, 0, 0, 0, 0, 504)
IICV (CaoH11Xo) = (1336,0,124,0,4,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0)

For ¢=10, 20-g=10

20) =184756

Np= 12()11(] + 60a65 + 60ac\ + 6()aq + *4()”53 + 30”5;‘ + 30”% + Z{Iacf\ + IZaCj‘ + Xaum = (10

10
NCz = 4“@_, + 2a(.2‘_ + Za(,M + Za% —( 5 )— 252

2\[6
Ne, =4a, +2a, = (1)(3) =40

10
N; =60ac, +30a., +15a, +I12ac +10a, +6a, = ( 5 ) =252

N,

4
o =44, +2a, +2a. +2a, +a, =( ) =6

2
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2
= —+ = = =
NSIO 2aC5I aDid (]) ’ acﬂ 0. aD,w 2

AYES 4\(8 AYES
N, = 4acj + 4aC2v + ZaCZh + 4‘1ch, + 2aDM + 4ac)_v = (0)(3) + (2)(2) + (4)(]) =532

aCI = 1448, acz =54, LIC3 =8, aC'_ =2, ac\_ =112, aCZV =12, aCM =4, acjv =4, acjd =2, aCn =2

PCY(C,yH X)) = (184756, 252, 40, 252, 0, 2, 532)

HCV(C,)H X ) = (1448,54,112,2,8,0,12,4,0,0,4,0,0,0,2,0,0,0,2,0,0,0)

The collection of PCVs and IICVs calculated in the range 1 < ¢ < 20 generates a permutomers

count matrix PCM(MX) and an itemized isomer count matrix //CM(MX) which satisfy the

generalized dot product:

q=20 _ q=20
newm [mx )" xw, = pem [mMx])| (51)
explicitly written in eq.52 which summarizes the results of the symmetry itemized enumeration
of homosubstituted DDH and DDH homo hetero-analogues. The 22 entries //CVs collected to

form the 21 x 22 JICM of eq.52 possess the elements a; > 0 indicating the number of isomers
J

occurring with Gj-allowed symmetries and the elements an = 0 indicating distinct types of Gj-

forbidden symmetries. As example for g=2 and n-g=18 the ZICV=(011000200000000
001000 0). These entries aligned in the order of the set of subgroups of /; given in eq.25
predict the occurrence of C> chiral and Cs+2C2,+D3gq achiral isomers for the series C29H;sX> and
(CH)18X>. The numbers and types of occurring symmetries for distinct coisomeric series of
homosubstituted DDH derivatives (C20H20.4X;) and DDH homo hetero-analogues (CH)20-4Xy

are summarized in table 2.
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Table 2. Numbers of isomers and types of occurring symmetries predicted for homo substituted DDH
derivatives(C20H20.4X;) and DDH homo hetero-analogues (CH)2-¢X;.

qn-q | Cof4Xy | (CH)24Xy | Ac Axc | Adia Occurring Symmetries

0,20 CaoH> (CH)z9 0 1 1 Iy

119 CaoH 19X (CH) 1sX 0 1 1 Csy

2,18 CroH X5 (C[‘I)sz 1 4 5 Cr+Ct+2Coyt+Dsg

3,17 CaoH 17X3 (CH) 17X;3 6 9 15 5C+Cs3 + 8Cs+Csy

4,16 CroH 16Xy (CH) 16X+ 38 20 58 28C+Co+C3+T + 13C+3Coy+Copt2Csy+Don

515 CaoH 5Xs (CH) 15X 113 36 149 112C;+C3+33C+C3,+2Csy

6,14 Ca0H 14Xs (CH)14Xs 310 61 371 | 284C;+23C,+2C3+Ds+
47Cs+8Ca+3ContCay+CsitDag

7,13 CoH 13X, (CH) 13X; 609 84 693 | 603C; + 6Cs+81Cs+3Csy

8,12 CoH12Xs (CH);2Xs 1022 | 113 1135 | 975C+43C,+2Cs+Dy+D3
+96Cs+2CiH+9Co+2Cont CavtDontDsgtTh
9,11 CaoH 11Xy (CH) 11Xy 1340 | 126 | 1466 | 1336Ci+4Cs + 124C+2C5y

