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Abstract
Permutations representations controlling the chirality-chirality fittingness and the
diastereoisomerism of dodecahedrane (DDH) skeleton in /; symmetry are derived and
transformed by means of binomial and multinomial theorems into generic formulas for
bipartite enumeration of enantiomers pairs and achiral skeletons of coisomeric series of:
(a) homopolysubstituted DDH derivatives(C20H20-4X;) and DDH homo hetero-analogues
((CH)204X4) and (b) of heteropolysubstituted DDH derivatives (C,,H, X, ....Y, ..Z, )and
DDH hetero hetero-analogues ((CH), X, ...Y,..Z, ) where X,....,Y and Z are achiral

substituents.

1 Introduction

Dodecahedrane(DDH) a polycyclic hydrocarbon symbolized by the molecular formula
C20H2 has been synthesized by Leo Paquette in 1982 Il Its structure is shaped like a
polyhedron of twelve regular 5-gonal faces and due to this geometrical feature, it belongs to the
series of polyhedrane and is the third member of the family of Platonic hydrocarbons which
include tetrahedrane, cubane, dodecahedrane and icosahedrane.!®! The discovery of this non
naturally occurring cage hydrocarbon has opened a great deal of interest for the preparation of
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its derivatives "'!land the investigation of their applications in medicine. ''? Partial and total

substitutions of hydrogen atoms of DDH skeleton reported in the literature!'*! yield a variety of

* Corresponding author.
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homo and hetero-polysubstituted DDH derivatives while successive substitutions of methine
groups by trivalent heteroatoms give rise to DDH heteroanalogues!!*l. These 2 modes of
substitutions give rise to a set of 4 structurally distinct series of DDH derivatives which include:
(1)- Homopolysubstituted DDH derivatives CoH20.4X; obtained by replacing among 20
positions gH by ¢X achiral substituents of the same kind.

(2)- Homogeneous DDH heteroanalogues or DDH homo hetero-analogues(CH)20-4X, issued
from substitutions replacing among 20 positions in accord with the obligatory minimum valency
restriction (OMV=3) '], ¢ CH groups by ¢X trivalent heteroatoms of the same kind.

(3)- Heteropolysubstituted DDH derivatives C,,H, X, ....Y, ..Z, obtained by substitutions

keeping ¢, H hydrogen atoms among 20 positions and replacing the remaining others by

;X ...q;Y....q,Z achiral substituents of different kinds.
(4)- Heterogeneous DDH heteroanalogues or DDH hetero hetero-analogues obtained by

substitutions keeping ¢, (CH) groups among 20 positions and replacing in accord with the

OMV=3 the remaining others by ¢, X, -..,¢,Y,...,q, Z trivalent heteroatoms of different kinds.

The expansion of such molecular series needs stereo chemical investigations including
enumeration problems. Fujita has developed the USCI and the RPCI-methods for combinatorial

[16-17 and some structural studies are reported. I'-?! This paper

enumeration of DDH derivatives
presents the determination of permutations representations controlling the chirality and the
achirality fittingness of DDH skeleton under the 7, group action and their transformations into
generic expressions for combinatorial bipartite enumeration of A. enantiomer pairs and Aac

achiral skeletons of substituted DDH derivatives and DDH heteroanalogues.

2 Mathematical formulation
2.1 Location of symmetry elements of DDH skeleton

Let us represent the cage structure of DDH by a hydrogen depleted stereograph given in
fig 1. where 20 black vertices joined together by 30 edges symbolize carbon atoms and C-C
bonds respectively. The 20 vertices and 30 edges are distributed throughout 12 regular 5-gonal
faces displayed by pair in staggered conformation. Each carbon atom having a sp> hybridization
state is bonded to 3 neighboring carbon and 1 hydrogen atoms. This saturation of the carbon

skeleton allows the formation of a tridimensional carbon cluster shaped as an ultra-symmetric
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dodecahedron named dodecahedrane which belongs to the icosahedral group /; including 120
symmetry operations distributed among 8 conjugacy classes reported in eq.1.
I, = {E,lscz,1o(c;,c§),6(c;,cj,cg,c;),i,1o(sg,sj),6(s1'0,sfo,s,;,sfo),150} )

The locations of symmetry elements of dodecahedrane are depicted in fig.1.
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Figure 1. Hydrogen depleted 3D-graphs or stereographs of dodecahedrane where black vertices
symbolize CH groups indicated by alphabetical labels. (a) Locations of symmetry elements
(b) Presentation of opposite pairs of 5-gonal faces in staggered conformation.

Six 5-fold rotation axes (6 (;) colinear with 6 10-fold rotoreflection axes 6 Sfo intersect

the inversion centre ¢ and join the centres of 6 pairs of opposite pentagonal faces displayed in
staggered conformation and depicted by 5-tuples of alphabetical letters given hereafter: (abcde-
a’b’c’d’e’), (aejh’f-a’e’j’hf’), (dejg’i-d’e’j’gi’), (cdif’h-c¢’d’i’fh’), (b’c’h’jg’-bchj’g), (abgi'f-
a’b’g’if’). The 15 pairs of opposite edges depicted in fig.1 by 4 tuples of alphabetical letters
reported in table 1 define the 15 o mirror planes of the molecule.

Table 1. The 15 pairs of opposite edges defining the 15 ¢ mirror planes of DDH.

ab-a’b’ be-b’c’ cd-c’'d’ de-d’e’ ea-e’a’
ej-ej’ jh’-j’h hf~fh af-a’f’ d’i’-di
ifif” c’h’-ch jg-i’g g'i-gi’ g'b'-gh

The 15G, rotation axes intersect the midpoints of 15 pairs of opposite edges abovementioned.

