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Abstract

Let G be a simple graph with vertex set V (G) and edge set E(G). The inverse

sum indeg index of G is defined as ISI(G) =
∑

uv∈E(G)
d(u)d(v)
d(u)+d(v) , where d(u) is

the degree of vertex u ∈ V (G). This index has a nice predicting ability for the
total surface area of octane isomers. In this note, we completely characterize the
structure of chemical trees with the maximal inverse sum indeg index, which resolves
a problem posed by Sedlar, Stevanović, and Vasilyev (2015).

1 Introduction

Let G = (V,E) be a simple graph, where V (G) = {v0, v1, . . . , vn−1} and E(G) are the

vertex set and edge set of G, respectively. For vi ∈ V (G), let di = d(vi) denote the degree

of vi in G, and let ∆(G) denote the maximum degree of G. The degree sequence of G

is π(G) = (d0, d1, . . . , dn−1), where d0 ≥ d1 ≥ · · · ≥ dn−1. A tree is a connected acyclic

graph, and a chemical tree is a tree T with ∆(T ) ≤ 4.

The inverse sum indeg (ISI for short) index of a graph G is defined as [15]

ISI(G) =
∑

vivj∈E(G)

f(di, dj) =
∑

vivj∈E(G)

didj
di + dj

,
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where f(x, y) = xy
x+y

for x, y ≥ 1. This recently developed topological index was shown to

has a nice predicting ability for the total surface area of octane isomers [15]. Some extremal

values of ISI index have been determined by Sedlar et al. [14] for connected graphs,

trees, chemical graphs, chemical trees, graphs with given maximum degree, minimum

degree, or number of pendent vertices, and trees with k leaves. An and Xiong [2] later

obtained the extremal ISI index among graphs with given matching number, vertex

connectivity, or independence number. Similar results were also derived by Chen and Deng

[3] for graphs with given connectivity, chromatic number, clique number, independence

number, covering number, or vertex bipartiteness. In addition, Falahati-Nezhad et al. [6]

established sharp bounds on ISI index in terms of various graph invariants, including the

order, radius, size, and number of pendent vertices. Gutman et al. [8] presented several

inequalities on ISI index and characterized the graphs attaining the equalities. Several

lower bounds were also given by Gutman et al. [9]. For more results concerning ISI index,

we refer to [1, 5, 7, 10–13].

For trees, Sedlar et al. [14] showed that the star uniquely has the minimal ISI index,

and they also left the problem of determining the maximal ISI index in the classes of

trees and chemical trees at the end of their paper. Recently, some structural properties

of trees with the maximal ISI index were observed and proven by Chen et al. [4], but the

problem is still open. In this note, we would completely resolve the problem for the case

of chemical trees.

Let Tn be the set of all chemical trees on n vertices. For n ≤ 7, the chemical trees

with the maximal ISI index (optimal chemical trees, for short) can be easily determined

by a direct calculation (see Table 1). So, in the following we always assume that n =

7k + r ≥ 8, k, r ∈ Z, and 0 ≤ r ≤ 6. For T ∈ Tn, an edge uv ∈ E(T ) with d(u) = i and

d(v) = j is called an (i, j)-edge, and the number of (i, j)-edges in T is denoted by mi,j.

For x ∈ R, let bxc = max{a ∈ Z | a ≤ x} and dxe = min{a ∈ Z | a ≥ x}. We now denote

by T ∗n (⊂ Tn) the set of all chemical trees on n vertices satisfying the following condition:

m4,4 = k − 1, m4,3 = 2k − 1 + b r
2
c, m4,1 = 3− d r

2
e,

m3,3 = n(3,2) = 0, m3,1 = 4k − 2 + 2b r
2
c,

m4,2 = m2,1 = 0 if r ∈ {0, 2, 4, 6}, and m4,2 = m2,1 = 1 if r ∈ {1, 3, 5}.

-30-



Table 1. The optimal chemical trees of order 2–7.

Figure 1. Some chemical trees in T ∗n (n ≥ 8).
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Note that for any n ≥ 8, T ∗n 6= ∅ (see Figure 1 for some chemical trees in T ∗n ), and for

any T ∗ ∈ T ∗n , it is easy to see that n4 = k, n3 = 2k − 1 + b r
2
c, n1 = 4k + 1 + b r

2
c, n2 = 0

if r ∈ {0, 2, 4, 6}, and n2 = 1 if r ∈ {1, 3, 5}, where ni = |{v ∈ V (T ∗) | d(v) = i}|, i ∈

{1, 2, 3, 4}. Moreover, by a direct calculation, we have

ISI(T ∗) =
1

70

(
590k − 197 + 84r +

⌊r
2

⌋)
.

