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Abstract

The first and the second Zagreb indices of a connected graph are defined as
the sum of squares of its vertex degrees, and the sum of the products of degrees
of adjacent vertices, respectively. In this paper, we determine the graphs with
maximum Zagreb indices and the minimum first Zagreb index in ζpn, the class of
all connected graphs of order n with p pendent vertices, where 0 ≤ p ≤ n − 1.
Also, we determine the graphs with minimum second Zagreb index in ζpn, for p =
{0, 1, 2, 3, 4, n− 3, n− 2, n− 1}.

1 Introduction

All graphs in this paper are assumed to be simple, connected and finite. Let G = (V,E)

be a graph, with the vertex set V = V (G) and the edge set E = E(G). In theoreti-

cal chemistry, the physico-chemical properties of chemical compounds are often modeled

by using molecular-graph-based structure descriptors, and are referred to as topological

indices [12, 20].

The first and the second Zagreb indices of a graph G, denoted by M1(G) and M2(G),

respectively, have been introduced almost fifty years ago. by Gutman and Trinajestić [13].
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They are defined as

M1(G) =
∑

v∈V (G)

d(v)2

M2(G) =
∑

uv∈E(G)

d(u)d(v),

where d(v) (also denoted by dG(v)) is the degree of vertex v ∈ V , which is the number of

edges incident v. The extent of branching of the molecular carbon-atom skeleton can be

calculated by M1 and M2, so they used as molecular descriptors [2, 19]. Various classes

of graphs have been investigated to finding graphs with maximum and minimum Zagreb

indices. For instance, extremal values of Zagreb indices are determined in the classes

of graphs with a given number of cut edges, clique number, and vertex connectivity at

most k, in [5], [22], and [16], respectively. In [4], extremal values of Zagreb indices are

determined in the class of trees with a given number of vertices of maximum degree.

Gutman and Kamran Jamil and Akhter characterized graphs with n vertices, p pendent

vertices, with positive cyclomatic number (= the number of independent cycles), and

minimal M1 [11]. Also, Li and Zhang studied sharp upper bounds for Zagreb indices of

bipartite graphs with a given diameter [15]. Furthermore Feng and Ilić presented sharp

bounds for the Zagreb indices of graphs with a given matching number [7]. Li, Yang and

Zhao determined sharp upper and lower bounds of the cacti with p pendent vertices for

Zagreb indices [14]. Also Goubko [8,9], determined sharp lower bounds of Zagreb indices

for trees and chemical trees with a given number of pendent vertices and found optimal

trees. Furthermore, Goubko and Gutman in [10], offer a dynamic programming method

that characterizes the trees with a given number of pendent vertices, for which a vertex-

degree-based invariant (topological index) achieves its extremal value. For more details

of Zagreb indices, we refer to [3, 18].

Note that the results of Goubko [8] are obtained for a certain number of pendent

vertices, but not for a fixed order of the graphs. In this paper, we determine the maximum

Zagreb indices and the minimum first Zagreb index of graphs of order n, with p pendent

vertices.

We follow the standard graph-theoretic terminology. Let G = (V,E) be a simple graph

and v ∈ V be a vertex of G. We denote the set of neighbors of v by NG(v). Also we put

NG[v] = NG(v) ∪ {v}. Note that d(v) = |NG(v)|. If V = {v1, . . . , vn} and d(vi) = di, the

sequence (d1, d2, . . . , dn) is called a degree sequence of G. We say that two graphs G and
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H are isomorphic and write G ∼= H, if there is a bijection f : V (G) −→ V (H) such that

uv ∈ E(G) if and only if f(u)f(v) ∈ E(H) [21]. If u, v ∈ V (G) and {v1, v2, . . . , vi} is a

subset of NG(v) \NG[u], we put

G∗ = G−
∑

vi∈NG(v)

vvi +
∑

vi∈NG(v)

uvi .

In [24], the process of obtaining G∗ from G is called a graft transformation.

We denote the maximum degree of vertices in G by ∆ or ∆(G). We denote the path

with n vertices, the complete graph with n vertices and the star graph with n+ 1 vertices

by Pn, Kn and Sn, respectively. A clique in a graph is a set of pairwise adjacent vertices.

The length of a shortest cycle in graph G is called the girth of G. Recall that a unicyclic

graph is a connected graph containing exactly one cycle. We denote by F k
n the unicyclic

graph obtained by attaching a path of length n− k to the cycle Ck of length k.

The Dumbbell graph D(n; s, t) consists of a path with n−s−t vertices, with s pendent

vertices adjacent to one of the end vertex of the path Pn−s−t and t pendent vertices

adjacent to the other end vertex of the path Pn−s−t. We denote the graph obtained from

adjoining one vertex of complete graph Kn−p to p pendent vertices by Kp
n−p.