10,10 C20H 10X 10 (CH) 10X 10 1510 | 138 | 1648 | 1448C;+54Co+8Cs+

112Cst+ 2Ci+12Co+4Con+4C3,+2Cs,+2Dsq

These results predict one Csv-isomer for C20H19X/(CH)19X; 5-isomers including one C: chiral
and Cs+2C2y+D3q achiral isomers for C2oH sX2/(CH)1sX2; 5Ci+Cjs chiral and 8Cs+C3, achiral
isomers for C20Hi7X3/(CH)17X3; then 28C;+C2+Cs+T chiral and 13Cs+3C2+Cont2Csv+Dop-
achiral isomers for C20H1sX4/(CH)16X4; 112C;+Cjs chiral and 33Cs+C3,42Cs, achiral isomers
for CaoHsXs5/(CH)15Xs5,; 284Ci+23C>+2C3+Ds chiral and 47Ci+8Ca+3Cau+C3v+C3i+Dsa
achiral isomers for CxHiXs /(CH)14Xs; 603C1+6Cs-chiral and 81Cst+3Csy for
Ca0H13X7/(CH)13X7 ; 975C1+43C2+2C3+D2+Ds chiral and 96Cs+2Ci+9C2+2Con+Csy +Don
+Dj34+Ty achiral isomers for C20H12Xs/(CH)12Xs ; 1336C1+4C3 chiral and 124Cs+ 2Csy achiral
isomers for C2oH ;1 Xo/(CH)11Xo ; 1448C 1+ 54C>+8C;s chiral and 112Cs+2Ci+12C2+4Cop+4Csy
+2Cs,+2Dsq achiral isomers for C20H10X10/(CH)10X10. The illustrations of these results are
depicted in fig.1 by the graphs 1-107 reproducing some selected symmetries occuring with
reduced isomers numbers. In this representation the isomers belonging to the same symmetry
point group are drawn in one single box with underneath identifying numbers and their figure
inventory is given in the lower right corner. We notice for the sake of comparison the following
remarks: (1) data in columns 4, 5 and 6 results of bipartite enumeration (given in part I) and
those of column 7 obtained from this pattern inventory satisfy equations 48, 49 and 50. (2). We
notice that the scalar of the summands of partition equations are similar to the numbers of
homopolysubstituted DDH derivatives with achiral substituents predicted by the USCI-methods

of Fujita.l”!)
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Figure 1 continued

C20H16X4/(CH) 16X4

45 o 6 #7) (48) 20y

C20H14Xs/(CH) 14X

D
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Figure 1 continued
CxH13X7/ (CH) 13X7

(72) g o 03 D, (74) (75) 2ca (76) D,

C20H12Xs/(CH) 12X
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Figure 1 continued, end.

C20H11Xo / (CH) 11 Xo

07 2Gs,

(103) 4G, (106) 4G

Figure 1. Graphs of homopolysubstituted DDH derivatives Cz0H0.,X; and DDH homo-hetero-
analogues (CH)20-4Xq.

Example 2: Symmetry itemized enumeration of di, tri, tetra, penta, hexa and dodeca-heteropo
lysubstituted DDH derivatives C,,H, X oY, 2, and their corresponding hetero hetero-

analogues (CH)q”Xq[ .Y, ..Z, givenin table 3.
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Table 3. Molecular formulas of di, tri, tetra, penta, hexa and dodeca-heteropolysubstituted DDH
derivatives Cg(;H,,”X,,,----K,»--Z,,A and their DDH hetero hetero-analogues (CH)q”qu....X]v...qu

| C,H X

90"

Z-l;"'ZqA /(Gl)anq;""

Y.Z

4G %

k

CH, X, .Y, .7, |(H), X,..Y,.Z,

i i

2 | CooHi1sXY | (CH)1sXY

3

Cx0H1,XYZ | (CH)17 XYZ

CH17X2Y | CH) 12X2Y

CxH16X2YZ | (CH) 16 X2YZ

C20H16X3Y | (CH)16X3Y

CxH 5X2Y2Z | (CH) 15 X2YZ

C20H16X2Y2 | (CH)16X2Y>

CxHsX3YZ | (CH)1sX3YZ

Co0H15X3Y2 | (CH)15X3Y2

CooH14X3Y2Z | (CH)14 X3Y2Z

C0H14X3Y3/ CH) 14 X3Y3

Ca0H14X4YZ | (CH)14 X4YZ

C20HsXsYs | CH)s XsYs

*k=number of achiral substituents of different kinds.