The main result of this note is as follows.

Theorem 1 Let n = 7k + r ≥ 8, k, r ∈ Z, and 0 ≤ r ≤ 6. For any T ∈ Tn, we have

ISI(T ) ≤ 1

70

(
590k − 197 + 84r +

⌊r
2

⌋)
.

Moreover, the equality holds if and only if T ∈ T ∗n .

The proof of Theorem 1 will be presented in the following section.

2 Proof of Theorem 1

We first recall the concept of BFS-graphs. For a rooted graph G with root v0, the length

of a shortest v−v0 path (a path connecting v and v0) in G, is called the height of a vertex

v and denoted by h(v).

Definition ( [4]) Let G be a connected rooted graph with root v0. A well-ordering ≺ of

the vertices is called a breadth-first searching ordering (with non-increasing degrees) if the

following conditions hold for all vertices u, v ∈ V (G):

(B1) u ≺ v implies h(u) ≤ h(v);

(B2) u ≺ v implies d(u) ≥ d(v);

(B3) Let uv, xy ∈ E(G) and uy, xv /∈ E(G) with h(u) = h(x) = h(v)− 1 = h(y)− 1.

If u ≺ x, then v ≺ y.

A graph having a BFS-ordering of its vertices is called a BFS-graph. If a BFS-graph

is a tree, then it is also called a BFS-tree.

To prove Theorem 1, we need some auxiliary results.

Lemma 2 ( [4]) Given a degree sequence π, there exists a BFS-graph with the maximal

ISI index in C(π), where C(π) denotes the set of graphs with the degree sequence π.
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Lemma 2 suggests that, to find the optimal chemical trees, one can first determine

their degree sequences (4(n4), 3(n3), 2(n2), 1(n1)), where a(k) stands for k successive a’s. Let

P = u0u1 · · ·ul (l ≥ 1) be a path of a graph G with d(u0) ≥ 3, d(ul) = 1, and d(ui) = 2

for 1 ≤ i ≤ l − 1. Then P is said to be a pendent path of G.

Lemma 3 ( [4]) An optimal chemical tree has no pendent paths of length ≥ 3.

Lemma 4 ( [4]) An optimal chemical tree has at most one pendent path of length 2.

Lemma 5 ( [4]) An optimal chemcial tree does not contain a path v0v1 · · · vl of length

l ≥ 2 such that d(v0) > d(vi) and d(vl) > d(vi) for some i ∈ {1, 2, . . . , l − 1}.

Although Lemmas 3, 4, and 5 were proved for trees in [4], we can use the same way

to prove them for chemical trees. Now, by Lemmas 3, 4, and 5, we have the following.

Lemma 6 If n ≥ 8, then the degree sequence (4(n4), 3(n3), 2(n2), 1(n1)) of an optimal chem-

ical tree satisfies n2 ∈ {0, 1}.

Lemma 7 If n ≥ 8, then the degree sequence (4(n4), 3(n3), 2(n2), 1(n1)) of an optimal chem-

ical tree satisfies n4 ≥ 1.

Proof. Let T ∈ Tn be an optimal chemical tree with degree sequence (4(n4), 3(n3), 2(n2),

1(n1)). By contradiction, we can suppose that n4 = 0. Now, by Lemma 6, we have

n2 ∈ {0, 1}. Since 3n3 + 2n2 + (n− n3 − n2) = 2(n− 1), we get n3 = 1
2
(n− 2− n2).

If n2 = 0, then we have n3 = n
2
− 1 and n1 = n

2
+ 1, and hence,

ISI(T ) = (n3 − 1)f(3, 3) + n1f(3, 1) = 9
8
n− 9

4
.

If n2 = 1, then we have n3 = 1
2
(n− 3) and n1 = 1

2
(n+ 1), and hence

ISI(T ) = (n3 − 1)f(3, 3) + f(3, 2) + (n1 − 1)f(3, 1) + f(2, 1)

= 9
8
n− 271

120
< 9

8
n− 9

4
.