Then 10 3-fold rotation axes (10C; ) and their 10 colinear 6-fold rotoreflections axes (10 S;') are

located on the lines intersecting 10 pairs of opposite vertices aa’, bb’, cc’, dd’, ee’, ff’, gg’,
hh’, i’ and jj’.The inversion centre 7 is located on the centre of DDH skeleton.

2.2 Permutations of 20H or 20C of DDH under the 7, group action.

The application to a set of atoms of symmetry operations belonging to a conjugacy class

generates congruent permutations (i.e. subsets of equivalent cyclic permutations of atoms). This
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congruence of permutations is used for the sake of brevity to derive distinct sets of permutations

of 20H or 20C of DDH skeleton induced by 120 symmetry operations of Ij.

(a) Permutations induced by the identity operation E
The identity operation E fixes each hydrogen atoms in an invariant position and gives

rise to 20 unit cycle permutations or permutations of class 12°:

B2 20Cs (a)(b)(e)(d)(e)(f) (&) (B)(@)(B)()(&)(¢) ()N RO~ 1 ()
(b) Permutation induced by C; =(C},C;) rotations and 6-fold rotoreflections S = (S!,S?)

The projection of 20CH of DDH among two parallel planes containing respectively 10
substitution sites located on the northern (N) and southern (S) moieties of DDH (see fig 2) is
used to derive permutations induced by 3-fold rotations C; :(C;,C32 ) . The Cﬁ and c; rotations

about the aa’ axis keep invariant the opposite vertices a and a’ generating 2 unit-cycles
permutations  (12) and  simultaneously  divide the 18  remaining others

(bedefghijb,c.d e’ f, g, h’i’j’) into six 3-cycles permutations (3°) as given in eq.3-4:

§
st ¢f

Figure 2. Projection about the C; rotation axis aa’ of 20CH groups distributed among 2 parallel planes
containing respectively 10 substitution sites located on the northern (N) and southern (S)
moieties of DDH.

G2 AC (q)(a')(be, f)~(d ,8)~(c.j. ) ~(bie.f)~(d b &) ~(c.)8) ~[ 3] (3)

C—22a)(d)(b.f ) (el ) (g hd)~{b.f ) (i) () ~[F3] @)

These 2 conjugated symmetry operations yield 2 permutations of class [123¢] and 10 3-fold
rotation axes aa’, bb’, cc’, dd’, ee’, ff”, gg’, hh’, ii’ and jj’ generate ]()><2><[1236].
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The associated 6-fold rotoreflections S; =(S;,S;) about the aa’ axis generates the transposition

(a,a’) ~2' and simultaneously divide the 18 remaining vertices b,c.d,ef.ghijb’c’, d’e’f
g hi'j" into 3 6-cycles permutations (b, fieb’ fe')(cijic’itj')(ghdgih’d’)~6 and
(b,e’,f,b ’,e,f’)(c,j’,i’,c’,j,i) (d,h,g,d’,h g) -6 srespectively. The rotoreflections S, and S]

applied to 20 H or 20 C of DDH yield respectively the term (2'6") including 1 transposition

and 3 6-cycles permutations given in eq.5-6.
(abcde fighijab,c,d.e, f,g.h,i )
Ls! ®)
(a,a’)(b,fleb’ fie')(cijc'i'j') (ghdg h’d)~[23]
(abcde fghija\b.c.de f.g'h'i'j")
Is] ©)
(a,a’)(be’fbe f)(cjhi'cji)(dhgd h'.g)~[23]
Therefore 108, =10(S;,S; ) performed about the aa’, bb’, cc’, dd’, ee’, ff", gg’, hh’, ii’ and jj’

axes yield the term 10x 2x[2'6’] corresponding to 20 composite permutations of class [2'6].

(c) Permutations induced by C; rotations and s, rotoreflections

In DDH six 5-fold rotation axes 6C; = 6(C;,C52,C53,C54) 1<r<4 colinear with their six
associated 10-fold rotoreflection axes 6S;, :6(Sl'0,Sﬁ>,Sl70,Sl90) are located on the lines
intersecting the centres of opposite pairs of 5-gonal faces (abcde-a’b’c’d’e’); (aejhf-
a’ej’hf’);(dejg’i-d’e’j’gi’); (cdif h-c’d’i'fh’);(b’c’h jg -bchj ’g), (abgi f-a’b’g’if’) displayed in
staggered conformation. The projection of 20CH of DDH among two parallel planes containing

respectively 10 substitution sites displayed at the corners of 2 pairs of regular 5-gons located on

the northern (N) and southern (S) moieties of DDH (see fig 3)

Figure 3. Projection about the C; rotation axis of 20CH distributed among 2 parallel planes containing

respectively 10 substitution sites located on the northern (N) and southern (S) moieties of DDH.
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is used to derive permutations induced by ¢! and S, . The 5-fold rotations C; =(C},C3,C3,C2)
performed about the axis passing through the centres of 2 pairs of opposite 5-gonal faces (abcde-
a’b’c’d’e’y and (fghij-f'g’h’i’j’) generates permutations of class [5*] including 4-5 cycles
permutations. An example is given in eq.7 forCé .

(abede fghijab.c.de, f,g.hi’j’")

L )

(abcde) ab.cde)fgnij)f g hij)~[5']

Hence each C; generates 4 [5*] congruent permutations and 6C; yield 24 [5%].

The Sll() rotoreflection collinear to C;I generates 2 10-cycles permutations denoted [10%] in eq.8 :

(a,b,c,d,e,f,g,h,i,j,a’,b’,c’,d’,e’,f’,g’,h’,i’,j’)
sk ®)
(a.dbec.adbec)(f.i,gihfig jh)~[10]

Therefore 6 5], yield 24 congruent 10-cycles permutations 24[107].