To solve the enumeration problem for each DDH derivative MX=C,H, X, ...

aforementioned

(@, X,.Y,.2,

having an

integer

1,2, or

sequence of partial degrees of

heteropolysubstitution ¢, ,.--4;,-..,4; we have first to find compatible pairs of integer

sequences  (Hy.pyth) o (@t} (D)

" m "

H(q(/ ~~~~~ ire g

’

U

oDy

PR o @] a0d (5 e )
). Such data given in table 3 of part I are introduced in eqs.38-45 for the

computation of symmetry itemized isomers numbers a; of MX as follows:
J

For given C20H XY /(CH)1sXY, we note (qo,qj,qz) =(18,1,1),

(ph. Py 0y) = (90.47.95)=(0,1,1) =(6,0,0) and (p], p], p3) < (q5.4}.q5) = (2.1,1)(8,0,0)

Np= IZOaC] + 6()aci + ZOaij
Ng, =
N, =4a. +4a, = *
o Cs G, 211

NCz

8
=12
(8, 0,0)

20
=380
18,1,1
2 6
2a, = =2
3 3 0,1,1)\6,0,0

=a,=2a.=2a

=N¢, = N;=Ng, =Ng =0 and their an values are nil.

In accordance with the selection rules the symmetries forbidden to C20H1sXY /(CH)1sXY are:

G/ =ac,,ac,4c,,4, ,4

. ,a,. ,d.
Dy? 7Cyy Gy ? T Cs D,

a, ,a. ,a
3

. a
C3” "Dy ” " D5’

a a ar,a ,a
D3q” " Dsq

Cs,? " C5; 77T ’aTh'al’alh



-108-

while Gj = (Cpqycjv) are allowed symmetries.
PCY(CyyH ,XY) =(380,0,2,0,0,0,0,0,0,12)
1cv (¢, H,.xy) =(2,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)
For CoyH ;X Y / (CH);; X,Y
(4,.4,9,) =17.21), (pg, p], P3) < @3,q},95) =(1,2,1)(8,0,0), (3,0,1) < (7,1,0) then
Np=120ac, +60a. =( 20 ): 3420
s 1721

» <y

ch :NCj = Nc5 =N, = Ns,(, :Nsé =() indicate forbidden symmetries.

e = =5 amo) o)+
g s 1,2,1 )\ 2,0,0 3,0,1)\7,1,0

Then we compute d¢, =23, ¢ =11 allowed symmetries.

PCV(CyyH ;XY ) = (3420,0,0,0,0,0,0,44)

1Cv (C,yH,,X,¥) = (23,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
For C,,H ;XY / (CH);5 X,Y

(a,.9,9,) = (16,31), (py. 1. Py) < (45.47.95)=(1,0,1)(5.1,0),

(p0. 21 05) = (a5.40.45) = 2.1,1) < (7.1,0), (0.3,1) <> (8,0,0)

20
Ny = 120a¢, +60ac, +40ac, +20a., = (16 5 1) = 19380

_ _( 2 6 )_
N¢, =4a. +2ac, = (1,0,1)(5!1,0) =12

4 8 4 8
N, =4a, t+4a, = + =100
s i 2,11 )\7,1,0 0,3,1)\.8,0,0

ac, =149.ac =23, ac =2a. =2

Ne

= =N = = = ir d i
, =N¢g, =N;=Ng, =Ng 0 , their G, values are nil.