Since n ≥ 8, we obtain 6
5
n− 9

8
n = 3

40
n ≥ 0.6 > 197

70
− 9

4
. Consequently,

ISI(T ) ≤ 9
8
n− 9

4
< 6

5
n− 197

70
= 1

70
(588k − 197 + 84r)

< 1
70

(
590k − 197 + 84r +

⌊
r
2

⌋)
= ISI(T ∗),

where T ∗ ∈ T ∗n ⊂ Tn, which contradicts the assumption that T is optimal. This proves

that n4 ≥ 1, completing the proof of Lemma 7.
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Lemma 8 Let n = 7k + r ≥ 8, k, r ∈ Z, and 0 ≤ r ≤ 6. For any T ∈ Tn, if n2 = 0, then

ISI(T ) ≤


59
7
k + 169

140
r − 197

70
, if r ∈ {0, 2, 4, 6},

59
7
k + 169

140
r − 397

140
, if r ∈ {1, 3, 5},

(1)

and if n2 = 1, then

ISI(T ) ≤


59
7
k + 169

140
r − 199

70
, if r ∈ {0, 2, 4, 6},

59
7
k + 169

140
r − 395

140
, if r ∈ {1, 3, 5}.

(2)

Proof. Without loss of generality, we can suppose that T ∈ Tn is a chemical tree with

degree sequence π = (4(n4), 3(n3), 2(n2), 1(n1)). Since 4n4 + 3n3 + 2n2 + n1 = 2(n − 1) and

n4 + n3 + n2 + n1 = n, we have n3 = 1
2
(n − 2 − 3n4 − n2) and n1 = 1

2
(n + 2 + n4 − n2).

Moreover, by Lemmas 6 and 7, we know that n2 ∈ {0, 1} and n4 ≥ 1. On the other

hand, from Lemma 2 it follows that there exists a BFS-tree T ′ ∈ C(π) ⊂ Tn such that

ISI(T ′) ≥ ISI(T ). So, we can further assume that T is a BFS-tree. Consequently, we

have m4,3 +m4,2 +m4,1 = 4n4 − 2m4,4 = 4n4 − 2(n4 − 1) = 2n4 + 2.

Case 1. n2 = 0.

In this case, we have n3 = 1
2
(n − 2 − 3n4) and n1 = 1

2
(n + 2 + n4). If n3 ≤ 2n4 + 2,

then 1
2
(n− 2− 3n4) ≤ 2n4 + 2, which means that n4 ≥ dn−67 e = k. Thus, we obtain

ISI(T ) = (n4 − 1)f(4, 4) + n3f(4, 3) + (2n4 + 2− n3)f(4, 1) + 2n3f(3, 1)

= 2(n4 − 1) +
12

7
n3 +

4

5
(2n4 − n3 + 2) +

3

2
n3 =

1

70
(−28 + 252n4 + 169n3)

=
1

70
(−28 + 252n4 +

169

2
(n− 2− 3n4)) =

1

140
(−394 + 169n− 3n4)

, g1(n, n4) .

Moreover, since g1(n, n4) is strictly decreased with n4, and n3, n1 ∈ Z, we have

ISI(T ) = g1(n, n4) ≤

g1(n, k) = 59
7
k + 169

140
r − 197

70
, if r ∈ {0, 2, 4, 6},

g1(n, k + 1) = 59
7
k + 169

140
r − 397

140
, if r ∈ {1, 3, 5}.

If n3 ≥ 2n4 + 3, then 1
2
(n− 2− 3n4) ≥ 2n4 + 3, which means that n4 ≤ bn−87 c ≤ k− 1.

Thus, we get

ISI(T ) = (n4 − 1)f(4, 4) + (2n4 + 2)f(4, 3) + (n3 − 2n4 − 2)f(3, 3)

+ (n− n4 − n3)f(3, 1)

= 2(n4 − 1) + 12
7

(2n4 + 2) + 3
2
(n3 − 2n4 − 2) + 3

4
(n− n4 − n3)

= 1
28

(−44 + 21n+ 47n4 + 21n3) = 1
28

(−44 + 21n+ 47n4 + 21
2

(n− 2− 3n4))

= 1
56

(−130 + 63n+ 31n4) , g2(n, n4) .
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Moreover, since g2(n, n4) is strictly increased with n4, we obtain

ISI(T ) = g2(n, n4) ≤ g2(n, k − 1) =
59

7
k +

9

8
r − 23

8

<
59

7
k +

169

140
r − 397

140
= g1(n, k + 1) < g1(n, k).

Now, by combining the above arguments, we may obtain the desired bound (1).

Case 2. n2 = 1.