(d) Permutations induced by C:rotations
The C: rotation performed about the axis bisecting the mid-points of the opposite edges ab and

a’b’ yields 10 transpositions of 20H and 20C given in eq.9 and denoted [2'] .

(ab,c,de f,g hi ja'b\c'de' f'g h'ij)
lc, ©)

(@ b)(@ )(e. ) (h H)(f ) (S J)(e g)(e.g)(d. )i, d')=[2"]
15 C» rotations yield the term 15 sets of permutations of class [ 2'°] .

(e) Permutations induced by O mirror planes
Each O mirror plane keeps invariant 4 vertices located on opposite edges and simultaneously
inverts the positions of 16 remaining others. This operation gives rise to a permutation of class

[1“28] including 4 unit cycles permutations and 8 transpositions. An example is given below for

O located on the opposite edges ab-a’b”:
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(abcde f,ghija'b\c\d\e, fg'\hi'])
lo (10)
(a)(b)(a)b) e [)(h H)(S" )/ J)e g)(e.g)(d, I)(i d)=[1'2']

15 o mirror planes yield 15 x [142%].

(f) Permutations induced by the inversion centre i
The operation i inverts the positions of 10 pairs of opposite vertices and generates 10
transpositions indicated in eq.11 and denoted by the term [ 2'°].

(ab,cde f,g,hi jab\c\d'e f'g" h'ij)

i (11)

(a.a@)(db)(cc)(d.d) ee)(f ) (g ) (hh)(ii)().))~[2"]
The I, group action on DDH skeleton i.e. the set of permutations of 20H and 20C of DDH
induced by 120 symmetry operations of /, partitioned among 8 conjugacy classes is summarized
in table 2.

Table 2. Summary of permutations of 20H or 20C for DDH under the 7, group action including 120
symmetry operations partitioned among 8 conjugacy classes.

Classes of Symmetry operations of Number | Total number of Classes of Total number of
Symmetry conjugacy classes of axes symmetry operations permutations permutations
operations
£} E - : (] ]
e} G 15 5 [2°] | 15[2"]
{ci} (c.c3) 10 20 (73] | 20[r3]
{5} (sd.53) 10 20 [216%] 20[216% ]
(e} (crc2.c.c) 6 24 [5] 24[5*]
(so} | (shosisisy) |6 24 [100] | 24[10°]
{o} o - 15 [12%] | 15[1*2"]
i i ) ! [2"] 2]
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2.3 Permutations representations controlling the chirality-achirality
fittingness of DDH

The 7 group action on 20H or 20 C of DDH is the set P of distinct permutations induced
by 8 conjugacy classes of symmetry operations of [ , given in column 6 of table 2.
P=[1"],24[5'], 203 ], 15[ 2"], 15[ 1°.2"]. [2"], 24[ 107 ], 20[ 2'.6" ] (12)
Noting that P includes P, and P, the subsets of permutations induced by rotations and
rotoreflections given hereafter.
P, =[1"] 24[5"], 20[ 1’3" ], 15[ 2"] (13)

P, =15[1'2"],[2"] 24[107] 20[2".6"] (14)

we define P_wH ,, as the averaged weight of permutations induced by 60 rotations of /; including

E,]5C2,20C3,24C5 :

1
OHZ{,:%(P(E)HM+20P(CJ)H20+15P(CZ)H20 +24P 9 H,)

~

| (15)
:%([120] +200123° T+ 15[2'9] + 24[5*])

and P H, as the averaged weight of permutations induced by 60 rotoreflections of /; including

s

i, 150,208, 245,y

1 )
Hoyy=—(PYH, + 20p 1+ 24P 1+ 15PH )

60 20

B

(16)
:é([z“’] +24[5' ]+ 20l2'6' 1+ 15012 D)
Definition 1 : The permutations representation controlling the chirality fittingness for DDH of I
symmetry denoted A,H ,, is the half value of the positive difference between P_mH o and EH_,U
the averaged weights of permutations of 20H or 20 C induced by 60 rotations and 60

rotoreflections.

1 / ([12”}15[2”}20[1236}+24[54})
4 Hzozg(Prono'P Hzo):7

C rr 1 2 0 (1 7)
‘([2’” Yead st o2l 263 Jeasl 2 ])
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Definition 2 : The permutations representation controlling the achirality fittingness for DDH of
I, symmetry denoted A, H,, is equal to EH_,“ the averaged weight of permutations of 20H or

20C induced by 60 rotoreflections including i, 150,208, 24S;,.

—
A, H, =P H = @([2'0] +24[5*] 4+ 20[2'6° ]+ 15[1428]) (18)

The permutations representation controlling the diastereoisomerism of DDH skeleton denoted

zdezo is given in eq.19:

Yy sy ):L ([120}16[210} 20[1236}24[54}) 1)

X H, = ( +
20 ro* 20 Lrrtt 20
? 120 *(24[102]+20[2163]+15[1428])

dia

3 Enumeration of distinct homogeneous arrangements of achiral

substituents in DDH

Let us consider : (a)-homopolysubstituted DDH derivatives C20H20-4X4 and their DDH
heteroanalogues (CH)20.4X; as compounds issued from the placements in distinct ways of ¢
achiral substituents of the same kind X among 20 substitution sites submitted to permutations
induced by 120 symmetry operations of /; and (b)-heteropolysubstituted DDH derivatives

