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Abstract 

Conformers of tetrahedral [MX4–n(AB)n] (n = 1 – 4) complexes have been enumerated on the 

basis of the group theory method, where M, X, and AB are the central metal atom, monoatomic 

ligand, and the diatomic ligand with a donor atom A, respectively. The AB ligand is assumed 

to coordinate to the metal ion in a bending form. The enumeration was conducted for the 

bisecting conformers, in which the AB ligands bend toward the bisecting directions of the 

tetrahedral coordination geometry, but the edge-orienting conformers can be generated by 

rotating the M-A bonds by 180°. The enumeration result is useful for considering various types 

of tetrahedral metal complexes by replacing the X and AB ligands. For example, a rigid 

dimethylformamide (Me2NCHO) ligand can be introduced by replacing the A and B atoms 

with O and N atoms of the dimethylformamide ligand.  

 

1 Introduction  

Flexible molecules change their shape and become various conformer structures. Especially in 

solution, some flexible molecules are in equilibrium between multiple conformers. The simplest 

method to represent this state is to show the most stable conformer. Another way is to show 

some conformer structures along with their abundance. Further detail method may be also 

possible, but in any case, the description of the state is helpful in understanding the behavior of 

the molecules. We have been tackling this challenge [1–5] with the use of enumeration result 

for several types of octahedral complexes [6–13], and this method can find the conformers 

efficiently, because the conformers are exhaustively obtained without duplication. Since some 
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results have been successfully obtained with the octahedral complexes, in this study, 

enumeration study is conducted for some tetrahedral complexes. To date excellent enumeration 

studies have been reported for tetrahedral organic molecules [14–17]. In this article, 

enumeration is conducted with the aim of enabling conformational analysis of tetrahedral metal 

complexes. The result is expected to be useful in understanding the properties of tetrahedral 

lithium complexes in electrolyte solutions of lithium-ion batteries [18,19]. 

In this study, conformers of tetrahedral [MX4–n(AB)n] (n = 1 – 4) complexes are 

enumerated on the basis of the group theory method, where M, X, and AB are the central metal 

atom, monoatomic ligand, and the diatomic ligand with a donor atom A, respectively. The AB 

ligand is assumed to coordinate to the metal ion in a bending form (Figure 1). Although the AB 

is a diatomic ligand, the enumeration result is expected to be useful not for the diatomic ligands 

but also various types of rigid monodentate ligands. For example, a rigid dimethylformamide 

(Me2NCHO) ligand can be introduced by replacing the A and B atoms with O and N atoms of 

the dimethylformamide ligand. 

 

 

Figure 1. Coordination mode for the AB ligand.  

 

For the AB ligand in the bending coordination mode, there are two typical orientations 

on the tetrahedral coordination geometry: edge orientation and bisecting orientation (Figure 2). 

The edge orientation corresponds to the eclipsed form and the bisecting orientation to the 

staggered form. Since the eclipsed forms are generally not favorable, the bisecting orientations 

(staggered forms) are mainly going to be considered. However, if necessary, the edge-orienting 

conformers can be obtained from the bisecting conformers by rotating all of the AB ligands by 

180° around the M-A bonds. 

 

Figure 2. Typical orientations with respect to the tetrahedral coordination geometry: edge orientations 

(a) and bisecting orientations (b). 
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2 Methods  

Three-dimensional models were handled by Winmostar software [20], and the point groups 

were confirmed by the software. The enumeration of the conformers was conducted on the basis 

of the group theory method. The enumeration algorithm is described in reference 21, and the 

enumeration was conducted manually. The completeness of enumerations was confirmed as 

follows. According to the orbit-stabilizer theorem [21], [the total number of each conformer] is 

equal to [the order of the rotation group of the coordination geometry] divided by [the order of 

the rotation group of the conformer], and the sum of the total number of each conformer should 

be equal to the number of structures (= 3n for [MX4–n(AB)n] complex). 

The structure of the [MX4–n(AB)n] complex is defined as shown in Figure 3. In the 

Cartesian coordinates, the central metal, M, is placed at (0,0,0). The four donor atoms, A (or X), 

are placed at (d, d, d), (–d, –d, d), (d, –d, –d), and (–d, d, –d) with a positive parameter d, and 

the donor atoms are numbered from 1 to 4 in this order. The M-A distance is expressed as √3d. 

Assuming the bisecting orientation (staggered form), three possible positions for atom, B, are 

named as a, b, and c, in the clockwise order from the A to M projection. The position of each a 

is on the bisecting plane of the xz and yz planes. For example, the conformers are expressed as 

[a, a, b, c] for the [M(AB)4] complex, using the abc notation for the positions of B, in the order 

of the donor atoms from 1 to 4. For the monoatomic X ligand, character “–” is used. For example, 

[–, a, c, b] for the [MX(AB)3] complex. 