Let χp
n be the class of all trees of order n with p pendent vertices. Suppose T ∈ χp

n. It

is well-know [21] that every tree with maximum degree ∆ > 1 has at least ∆ vertices of

degree 1. Also is obvious that if ni is the number of the vertices of degree i , 1 ≤ i ≤ n,

in T , then
∑p

i=1 ini = 2(n− 1) and
∑p

i=1 ni = n. Therefore
p∑

i=3

(i− 2)ni = p− 2. (1)

Let ζpn be the class of all connected graphs of order n with p pendent vertices, where

0 ≤ p ≤ n − 1. It is clear that ζ0
1 = ζ0

2 = ζ1
2 = ζ1

3 = ∅, also the classes ζ2
2 , ζ

0
3 and

ζn−1
n , respectively contain the unique graphs P2, K3 and star graph Sn−1. So in order to

find the graphs with maximum or minimum Zagreb indices in ζpn, we may assume that

0 ≤ p ≤ n− 2, and n ≥ 4.

In section 2, we state and prove some results, which are useful in proving the main

results of the paper. In Section 3 we show that D(n;n − 3, 1) and Kp
n−p have maximum

Zagreb indices in ζn−2
n and ζpn (p 6= n − 2), respectively. We prove that Cn and F k

n have

minimum Zagreb indices in ζ0
n and ζ1

n, respectively. Also, we determine degree sequence

of trees which have minimum first Zagreb index in ζpn, 2 ≤ p ≤ n− 2, and we prove that

D(n; dp
2
e, bp

2
c) has minimum second Zagreb index in ζpn, p ∈ {2, 3, 4, n− 3, n− 2}.
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2 Prerequisites

In this section we state some known results and prove some results that will be used in

the next sections. We begin with the following proposition which is proved by Aghel et.al.

Proposition 2.1. [1, Lemma 3.1] Let G = (V,E) is a simple connected graph, and

u, v ∈ V (G), for i = 1, 2 we have

(i) If uv /∈ E(G), then Mi(G) < Mi(G+ uv).

(ii) If uv ∈ E(G), then Mi(G) > Mi(G− uv).

A caterpillar is a tree in which all the vertices are within distance 1 of a central path.

Lemma 2.2. [17, Lemma 3] Suppose that T is a tree of order n, which is non-caterpillar.

Then there exists a caterpillar T ′ of order n such that T ′ and T have the same degree

sequence.

Theorem 2.3. [6, Theorem 5.2] Let G be a unicyclic graph of order n and girth k, which

is different from Cn. If G � F k
n , then Mi(F

k
n ) < Mi(G), i = 1, 2.

Lemma 2.4. [6, Lemma 4.1] Let w be a vertex of connected graph G 6= P1 and k, l ≥ 1.

Let G1 be the graph obtained from G by attaching pendent paths P ′ = wv1v2 . . . vk and

P ′′ = wu1u2 . . . ul, and let G2 be the graph obtained from the same graph G by attaching

a path P ∗ = wv1v2 . . . vku1u2 . . . ul (see Figure 1). Then Mi(G2) < Mi(G1).

G

w
vkv1

w

G

. . . . . .
u1u2ul u1 u2v2 vkv1

. . .
v2

. . .
ul

G1 G2

Figure 1

Theorem 2.5. [23, 25] The cycle Cn is the unique graph with minimum Zagreb indices

Mi, i = 1, 2, among all unicyclic graphs with n vertices.

The next Lemma is proved in [6]. But there are some miscalculations in lines 4, 6, 8, 10,

and 12 on page 601. In that proof for the case (ii), in calculating M2(G), M2(G′), and

M2(G′′), the value d(u)d(v) has subtracted from each relation. Because they mistakenly

assumed that due to the adjacency of vertices u and v, this value was calculated twice.
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Also, because of these miscalculations in M2(G), M2(G′), and M2(G′′), the values ∆1 and

∆2 are not correct. We re-prove this case:

Lemma 2.6. [6, Lemma 2.2]. Let u and v be the two vertices in a graph G. Let

u1, u2, . . . , ur be pendent vertices adjacent to u, and v1, v2, . . . , vt be pendent vertices adja-

cent to v (r, t are not necessarily the total number of pendent vertices adjacent to u and

v). Let G′ = G−{uu1, uu2, . . . , uur}+{vu1, vu2, . . . , vur}, G′′ = G−{vv1, vv2, . . . , vvt}+

{uv1, uv2, . . . , uvt} (see Figure 2). Then at least one of inequalities Mi(G) < Mi(G
′) or

Mi(G) < Mi(G
′′), i = 1, 2, is valid.

G G′

u1

ur

v1

vt

...

...

u1

u1

vt

vt
v

v
v

u u
u ......