CyH, X, .Y, ..Z and their DDH heteroanalogues (CH), X, .Y, ..Z, as compounds

resulting from the placements in distinct ways of qoH, q.X..,q:Y,...,qiZ achiral substituents of
different kinds among 20 substitution sites submitted to permutations induced by 120 symmetry
operations of I,. We notice that CioH20.4X; and (CH)204X; have the same homogeneous

arrangements of achiral substituents. Similarly, C,H, X, .Y, ..Z and (CH), X, ..Y .Z

are issued from the same heterogeneous arrangements of achiral substituents. Such series of

chemical compounds having in their structure the same mode of arrangements of atoms or groups

23]

of atoms are coisomeric molecules > i.e. pair of molecules possessing the same isomers

numbers.
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3.1 The numbers of permutomers of substituted DDH derivatives and DDH
heteroanalogues

Let N, o, denote the number of permutomers i.e. the number of arrangements of achiral
substituents of the same kind or of different kinds among 20 substitution sites of DDH permuted
by distinct symmetry operations g, € I, . For g, =EC,,C;,C;,i,S,,S,,,0 one obtains a set of
permutomers numbers N e =N Ne,,Ne ,Ne N, Ng ,Ng, . N, which are derived as
follows:
The number Ng of permutomers of homopolysubstituted DDH derivatives C20H20-4Xq / DDH

homo heteroanalogues (CH)204Xy or number of distinct ways of putting qX elements of the same

20
kind among 20 positions submitted to (-cycles permutations of class ¢ ' induced by a symmetry

20
operation g, €1y, is derived from the binomial coefficient Ng = |, For distinct classes of
g
N
permutations given hereafter:
20
[12] > Ng= =1 (20)
q
0 10
[2°1 > N, = g |0=2 @1
2
4
[51-> Neg=lq | =9 (22)
5
2
[10°]> Ns =| g | =10 (23)
10

For the cycle structure [123°] we have to put & =0,1,2 substituents X among 2 invariant
positions and(q - a)X among 18 remaining positions submitted to six 3-cycles permutations.

The number N, c, of permutomers or number of distinct placements of substituents of the same

kind X among 20 positions submitted to a composite permutation of class [1°3°] comprising 2
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unit cycles and 6 3-cycles permutations is obtained from the sum over a of the product of

q-a
binomial coefficients T(Z,a) and T 5;? given in eq.24

2 6
[1236] > N, = Z(i) 4 (24)
3

a=0
For the cycle structure [1#.2%], we have to put a'=0,1,3,4 substituents X among 4 invariant
positions and(q - a’) X among 16 remaining positions submitted to transpositions.
The number N . of distinct placements of q substituents of the same kind X among 20
positions submitted to a composite permutation of class [ 14.28 | comprising 4 unitary cycles and

8 transpositions is obtained from the sum over &' of the product of binomial coefficients T (4,(1')

4o
and T 8,7 given in eq.25.

4 o) L4 8
(1428 )5 Ne =2 T (4,a)T[&q7j= 2 (aJ 4o (25)

a=0

For the cycle structure [2'6%], we have to put @ =0,2 substituents X among 2 invertible
positions and(q —(x")X among 18 remaining positions submitted to 6-cycle permutations.
The number N of distinct placements of ¢X substituents of the same kind among 20 positions

submitted to a composite permutation of class [2'6%] comprising 1 transposition and 3 6-cycles

permutations is obtained from the sum over a" of the product of binomial coefficients T (J,a")

q-20"
and T| 3, p given in eq.26.

3
[26]>Ns = X (;) g-2a" (26)

a"=0,1
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3.2 Enumeration of heterogeneous arrangements of substituents in

dodecahedrane

The numbers N, of permutomers C,H, X, .Y, ..Z and (CH), X, .Y, ..Z

9 g
issued from distinct heterogeneous arrangements of qyH and k types of substituents of different

kinds X,..., Y, ..., Z with partial degrees of substitution qy,...,q;,...,q; among 20 substitution

20
sites  of DDH submitted to (-cycles permutations of class (' are obtained from the

multinonomial theorem.

For classes of classes of permutations [12°], [2'%], [ 5*] and [10?] the N . values are derived

from eqs.27-30 :

" _ 20 _
[1*] > Ng =1 (27)
90599k
10
(2o Ne, =Ni=la a4 @ |72 (28)
27272
4
[51->Ne.=la9p @ | =9 29)
57575
2
[102]—>Nsm: q9 94 9% , (=10 (30)
107 10" 10"

The numbers N, of permutomers issued from composite permutations of classes [ 1236], [2'6%]

and [12%], are calculated as follows:

2 6
= Ng, =
[113] = Ve ;(p;,,,___,p; ..... . 'k)(q,; ..... - q;() @D

1 3
[2]'63 ]_>N = [ m m w)[ " " mj (33)
% ZA: Pose-os Pisees P J\D0s5++5Girr-+- 9k

k k q,-2p"
with the restrictions Y _p{'=1, D q'=3, ¢'= f (34)
=0 =0
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s 4 8
[] 2 ] - N Z " " " " " (35)
2T N Y |7/ N A
k k 4 =P,
" ”n " i
with the restrictions Zp,- =4, Zq,- =8, g =73 : (36)
i-0 i-0

3.3 Generalized equations for bipartite enumeration of chiral and achiral
skeletons of homopolysubstituted DDH and DDH homo hetero-analogues
By replacing the right hand side terms of eqs.17-18 with equivalent algebraic expressions

previously indicated in eqs.20-26, we convert A.H,, and A4, H,, intoAC(ZO,q) and

A, (20,q) which are the generalized formulas for a direct bipartite combinatorial enumeration

of chiral and achiral skeletons of coisomeric series of DDH homopolysubstituted derivatives
CZUHZ