 

 

Figure 3. Numbering for the [M(AB)4] structure. Three possible positions for atom B are indicated by 

the characters, a, b and c. 
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3 Results and discussion  

3.1 Enumeration for tetrahedral [M(AB)4]  

The enumeration of the bisecting conformers was conducted for the tetrahedral [M(AB)4] 

complex on the basis of the group theory, and the conformers were exhaustively obtained 

without duplication. The resulting conformers are listed in Table 1, and their structures are 

depicted in Figure 4. As the result, six conformers, Td4-B1 through Td4-B6, were found [point 

groups: 1 D2d, 1 S4, 1 C2, 1 Cs, and 2 C1]. Among them, dissymmetric C2 conformer (Td4-B1) 

and asymmetric C1 conformers (Td4-B5 and Td4-B6) are chiral, possessing enantiomers. 

Except for the C1 point group, all of the obtained groups are the subgroups of the Td point group 

of the tetrahedral MA4 coordination geometry. The completeness of the enumeration can be 

confirmed by the orbit-stabilizer theorem as follows. For the choice of atom B positions (see 

Figure 3), there are 34 (= 81) structures of the bisecting conformers. The point group of the 

coordination geometry is Td, and its order of the rotation group is 12. The order of the rotation 

groups for the conformers are 4 for D2d, 2 for S4 and C2, and 1 for Cs and C1. Therefore, the 

total numbers of conformers for the point groups are 3 (= 12/4) for D2d, 6 (= 12/2) for S4, 6 (= 

12/2) for C2, 12 (= 12/1) for Cs, and 12 (= 12/1) for C1. Since the C2 and C1 structures have their 

enantiomers, the total number of considered structures is confirmed to be equal to 81 [1 × 3(for 

D2d) + 1 × 6(for S4) + 2 × 6(for C2) + 1 × 12(for Cs) + 2 × 2 × 12(for C1) = 3 + 6 + 12 + 12 + 48 

= 81]. As mentioned in section 1, the edge-orienting conformers can be considered in the same 

way, and each conformer structure can be obtained by rotating the ligand moieties of the 

corresponding bisecting conformer by 180° along the M-A bonds. 

Table 1. Bisectting conformers for a [M(AB)4] complex. 

Code Example a Point Group 

Td4-B1 [a, a, a, a] D2d 

Td4-B2 [b, b, c, c] S4 

Td4-B3 b [a, a, b, b] C2 

Td4-B4 [a, a, b, c] Cs 

Td4-B5 b [a, a, a, b] C1 

Td4-B6 b [a, c, a, b] C1 

a Order: [(x, y, z) , (–x, –y, z) , (x, –y, –z) , (–x, y, –z)]. b Enantiomeric mirror image exists. 
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Figure 4. Structures of bisecting conformers for [M(AB)4] complex, Td4-B1 – Td4-B6.  

 

3.2 Enumeration for tetrahedral [MX(AB)3]  

The enumeration of the bisecting conformers was conducted for the tetrahedral [MX(AB)3] 

complex on the basis of the group theory, and the conformers were exhaustively obtained 

without duplication. The resulting conformers are listed in Table 2, and their structures are 

depicted in Figure 5. As the result, six conformers, Td3-B1 through Td3-B7, were found [point 

groups: 1 C3v, 1 C3, 2 Cs, and 3 C1]. Among them, dissymmetric C3 conformer (Td3-B2) and 

asymmetric C1 conformers (Td3-B5, Td3-B6, and Td3-B7) are chiral, possessing enantiomers. 

Except for the C1 point group, all of the obtained groups are the subgroups of the C3v point 

group of the tetrahedral MXA3 coordination geometry. The completeness of the enumeration 

can be confirmed by the orbit-stabilizer theorem as follows. For the choice of atom B positions 

(see Figure 3), there are 33 (= 27) structures of the bisecting conformers. The point group of the 

coordination geometry is C3v, and its order of the rotation group is 3. The order of the rotation 

groups for the conformers are 3 for C3v and C3 and 1 for Cs and C1. Therefore, the total numbers 

of conformers for the point groups are 1 (= 3/3) for C3v, 1 (= 3/3) for C3, 3 (= 3/1) for Cs, and 3 

(= 3/1) for C1. Since the C3 and C1 structures have their enantiomers, the total number of 

considered structures is confirmed to be equal to 27 [1 × 1(for C3v) + 1 × 2 × 1(for C3) + 2 × 

3(for Cs) + 3 × 2 × 3(for C1) = 1 + 2 + 6 + 18 = 27]. The structures of the edge-orienting 

conformers can be obtained by rotating the ligand moieties of the corresponding bisecting 

conformers by 180° along the M-A bonds. 
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Table 2. Bisectting conformers for a [MX(AB)3] complex. 