PCV(CyyH ;X ) = (19380,0,12,0,0,0,0,0,0,100)

1CV (CopH,5X 57 ) = (149,0,23.0,2,0,0.0,0.0,2,0,0,0.0.0,0,0.0,0,0,0)
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For CyH ;X Y, /(CH) 15 X,Y,, (qo,q],q2)=(16,2,2)
(P> Pl P < Gy, q1,95) =(2,2,00(7,0,1) 5 (0,2,2)(8,0,0) ; (2,0,2)(7,1,0) ; (4,0,0) (6,1,1)

Ng=120ac, +60ac, +60ac +60ac, +30ac, +30ac, = (162;] 2) = 29070
Ng = lZOaCI + 60ac_7 + 60“6‘: + 60“6,. + 30ac_7u + 30aCZh =29070
N¢, =4aq, +2a, +2 =[ 17 =90

¢, ~ %c, T 2dc, *2dc, = 811)

10
N; =30ac, +60ac = (8 J 1) =90

4 8 4 8 4 8 4 8
ok ) G E e VAL O G AL PR
\ . w220 )0\701) \022)\800) \202)\710) \400)\611
NC3 :Ncs :Nsa :NSm =0
PCV(Cyyt 15X ,Y, ) = (29070,90,0,0,90,0,0,158)
ac, = 214, ac, = 19,acs =33, ac, = 1, ac, =6, ac, = 1 the other symmetries are

forbidden.

IICV (CyyH 15X ,Y,) = (214,19,33,1,0,0,6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
For CpyH,sX Y, /(CH);5 X Y, .(q,.9,.9,) =(153,2),

(P, 2. P5) = (ah.41.45)=(0,0,2)(5,1,0),
w5, P, Py < @y qi g =(1,1,2)(7,1,0) ; (3,1,0) <> (6,1,1) ; (1,3,0) <> (7,0,1)

20
Np=120ac, +60ac +40ac +20ac, = (15 5 2) = 155040

N, =Ne, =N, =N, =Ng =0

4 8 4 8 4 8
N, =4a. +4a, = + + =352
s » \r12)\710) \3100\611) \130)\701

_ _ 2 6 )
NCj = 4aCj -4-24103v = (0,0,ZJ(iI,OJ =6

PCV(C,y,H X Y, ) = (155040, 0,6,0,0,0,0,352)

ac, = 1248, ac = 87, ac, = 1 ac, = 1 the other symmetries are forbidden.
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11CV(CZ,,H,5X3YZ) = (1248,0,87,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)
For C, H XY, /(CH);4 X Y,
(4,.9,9,) = (14.3.3), (Ph, D1 P5) = (40-91.95)=2.0,00-(4,1,1),
(P, P P5) = (44,4 =(2,1,1)(6,1,1), (0.3,1) < (7.0,1) , (0,1,3) > (7,1,0),
N, =120a, +60a, +40a,. +20a =( 2 )= 775200
E (of C, C; C3, 15.3.3

=Ny, =0

10

KRR O RO C SO B R
s 2,1,1)\6,1,1 0,3,1)\7,0,1 0,1,3)\7,1,0

2 6
ch = 4aC3 + 2ac3v = (2’ 0,0j(4,1,1j =30

PCV (Cyyt;5X Y, ) = (775200,0.30,0,0,0,0,732)

ac, = 6366, ap =183, ac, =1 ac, =7 the other symmetries are forbidden
1Cv (€, X Y, ) = (6366,0.183,0.1,0,0,0,0,0,7.0,0,0,0,0,0,0,0,0,0,0)
For CyyH,XYZ / (CH);; XYZ (45, 4;, 4,.95) =17.111

(2, P, Py P < (a5, 47, 45.45) = (1,1,1,1) < (8,0,0,0)

_ ([ 20
Ny =120ac, +60ac =| ° ' |=6840

N, =4a, =( 4 )( 8 )=24
s \1,1,1,1)\ 8000

Ne,=Ng, =N, =N,=Ng =N, =0

PCV (CyH,,X7Z) = (6840,0,0,0,0,0,0,0,0,24)

aCI =54, aq =6 the other symmetries are forbidden.