0.,X, and their corresponding homo hetero-analogues (CH)20-¢X;.

e e R AL R MR R

6

The expansion of eq.14 generate eq.14’:

3
. 8 8 2 37)
A4.(20,¢)=— T —60{611 —90[q 2]_60[“J_15[MJ_24[q]
2 2 2 2 10

The number of achiral isomers is obtained from eq.38:

10 8 3 2

”52[ ] g-a' +zoz[ J g-2a" |+24 ¢ (38)
2

a"=0,1 6 10

1
ac(20q - g
2

which is expanded to give eq.38:

Loy (s 8 8 8 8 2 3 3
(zoq)Hq }1 [q]mo[q 1]+90[q 2}+60[q 3]+15[q 4}24[ J+2o[q]+zo[q_gﬂ (38
1 2 2 2 2 2 10 6 2
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3.4 Generalized equations for bipartite enumeration of heteropolysubstituted

DDH derivatives ¢, n x ..v, ..z and DDH hetero-hetero-analogues
0 1 i k
(CH), X, .Y, .2, .
By replacing the right hand side terms of eqs.17-18 with equivalent algebraic expressions

we convert A4 H,, and 4,.H,, with equivalent terms given in eqs.27-36 one obtains
generalized formulas for bipartite enumeration of Ac(20, qo,...,qi,...,qk) chiral and

A, (20, qO,...,qi,...,qk) achiral skeletons of coisomeric heteropolysubstituted DDH

derivatives and DDH hetero hetero-analogues.

(0 A O
Gprreoirrtly B 4 G D 4 G (39)
2 6 4 8
TR 155 S DT 10> (A
120 7 \PosseesDirsPk )\ Q0ser ik T\ Poroslieslk \ Qoo i

2
I 3
_20 " " " " " "r -24
Z;:[PS ----- Pl m)(% ------ 4l q;j [% ,,,,,, &, q‘]

L 1077107710 |
and
10
4 8
4 4 G +15Z[ v ]( P ) (40)
. [2 ,,,,,, PR 2] T\ Py N X L 7 A M 14
Aar(zo' 99, 9q; ‘Ix) %
2
1 3
*202[ v om WJ[ oo ”J+24[q,7 q qA]
7 \Por-sPissPi )\ oo Gisreeons 9k ﬁ >>>>>> ﬁ ,,,,, ﬁ

The sum of a pair of integer numbers (4, Aac) derived from eqs.37-38 or eqs.39-40 is the number
of diastereoisomers A4 of the DDH derivative.

Agia=Ac+ Aa (41)
For the sake of comparison with classical enumeration procedures we notice that 44;, matches

up with the coefficients of Polya’s generating function derived from cycles indices. 12421

4 Applications

Example 1: Bipartite enumeration of coisomeric skeletons of homopolysubstituted DDH

derivatives C20H20-4Xy and DDH homo hetero-analogues (CH)20-4X;. The numbers of chiral and
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achiral skeletons of the representatives of these 2 series where 0< ¢ <20 are obtained from

eqs.37-38 as follows:

q=0

A=A A A
w2l

q=1

o3l ol
s

q=4

4, (20,4%%“?}40[?} + 14(120J - 15[§J - 90(?} —15@”:38
A, (20’4):é{[lz()}”{ijwo(?j”j[iﬂ =20

q=5

4, (20,5):5{(250}24[?} 20[?)—60[3 —60[?}}113
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4, (20,5)=£{60@j+60(fﬂ =36

q=6

R A AR
(A

A, (20,7):5{(270}40[;)7 60[‘;] - 60[2]}:6()9
4, (20,7)z${60(§)+60[2ﬂ 84

q=8

A, (2(),8):%{[280]+20[2J+ 14(1:))7156]7 90(2)45@)7 20[?}}:1022
A, (20,8):5{(1‘?]+15(i]+ 90(2]+15(§)+206H =113

q=9

A, (20,9)=$K290] *20@] - 60(2’;)— 60@}}:]340
A, (20,9)=£[60(ij+ 60[3]} =126

q=10

AE(20,10)=$Hf§}+z4[g+4o[gj+14(?)—15@]40(2)-15@}-24(?]}1510
A, (20,10):6%“150}15[‘:} 90[ij+15[§j+246ﬂ =138

The numbers 4.(20,q) of enantiomers pairs and A44(20,q) of achiral isomers derived from this

(o)

bipartite enumeration of homopolysubstituted dodecahedrane derivatives C20H204Xy and their

homo hetero-analogues (CH)2.4X; Wwhere 0< ¢ <20 are collected to form a two column

isomers count matrix ICM (C20H20-4X4)/ICM((CH)20-4X;) with 21x2 entries given in eq.41. Due
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to the complementarity of the degrees of substitution q and 20-q we notice that the numbers of
chiral and achiral isomers skeletons satisty the equalities A.(q)=A4c(20-q) and Auc(q)=Aac(20-q).
Therefore, the ICM is a symmetric matrix written in compact notation as given in eq.41 where
the last column reports Polya’s numbers which are diastereoisomers numbers Agi, predicted for
the series (C20H20.¢Xy) and ((CH)20-4Xy). Alkorta et al. (see reference 14) have found similar
numbers of possible isomers for aza dodecahedranes which are DDH homo heteroanalogues
symbolized by the molecular formula (CH)20.4Ny = C20-4H20-4N; where ¢ nitrogen heteroatoms

replace g(CH) groups) and 0 <g <20.