Code Example a Point Group 

Td3-B1 [–, a, c, b] C3v 

Td3-B2 b [–, c, b, a] C3 

Td3-B3 [–, a, a, a] Cs 

Td3-B4 [–, a, b, c] Cs 

Td3-B5 b [–, a, a, b] C1 

Td3-B6 b [–, b, b, c] C1 

Td3-B7 b [–, c, b, b] C1 

a Order: [(x, y, z) , (–x, –y, z) , (x, –y, –z) , (–x, y, –z)]. b Enantiomeric mirror image exists. 

 

 

Figure 5. Structures of bisecting conformers for [MX(AB)3] complex, Td3-B1 – Td3-B7.  

3.3 Enumeration for tetrahedral [MX2(AB)2]  

The enumeration of the bisecting conformers was conducted for the tetrahedral [MX2(AB)2] 

complex on the basis of the group theory, and the conformers were exhaustively obtained 

without duplication. The resulting conformers are listed in Table 3, and their structures are 

depicted in Figure 6. As the result, six conformers, Td2-B1 through Td2-B4, were found [point 

groups: 1 C2v, 1 C2, 1 Cs, and 1 C1]. Among them, dissymmetric C2 conformer (Td2-B2) and 

asymmetric C1 conformer (Td2-B4) are chiral, possessing enantiomers. Except for the C1 point 

group, all of the obtained groups are the subgroups of the C2v point group of the tetrahedral 

MX2A2 coordination geometry. The completeness of the enumeration can be confirmed by the 

orbit-stabilizer theorem as follows. For the choice of atom B positions (see Figure 3), there are 
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32 (= 9) structures of the bisecting conformers. The point group of the coordination geometry 

is C2v, and its order of the rotation group is 2. The order of the rotation groups for the conformers 

are 2 for C2v and C2 and 1 for Cs and C1. Therefore, the total numbers of conformers for the 

point groups are 1 (= 2/2) for C2v, 1 (= 2/2) for C2, 2 (= 2/1) for Cs, and 2 (= 2/1) for C1. Since 

the C2 and C1 structures have their enantiomers, the total number of considered structures is 

confirmed to be equal to 9 [1 × 1(for C2v) + 1 × 2 × 1(for C2) + 1 × 2(for Cs) + 1 × 2 × 2(for C1) 

= 1 + 2 + 2 + 4 = 9]. The structures of the edge-orienting conformers can be obtained by rotating 

the ligand moieties of the corresponding bisecting conformers by 180° along the M-A bonds. 

 

Table 3. Bisectting conformers for a [MX2(AB)2] complex 

Code Example a Point Group 

Td2-B1 [a, a, –, –] C2v 

Td2-B2 b [b, b, –, –] C2 

Td2-B3 [b, c, –, –] Cs 

Td2-B4 b [a, b, –, –] C1 

a Order: [(x, y, z) , (–x, –y, z) , (x, –y, –z) , (–x, y, –z)]. b Enantiomeric mirror image exists. 

 

 

Figure 6. Structures of bisecting conformers for [MX2(AB)2] complex, Td2-B1 – Td2-B4.  
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3.4 Enumeration for tetrahedral [MX3(AB)]  

The enumeration of the bisecting conformers was conducted for the tetrahedral [MX3(AB)] 

complex on the basis of the group theory, and the conformers were exhaustively obtained 

without duplication. The resulting conformer is listed in Table 4, and its structure is depicted in 

Figure 7. As the result, one conformer, Td1-B1, was found [point group: 1 Cs]. And the Cs point 

group is the subgroup of the C2v point group of the tetrahedral MX2A2 coordination geometry. 

The completeness of the enumeration can be confirmed by the orbit-stabilizer theorem as 

follows. For the choice of atom B positions (see Figure 3), there are 3 structures of the bisecting 

conformers. The point group of the coordination geometry is C3v, and its order of the rotation 

group is 3. The order of the rotation group for the conformer is 1 for Cs. Therefore, the total 

numbers of conformers for the point group is 3 (= 3/1) for Cs, and the total number of considered 

structures is confirmed to be equal to 3 [1 × 3(for Cs) = 3]. The structures of the edge-orienting 

conformers can be obtained by rotating the ligand moieties of the corresponding bisecting 

conformers by 180° along the M-A bonds. 

 

Table 4. Bisectting conformers for a [MX3(AB)] complex 

Code Example a Point Group 

Td1-B1 [a, –, –, –] Cs 

a Order: [(x, y, z) , (–x, –y, z) , (x, –y, –z) , (–x, y, –z)].  

 

 

Figure 7. Structure of bisecting conformer for [MX4(AB)] complex, Td1-B1.  

 

4 Concluding remarks  

 

In this study, conformers were enumerated on the basis of group theory method for tetrahedral 

[MX4–n(AB)n] (n = 1 – 4) complexes as summarized in Tables 1-4. The enumeration result is 

applicable for various types of rigid monodentate ligands, including dimethylformamide, by 
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replacing the A and B atoms. The result is expected to be useful in understanding the properties 

of tetrahedral lithium complexes in electrolyte solutions of lithium-ion batteries. 
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