1V (CyH,,XvZ) = (54,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
For C,H,X,YZ/(CH),,X,YZ, q,,9,.95,9;=(1621.1),

(Py. P P3. P3) o (45.4].45.45) = (0,2,1,1) > (8,0,0,0), (2,0,1,1) <> (7,1,0,0)
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16,2,1,1

4 8 4 8
N, =4a, = + =108
i s \0,2,1,1)\ 80,00 2,0,1,1)\7,1,0,0

NCz :Ncs :NC5 :Nf:NSw =N =0

6

_ ( 20
Ng =120a, +60a, = = 58140

ac, =471, ac =27 for allowed symmetries the others are forbidden.
PCV (Cyyt,,X,¥Z) = (58140,0,0,0,0,0,0,0,0,108)

1CV (CyyH 1 X ¥Z) = (471,0,0,0,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
For C20H1sX3YZ | (CH)15X3YZ, qo, q1, 92, 43, =15,3,1,1

(py.pi P53 Py) < (4).4].45.95) =(1,1,1,1) >(7,1,0,0) . Then we compute:

Ng = 1204, +60a, = j = 310080

20
15,3,1,1

4 8
N, =4a, = =192
v < \nn11)\7100

N¢,=N¢, =N¢, =N, =Ng =Ng =0

a, =2562, ac, =48 the other symmetries are forbidden.
PCV(C,,H ;X ¥Z) = (310080,0,0,0,0,0,0,192)

ICV(CZOHI 5X3YZ) = (2562,0,0,0,48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
For CaoH1sX:Y>Z | (CH)15X2Y2Z, G5 q;,q5,q; =152.2.1.

(P, P} p5. P3) © (4,405 = (3,0,0,1) > (6,1,1,0);(1,2,0,1) <> (7,0,1,0),

(1,0,2,1) & (7,1,0,0)

15221

4 8 4 8 4 8
N, =4a. = + + =416
s 3,001)\61,1,0 1,201)\7,01,0 1L021)\7,1,00

N, =Ng,=Ng, =N, =Ng =Ns =0

2

N = 120a,, +60a. —( j = 465120

ac, = 3824, a- = 104, the other symmetries are forbidden.

PCV(CyyH s X,Y,Z) = (465120,0,0,0,0, 416)
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For C,,H,,X,Y,Z/(CH),,X;Y,Z , 4y,9;,9,.9; = 143,21

(ph. P}, Py DY) o (a5.q].45.47) = (2,1,0,1) < (6,1,1,0) ; (0,3,0,1) <> (7,0,1,0) ;
(0,1,2,1) & (7,1,0,0)

Np = 120a, +60a. :[ ] = 2325600

14,3,2,1

LR [Py P Py A K Pt

NCz :NC3 :NC5 =N, :NSm :N55 =0

g, =19280 , a; =200 the other symmetries are forbidden.

PCH(C,y H X, Y, 2) =(2325600, 0, 0, 0, 0, 800)

1[CV(C20H14X3YZZ) = (19280,0,200,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
For (Cyy Hyy, X4Y Z)I(Cyy Hyy X4Y Z), 99,915 9,93 =14,4,1,1

(Ph. P1.P5. P5) o (45.97.95.95) = (0.2,1,1) & (7,1,0,0), (2,0,1,1) < (6,2,0,0),

N =120, +60a,, = j: 1162800

(14,4,1,1

o=t~ [ao)oa) G-+
s 0,2,1,1)\7,1,0,0 2,0,1,1)\6,2,0,0

NCJ :NC3 :NC5 =N, :Nsm :Ns6 =0
A, =9636, Ac, =108  are allowed symmetries the others are forbidden.

PCV(CyyH, X Y Z) = (1162800, 0, 0, 0,0, 432)

HCV(Cyy H, X, Y Z) =(9636,0,108,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

For C2oHsXsYs /CH)sXsYs5, (40,41,42)=(8.6,6) : (P, pi-P5) > (46,47, 45) =(2.0.00(2,2.2),
(20,07 05) < (4. 41.45)=(4.0,00(2.3.3), (0,4,00(4,1.3) ; (0,04)>(4,3,1) ; (2.2,00(3,2.3) ;
0,2,2)-(4,2,2) ; (2,0,2) (3.3.2)

(20,17, P5) = (dh.47.45) =(1,0,0) (1, 1,1)
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120(1C +60ac7 +6061C +60L1C +30ac 20
E= ! . : ' : :( J:116396280

+30ac, +30ac, +20ac, +20ac, +20ap | 8,66
N, 4ac +2 +2 +4 0 4200
=4a a a ap = =
Cz Cz sz C:n Dx 41 3’ 3
N =600 +30- + 20, 10 4200
= a~ = =
¢, =00c, +30c, ¢ g3z