Bipartite enumeration Polya’s numbers

0.20-q\( 4 4, X127 (Ay,

020 |0 1 o ||

L9 |lo 1 L 1

2,18 1 4 x2,x"® 5

317 |6 9 3 7 15

416 |18 20 X x| |38 (41
1CM (Cop 1, X)ZICM(CH0 XD =) 5160 13 36 | 7] 0 149

614 |[310 61 X | |37

713 || 609 84 x| | 693

812 ||1022 113] |12 1135

011 ||1340 126 |2°.x" 1466

10,10 Jl1510 138) (x® 1648

Example 3: Bipartite enumeration of di, tri, tetra, penta, and hexa -heteropolysubstituted DDH
derivatives  C, H o Xy Y, L Z, and their corresponding hetero hetero-analogues
0 1 k

i

(CH)qﬂqu....qu_...ZqA given in table 3.

Table 3. Molecular formulas of di, tri, tetra, penta, hexa and dodeca- heteropolysubstituted DDH
derivatives CyH, X, .Y, .2 and DDH hetero hetero-analogues
0 1

q9; "7 qy
(CH)anq/ ""Ifqi'"Z‘h

i

*
k Cotl, X, .Y, .2, (), X, .Y, .2, k Cfl, X, .Y, .2, (), X, .Y, .2,
2 | CoHisXY | (CH)1sXY 3 | CoHiXYZ | (CH)17 XYZ

CH12X2Y | CH)17X0Y CoH16X0YZ | (CH) 16 X2YZ

CooH1eXsY | (CH) 1XsY CaHisX:YoZ | (CH)js XoYZ

CaH16X2Y2 | (CH)16X2Y> CoHisX3YZ | (CH)1sX3YZ

CaH15X3Y,/ (CH)15X3Y, CooH14X3Y>Z | (CH)14 X3Y> Z

CooH14X3Y3 | CH) 14 X3Y3 CooH 1. X4YZ | (CH) 14 X4YZ

CooHsXsYs | CH)s X5Ys

*k=number of achiral substituents of different kinds.
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To solve this problem for coisomeric pairs of DDH derivatives C,H, X, .Y, ..Z /

(CH) %qu I{] .z i aforementioned we list the appropriate values of partial indices ¢ ,---q;,---» G

k
satisfying the restriction th. =20 and compute from eqs.32, 34 and 36 compatible pairs of

=0

integer sequences (p,',,...,n-',...,p,'()e(q(',,...,q},...,q}() ,(p,’,’,.l.,p{i...,p;")w(q,’)’,...,q}’,...,q,Z) and

Pl Dl i) (qg . 0q]'..q)) indicating different choices of arrangements of substituents

affordable from distinct classes of permutations. The data collected from such calculations are
reported in table 4 and used in eqs.39-40.
Table 4. Compatible pairs of integer sequences (p('), p}, p; ) o( q[;,...,q,-’,...,q}‘ ), (pg, P

(G- ( PG
CopH, X, -,

L4

q; "

Z

q

3 kinds of achiral substituents(see table 3).

a9

"
P> ) <
oDy ) —(q(,q/-...q} ) for heteropolysubstituted DDH derivatives

and DDH hetero hetero-analogues (CH) X, .Y ..Z, having k=2 or
k 'k

(90.91.9:) | (oo piopy) | (dhaids) | (6, p1. P5) (g41'd5) (73, P}, PY) (9.9745)
18,11 0.1.1 6.0.0 2.01 3.0.0 -
721 | | 12,1 8,0,0 ~ -
3,0,1 71,0

16,3.1 10,1 5.1,0 2,11 7.1,0 - -
03,1 8,0,0

16,22 2.2.0 7.0,1
02,2 8.0.0 - -
2,0,2 7,1,0
4.,0,0 6,1,1

1532 0,0.2 5.1,0 L2 7,10
3,1,0 6,11
1,3,0 7,0,1

1433 2.0,0 41,1 2,11 6,11
0,3,1 7,0,1
0,1,3 7,1,0

8,6,6 2,0,0 222 4,0,0 2,33 1,0,0 1,1,1
0,4,0 4,13
0,04 43,1
2,2,0 3,23
0,2,2 422
2,02 3,32

(40:91.9:95) | (Po, P1o Py P3| (d409545) | (2o p503) | (doandsds) | (Poopipspl) | (4414.45)

17,111 LLLL 3,0,0,0
162,11 02,11 3,0,0,0

2,0,1,1 7,1,0,0

153,11 0,0,1,1 5.1,0.0 LILI 7.1,0.0

152,21 3,0,0,1 6,1,1,0
1,2,0,1 7.0,1,0
1,0.2.1 7,1,0.0

14321 2.1,0,1 6,1,1,0
0,3,0,1 7,0,1,0
0,1,2,1 7,1,0,0

14.4,1,1 0.2,1,1 7.1,0,0
2,0,1,1 6,2,0.0
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The integer sequences of AC(Z(), qo,...,qi,...,qk) and AaL, (20, qO,...,qi,...,qk) calculated for

these series are as follows:

For Cx0H 1sXY/(CH) 1sXY

1{( 20 2\ 6 4 8
4,(2o0, 18,1,1)=K }rzo[ )( )-15( j( j}z
120\ \18.1,1 0,L10\600) "\211)800
4 8
4,.(20, 18,1,1)=i 15 =3
60 \211)\800

For C20H17X2Y/(CH) 17X2Y

1 20 4 8 4 s
AC (20, 17’2’1):7[( j-15( ]( ]-]5( )( j:|:23
120\ \17.2,1 1,2,1)\ 8,0,0 3,0,1)\7,1,0
1 4 8 4 8
Age (20, 17.21)=—| I5 +15 =11
60| \121){800 3,01 )\7.1,0