In this case, we have n3 = 1
2
(n − 3 − 3n4) and n1 = 1

2
(n + 1 + n4). If n3 ≤ 2n4 + 1,

then 1
2
(n− 3− 3n4) ≤ 2n4 + 1, which means that n4 ≥ dn−57 e. Thus, we obtain

ISI(T ) = (n4 − 1)f(4, 4) + n3f(4, 3) + f(4, 2) + (2n4 + 2− n3)f(4, 1)

+ 2n3f(3, 1) + f(2, 1) = 1
70

(56 + 252n4 + 169n3)

= 1
140

(−395 + 169n− 3n4) , g3(n, n4)

Moreover, since g3(n, n4) is strictly decreased with n4, and n3, n1 ∈ Z, we have

g3(n, n4) ≤

g3(n, k + 1) = 59
7
k + 169

140
r − 199

70
, if r ∈ {0, 2, 4, 6},

g3(n, k) = 59
7
k + 169

140
r − 395

140
, if r ∈ {1, 3, 5}.

If n3 ≤ 2n4 + 2, then 1
2
(n− 3− 3n4) ≥ 2n4 + 2, which means that n4 ≤ bn−77 c = k− 1.

Thus, we get

ISI(T ) = (n4 − 1)f(4, 4) + (2n4 + 2)f(4, 3) + (n3 − 2n4 − 2)f(3, 3) + f(3, 2)

+ (n− n4 − n3 − 2)f(3, 1) + f(2, 1) = 1
420

(−506 + 315n+ 705n4 + 315n3)

= 1
840

(−1957 + 945n+ 465n4) , g4(n, n4)

Moreover, since g4(n, n4) is strictly increased with n4, we have

ISI(T ) = g4(n, n4) ≤ g4(n, k − 1) =
59

7
k +

9

8
r − 173

60

<
59

7
k +

169

140
r − 199

70
= g3(n, k + 1) < g3(n, k).

Now, by combining the above arguments, we may obtain the desired bound (2). The

proof of Lemma 8 is thus completed.

We are now ready to present the proof of Theorem 1.

Proof of Theorem 1. Let n = 7k + r ≥ 8, k, r ∈ Z, and 0 ≤ r ≤ 6, and let T ∈ Tn.

Now, by combining Lemmas 7 and 8, we have

ISI(T ) ≤


59
7
k + 169

140
r − 197

70
, if r ∈ {0, 2, 4, 6},

59
7
k + 169

140
r − 395

140
, if r ∈ {1, 3, 5},
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=
1

70

(
590k − 197 + 84r +

⌊r
2

⌋)
. (3)

Moreover, from the proof of Lemma 8, we know that the equality holds in (3) if and only

if T satisfies the following conditions:

(a) (4(n4), 3(n3), 2(n2), 1(n1)) = (4(k), 3(2k−1+b r
2
c), 2(ξ(r)), 1(4k+1+b r

2
c));

(b) m4,4 = k − 1,m4,3 = 2k − 1 + b r
2
c,m4,1 = 3 − d r

2
e,m3,3 = m3,2 = 0,m3,1 =

4k − 2 + 2b r
2
c,m4,2 = m2,1 = ξ(r), where ξ(r) = 0 if r ∈ {0, 2, 4, 6} and ξ(r) = 1 if

r ∈ {1, 3, 5}.

Since the condition (b) implies the condition (a), we can conclude that the equality

holds in (3) if and only if T ∈ T ∗n .

This completes the proof of Theorem 1.

3 Concluding remarks

For any n ≥ 2, it is easy to see that the degree sequence of an optimal chemical tree is

unique, but the optimal chemical trees need not be unique. Indeed, for n ≥ 28, since

n4 ≥ 4 and hence, the chemical trees in Figure 1 are not BFS-trees, which means that

the optimal chemical trees are always not unique (Lemma 2 indicates that there always

exists an optimal chemical tree which is a BFS-tree). For 2 ≤ n ≤ 27, Tables 1 and 2 list

all possible optimal chemical trees, which would yield that the optimal chemical trees are

unique if and only if n ∈ {2, 3, . . . , 13} ∪ {18, 19, 20, 27}.
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Table 2. The optimal chemical trees in T ∗n for 8 ≤ n ≤ 27.
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sum indeg index of graphs, Discr. Appl. Math. 251 (2018) 258–267.

[13] K. Pattabiraman, Inverse sum indeg index of graphs, AKCE Int. J. Graphs Comb.

15 (2018) 155–167.

[14] J. Sedlar, D. Stevanović, A. Vasilyev, On the inverse sum indeg index, Discr. Appl.

Math. 184 (2015) 202–212.
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