2 6
]vcj:4(lci"’4&D1"’4&16*"‘*’4Llc*j :( ][ J=90

200222
Ng =2 ! 36
— o = _
S o0 )\ 1,1,

Ny =4ac +2ac +2ac +4ac =

OnERLBA WALEH o)

0 B R P B )

NSm :NC5 =0, forbidden symmetries are Cs, Ds, Cs,, Csi, T, Dsa, D2, D2, D34, Th, I, I then we
compute for allowed symmetries: ac, =968140, ac, =1017, a¢ =2533, ac =63, ac, =18,
ac, =48, ac, =12, ac =3, ac =3, ap =3.
PCV(C,,HyX, Y, )=(116 396 280, 4200, 90, 0, 4200, 6, 0, 10360)
HICV(C,,H X, Y, )= (968140,1017, 2533, 63, 18, 0, 48, 12,0, 3,3, 3,0, 0,0, 0, 0, 0, 0, 0, 0, 0)

The PVCs and ZICVs computed and collected to form the permutomers count matrix (PCM) and

the itemized isomers count matrix (//CM) for coisomeric heteropolysubstituted DDH

derivatives (C,,H, X, ....Y, ..Z, )and DDH hetero hetero-analogues (CH), X, .Y, ..Z )

are summarized in eq.53.
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The numbers and types of occurring symmetries predicted for coisomeric heteropolysubstituted

DDH derivatives and DDH hetero hetero-analogues of the series C,,H, X, Y, /(CH), X, Y,
andCyH, X Y Z /(CH), X Y Z  are detailed by the terms of partition equations given in
column 7 of table 4. The aGi values reported in these partitions satisfy eqs. 48-50 which

establish the compliance of bipartite and symmetry itemized enumeration methods.

Table 4. Numbers and types of occurring symmetries predicted for coisomeric series C,, H, XY/
(CH, X, Y, and (CH, X, Y, 2, /(CH), X, 1, 7,

4 @6 49

q0491,92 C,H, XY, | (CH), X Y |A Aae | Adia Partition of occurring Symmetries

18,11 CooH sXY (CH) 1sXY 2 3 5 2C1+Cs+2Cs

17,2,1 CHi72X2Y (CH)17X2Y 23 11 34 23Ci+11Cs

16,3,1 CooH17X3Y (CH)16X3Y 151 25 176 149C1+23Cs +2C3 +2Csy

16,2,2 CooH16X0Y> (CH) 5 X2Y> 233 41 274 214C1+19C>+33Cs+Cit6CotCon

15,32 CoH sX3Y> (CH)15X3Y> 1249 88 1337 1248C1+87Cs +C3 +Csv

14,3,3 CaoH 14X3Y3 (CH)14X3Y3 1373 184 | 1557 6366C1+183Cs +7C3 +Csv

q091,92.93 CyH, X, Y7 | CH), X, Y. Z | 4. Aae | Adia Partition of occurring Symmetries

17,1,1.1 CHi:XYZ (CH);; XYZ | 54 6 60 54C1+6Cs

16,2,1,1 CooH16X2YZ (CH)16 X2YZ | 471 27 498 96C1+18Cs

15,3,1,1 CrH 1sX3YZ (CH) sX;YZ 2562 48 2610 2560C1+46Cs+2C3+2Csy

15,2,2,1 CooH 5X2Y2Z (CH) 15 XoYoZ | 3824 104 | 3928 3824C1+104Cs

14,4,1,1 CooH 14 X4YZ (Cf[)/,;X.gYZ 9636 108 9744 9636C1+108Cs

14,3,2,1 CooH 14X3Y2Z (CH) 14 X3Y2Z | 19280 200 | 19480 | 19280C:1+200C;s

8,6,6 CHsXsYs (CH)s XsYs 969178 | 2662 | 971840 | 968140C;+1017C>+2533Cs +18C3
+3C3+3C3v+3D3+48Co +12Con+63Ci