For (CH)16X3Y/Ca0H 16X3Y

L[ 20 2 6 4 8 4 8
4.(20,16,3.1)=— +20 -15 -15 =151
120|\ 16,31 1,0,1)\5.1,0 2,1,1)\7,0.1 0,3,1)\ 80,0
1 4 8 4 8
Age (20, 16,31)=—| 15 +15 =25
so| \211)\7.10 0,3.1)\8,0,,0

For ConszYz/(CfI)]ﬁXZYZ

1 0 0 SR AR o ]|
Aqe (20 1612'2)25[(&11(?1)”5 [(2;0)(7,2,1)+(r;,j,z)(x,i,0)+ (z,;,z)(7;0,)+(4,Z,0)(6,j1)ﬂ -

For C20H 5X3Y2/(CH)20X3Y2,

Ac(20.15.3.2)= j[(152,;),2)””(0,;2)(5,?0)'”[(1,?2)(7, f,o)+ (3,;())(6,?1)+ (1;,0)(7,;1)}} i
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[ SRR B S R P
Age (20, 15,3.2) == + + + =88
60| \2.20/)\7,0,1 0,2,2J\8,0,0 2,0,2)\7,1,0, 4,0,0)\6,1,1
For C20H14X3Y3/(CH) 14X3Y3
1 20 4\ 8 4\ s 4\ s
4.(20:1433)=— -15 + + =6373
120(\ 1433 211 )\611) \031)\611) \013)\0.13
AaC(zo; 14’3’3):L|:15(( ) J( ) )+( ; )( ) j+[ ; )( ) jji|:184
60 2,1,1)\ 6,11 0,3,1)\ 6,11 0,1,3)\0,1,3
For Ca0H17XYZ | (CH) 17XYZ
1 20 4 8
4,(20: 17.1,1,1)=— 15 =54
120\ \17.1,1,1 1,1,1,1 )\ 80,0
1 4 8
Ay (20: 17,1,1,1)=—] 15 =6
60 1,1,1,1 )\ 8,0,0

For CxoH 16X2YZ/(CH) 16X2YZ

1 20 4 8 4 8
A.(20: 16.2.1,1)=—— 215 + —47]
10l\i62.11 0211\ 80.00) \ 2011 )\ 7100
1 4 8 4 8
Age(20: 162,1,1)=—]| 15 + =27
60 021,1)\80,00) \2011)\7100

For CxoH;sX3YZI(CH)1sX3YZ
1 20 2 6 4 8
4, (20; 15,3,1,1){( )+20(( )( )-15( )( )j:|2562
120\ 153,11 0,0.1.1)\5.1,0.0 1,1,1.1)\7,1,0,0
1 4 8
Age (20; 15,3,1,1)W{U((LMJ(Z I,0,0JH =48

For C20H5X2Y2ZI(CH) 15X2Y2Z

1 20 4 8 4 8 4 8
-15 + + =3824
120\ \15221 3,0,0,1)\ 6,1,1,0 1,201 )\7,0,1,0 1,021 )\ 7,1,0,0

4.(20,1522,1)=—
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1 4 8 4 8 4 8

AaC(Zo; ]5’2,2‘1):7|:]5([ j( j+( )( )+( j( j):|:104
60 3,001)\61,1,0) \1201)\7,01,0) \1,021)\71,0,0

For Ca0H14X3Y2Z/(CH)14X3Y2Z

e (20 15’3‘2'1):%{(15,23?2,1)'15[(2, 14,10,1)[6, 1?1,0] ! (0,3?0,1)(7,0?1,0) " (0, 1?2,1)(7,1?0,0)}}19280
A4 (20: 153.2.1 ):;Io[l 3 ((2 1[,10, 1) [5, 1(,?1,0) * (0,3‘,10, 1](7,0?1, 0) * (0, 1/,12, 1)(7, 1?90, ojﬂ =200

For C20H14X4YZ/(C]‘[)14X4YZ

1 20 4 8 4 8
4.(20; 14,4,1,1)=—— -15 + =9636
120{\14.4,1,1 0211 )\7,1,00) "\ 20,11 )\ 6,2,0,0
AaC(ZO,-14,4,1,1)=L{15(( ! j( s )+( ! )( y )H:los
60 0,2,1,1)\7,1,0,0 2,0,1,1)\6,2,0,0

For C20HsXsYs/ (CH)sXsYs

(e anallase) s 1010

20 14 |20

866) \2000222) (433) (100|111

Ac (20 8,6,6):L MO0 PRIR TR SR R = 969178
120| , J\100\233) 000413 (004 ) 4.

{z,;,0][1?1J+[2,Z,2][3.jzj{a;zj[{izj
Lo HA Mo

A, (20; 8,6,6)=—]| 20
a =50 oo 111433 4 8 4Y s 4 8
* 22,0 )\ 321 * 2,02 )\ 3,32 * 022)\422

60
The results of these calculations are summarized in columns 5, 6 and 7 of table 5 where we report
the numbers Ac, Aac and Aaia of enantiomers pairs, achiral isomers and diastereoisomers skeletons

predicted for the above mentioned heteropolysubstituted DDH derivatives and DDH hetero

hetero-analogues.
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Table 5. Numbers A, Aa and Aqia of enantiomers pairs, achiral isomers and diastereoisomers skeletons
predicted for the above mentioned heteropolysubstituted DDH derivatives and DDH hetero
hetero-analogues.

k Gyees ik Heteropolysubstituted | Dodecahedrane hetero | A. Aac Adia
dodecahedranes heter logues

2 1811 CaoH XY (CH)1sXY 2 3 5
17,21 C20H 17 X2Y (CH)17X5Y 23 11 34
16,3,1 CoHi6X3Y (CH) 156 X3Y 151 25 176
16,2,2 CaH16X2Y, (CH)16X2Y 233 41 274
15,3,2 C20H15X3Y2 (CH)15X5Y> 1249 88 1337
14,3,3 CooH 14X3Y3 (CH)14X3Y3 6373 184 6557
8,6,6 C20Hs XsYs (CH)s X5Ys 969178 | 2662 | 971840

3 17,1,1,1 CoH16XYZ (CH)17XYZ 54 6 60
16,2,1,1 CaoH16X2YZ (CH)1s X2YZ 471 27 498
15,3,1,1 CooH1sX3YZ (CH)1sX3YZ 2562 48 2610
15,2,2,1 CaoH1sX2YoZ (CH)15 XoY2Z 3824 104 3928
144,11 CoH14X4 YZ CH)14 X4YZ 9636 108 9744
14,3,2,1 CooH14 X3Y2Z (CH) 14 X3Y>Z 19280 200 19480

*k=number of achiral substituents of different kinds.

These results predict the occurrences for di-heteropolysubstitution of DDH with k=2, of
(Ae,Aacy=(2,3)-isomers for the series C20H1sXY/(CH)1sXY; for tri-heteropolysubstitution of DDH
with k=2 in the series C20H;7X>Y/(CH)17X2Y (Ae,Aac) = (23,11) isomers and with £=3 in the
series C20H16XYZ/ (CH)16XYZ, (Ac,Aac)=(54,6)-isomers. For tetra-heteropolysubstitution with
k=2 in the series (CH) 16X3Y/C20H 16X3Y and C20H6X2Y2/(CH) 16X2Y 2, (Ac,Aac) = (151,25), (233,41)
respectively while for k=3 in the series C20H16X2YZ/(CH)16X2YZ, (Ac,Aac)= (471,27)-isomers.
For Penta-heteropolysubstitution of DDH where k=2 in the series CzoH1sX3Y2/(CH)20X3Y>2
(Ae,Aac)=(1249, 88) and for k=3 in the series C:H;sX3YZ/(CH)isXzYZ and CaoHsX2Y2Z/
(CH)15X2Y2Z one obtains (Ac,Aac)= (2562,48) and (3824,104) isomers skeletons respectively. For
hexa-heteropolysubstitution of DDH where k=2 in the series C20H4X3Y3/(CH) 14X3Y3, (Ac,Aac) =
(6373,184) and with k=3 in the series C20H14X4YZ/(CH)14X4YZ and C20H14X3Y2Z/ (CH)14X3Y2Z
(Ae,Aacy= (9638, 104), (19280, 200) isomer skeletons respectively. For dodeca-heteropoly
substitution of DDH with k=2 in the series C20HsXsYs/(CH)sXsYs, (Ac,Aac)=(969178, 2662). The
continuation of this work presents in part II the partition of 4., and A into symmetry adapted

isomers numbers illustrated by chemical graphs.
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5 Concluding remarks

Permutations representations controlling the chirality and the achirality fittingness of 20
substitution sites of DDH submitted to the /; group action are transformed from binomial and
multinomial theorems into generic formula for bipartite enumeration of enantiomers pairs and
achiral skeletons of homo and heteropolysubstituted DDH derivatives, DDH homo hetero-
analogues and DDH hetero hetero-analogues. This mathematical procedure is a 6 steps-algorithm

including:

1-The determination of P_m and E the averaged weights of permutations induced by 60 rotations

and 60 rotoreflections of /; acting on 20 substitutions sites located in a spherical orbit.

2-The construction of permutations representations 4., 4,.and X, controlling the chirality-

achirality fittingness and the diastereoisomerism of DDH derivatives.

3- The formulation of algebraic expressions (eqs.20-26 and eqs.27-36) for counting homogeneous

and heterogeneous arrangements of substituents among 20 substitutions sites of DDH.

4- For heteropolysubstituted DDH  derivatives C,,H, X ..Y, ..Z, and DDH hetero hetero-
0 1 i k

analogues (CH), X, oYy, -2, the resolution of partition eqs.32,34,36 is required to obtain pairs

" m m

ofinegersequences (ph, p)y ph) e (G-t P Pl D)oot (P2 1 )

m

—(qp,--q/-..q} ) compatible with (99,9, 9;--q;)-

5- The transformation of A,and 4, into generic formulae for computing A, chiral and 4,

achiral isomers skeletons for distinct coisomeric series of DDH derivatives and DDH hetero
hetero-analogues (eqs.37-38 and eqs.39-40).

6-The computation of integer sequences (4., 4ac) satisfying the restriction Ac + Aac = Adia Which
isused to verify the compliance of diastereoisomers numbers derived from bipartite enumeration
with Polya’s coefficients derived from cycle indices.

The above mentioned bipartite enumeration algorithm has two advantages: (a) to perform direct
and selective computations of integer sequences (A4c, 4ac) of enantiomers pairs and achiral
skeletons for simple and complex 3D-structures exhibited by coisomeric series of /;-based DDH
derivatives and DDH heteroanalogues. (b) to circumvent the unwieldiness of classical
enumeration methods which require the transformation of cycle indices into enumerating

generating functions expanded with high powers series. Such a pattern inventory using
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permutations representations and combinatorial algebra has a pedagogical approach needed for

stereo chemical studies and molecular design of topologically spherical molecules. The

continuation of this work presents in part II the formulation and applications of the denumerants

of I, group for symmetry itemized enumeration of dodecahedrane derivatives and

heteroanalogues.
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