The denumerants of /; symmetry applied to the aforementioned series predict the occurrences
of 2C+C3+2Cs  isomers for  CxHisXY/(CH)1sXY; 23C/+11Cs  isomers for
CoHi7XoY/(CH) 17X2Y;  149C1+23Cs+2C3+2C3,  isomers  for  CaH7X3Y/(CH)16X3Y.
214C1+19C2+33Cs+Ci+6Cav+Cap isomers for C20H16X2Y2/(CH) 16X2Y2,1248C1+87Cs+C3+Csy
isomers for CxoHsX3Y2/(CH)15X3Y2, 6366C;+183Cs+7C3+Cs, isomers for CaoHpX3Y3
/(CH)14X3Y3 54C1+6Cs isomers for  CaHizZXYZ/(CH)17XYZ, 96C;+18C;s isomers for
C20H16X2YZ/(CH) 16X2YZ, 2560C;+46C+2C3+2C3, isomers for CaoHisX3YZ/(CH)1sX3YZ,
3824C1+104Cs isomers for CaHisX2Y2Z/(CH)1sX2Y2Z, 9636C1+108Cs  isomers for
Co0H14X4YZ/(CH) 14X4YZ, 19280C1+200Cs isomers for CaH1X3Y2Z/(CH)14X3Y2Z and
968140C;+1017C>+2533Cs+18C3+3C3,+3C3,+3D3+48C2,+12Co+63C; isomers for
C20HsXsYs/ (CH)sXsYs. We notice for the sake of comparison that the scalar of the summands
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of these partition equations are similar to the numbers of DDH derivatives of G; subsymmetries
predicted by the USCI-methods of Fujita. ['¥] The data reported in columns 4, 5 and 6 obtained
from bipartite enumeration (part I) and those of column 7 obtained from this pattern inventory
satisfy equations 48, 49 and 50. These results are illustrated by 57 graphs drawn in fig.2 with
underneath identifying numbers (108) - (164) and distinct symmetries indicated in the lower

right corner of the boxes.

6 Conclusion

A six-steps algorithm including: (1)-the determination of permutations induced by 8 conjugacy
classes of symmetry operations of the /; group acting on DDH skeleton; (2)-the transformation
of these permutations into generic formulas for deriving permutomers count vector PCV(MX)
characterizing the series of substituted DDH derivatives or DDH heteroanalogues; (3)-the
determination of 22 non-redundant subgroups of /; ; (4)-the determination of a 22x8 matrix

W1h :[WGj»gf] whose elements WG]_,&_ are the weights of the subgroups G; of I; (5)-the

construction of eight associated Sylvester’s denumerants of type N, = Yagwe ,
/ / j) 4

J

equating each permutomers number N, o, 45 2 sum of symmetry adapted isomers numbers aG,-
scaled by the weights ng& of 22 subgroups of I;,. (6) -The resolution of eight associated

partition equations yields 22 an values collected to form the entries of the itemized isomers

count vector IICV(MX) both enumerating substituted DDH derivatives and DDH
heteroanalogues. This novel method provides : (1) A direct and systematic decomposition of

the numbers 4. and A of chiral and achiral isomers skeletons (obtained in part I) as sum total

of A chiral and a Gee achiral symmetry itemized isomers numbers, respectively ; (2) A
J J

complete list of all possible permutomers of DDH derivatives and heteroanalogues. (3) A
correspondence between Polya’s numbers of diastereoisomers and symmetry adapted isomers
numbers. This enumeration procedure is useful for stereochemical investigations and molecular

modelling of such 7, based compounds.
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C20H1sXY / (CH)1sXY

(109)  2G;

CoH17X2Y | (CH) 17X2Y

11C,

(128) 6Cs




Figure 2 continued

CoH6X3Y /| (CH) 16X3Y
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Figure 2 continued, end.

C20H14X3Y3 | (CH) 14 X3Y3

(152) (153) (154) (155) 7C;

3G

(161) 3G,
o=C-H @=C-X o:CY =C-Z forsubstituted DOH ~ @=X o:Y =Z ©=C-H for DDH heteroanalogues

Figure 2. Graphs of coisomeric heteropolysubstituted DDH derivatives and DDH-hetero-hetero

analogues of the series CyoH, X, Y, 1 (CH), XY and (CH), X Y, Z /
(CH), X,Y,Z, .

q0 9 9
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