G′′

}}
r + t

r + t

Figure 2

Proof. According to discussion preceding Lemma, we consider only the second Zagreb in-

dex, in case that the vertices u and v are adjacent. Put G0 = G−{u1, u2, . . . , ur, v1, v2, . . . ,

vt}, and let dG0(u) = p, dG0(v) = q. If uv ∈ E(G0), then u ∈ NG0(v) and v ∈ NG0(u). We

calculate M2(G), M2(G′) and M2(G′′) as follows

M2(G) =
∑

xy∈E(G0−{u,v})

dG0(x)dG0(y) + (p+ r)
∑

x∈NG0
(u)−{v}

dG0(x) + r(p+ r)

+ (q + t)
∑

x∈NG0
(v)−{u}

dG0(x) + t(q + t) + (p+ r)(q + t).

M2(G′) =
∑

xy∈E(G0−{u,v})

dG0(x)dG0(y) + p
∑

x∈NG0
(u)−{v}

dG0(x)

+ (q + t+ r)
∑

x∈NG0
(v)−{u}

dG0(x) + (t+ r)(q + t+ r) + p(q + t+ r).

M2(G′′) =
∑

xy∈E(G0−{u,v})

dG0(x)dG0(y) + (p+ r + t)
∑

x∈NG0
(u)−{v}

dG0(x)

+ q
∑

x∈NG0
(v)−{u}

dG0(x) + (t+ r)(p+ t+ r) + q(p+ t+ r).
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Now we have

∆1 = M2(G′)−M2(G) = r
( ∑

x∈NG0
(v)−{u}

dG0(x)−
∑

x∈NG0
(u)−{v}

dG0(x)
)

+ rt.

∆2 = M2(G′′)−M2(G) = t
( ∑

x∈NG0
(u)−{v}

dG0(x)−
∑

x∈NG0
(v)−{u}

dG0(x)
)

+ rt.

If ∆1 ≤ 0, then
∑

x∈NG0
(u)−{v}−

∑
x∈NG0

(v)−{u} ≥ t. Since r, t ≥ 1 we have

∆2 = t
( ∑

x∈NG0
(u)−{v}

dG0(x)−
∑

x∈NG0
(v)−{u}

dG0(x)
)

+ rt ≥ tr + t2 > 0.

Also If ∆2 ≤ 0, then
∑

x∈NG0
(v)−{u}−

∑
x∈NG0

(u)−{v} ≥ r. Since r, t ≥ 1 we have

∆1 = r
( ∑

x∈NG0
(v)−{u}

dG0(x)−
∑

x∈NG0
(u)−{v}

dG0(x)
)

+ rt ≥ rt+ r2 > 0.

Thus the result follows.

Corollary 2.7. In the class of dumbbell graphs of order n with p pendent vertices,

D(n; 1, p − 1) has the maximum first and second Zagreb indices, and D(n; dp
2
e, bp

2
c), has

the minimum first and second Zagreb indices.

Theorem 2.8. Let κpn be the class of all caterpillars of order n with p pendent vertices.

Then for n ≥ 4, and 2 ≤ p ≤ n− 2, the caterpillars in κpn with a degree sequence π have

a minimum first Zagreb index, where

π = (∆, . . . ,∆︸ ︷︷ ︸
n∆

,∆− 1, . . . ,∆− 1︸ ︷︷ ︸
n−n∆−p

, 1, . . . , 1︸ ︷︷ ︸
p

),

and

∆ =

⌈
p− 2

n− p

⌉
+ 2, n∆ = p(∆− 2)− n(∆− 3)− 2.

Proof. Let T ∈ κpn. By repeating use of Lemma 2.6 we obtain a caterpillar T ′ in κpn

such that M1(T ′) ≤ M1(T ) and the difference between the degrees of both non-pendent

vertices in T ′ is at most one. Therefore T has vertices of degrees ∆, ∆− 1 and 1; hence

∆ =
⌈
p−2
n−p

⌉
+ 2.

Suppose n∆ and n∆−1 be the numbers of vertices in the T ′, with degrees ∆ and ∆−1,

respectively. By (1), we have

n∆(∆− 2) + n∆−1(∆− 3) = p− 2. (2)
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Adding p(∆− 3) to both sides of (2), we obtain that

(∆− 3)(n∆ + n∆−1 + p) + n∆ = p(∆− 2)− 2.

Since n∆ + n∆−1 + p = n, we have n∆ = p(∆− 2)− n(∆− 3)− 2.

Lemma 2.9. Suppose that T is a tree of order n. Let {u, v, w, x, y, z} ⊂ V (T ) and

{uv, vw, xy, yz} ⊂ E(T ), where d(u) = 1. Let

T ′ = T − {uv, vw, xy, yz}+ {uy, yw, xv, vz}.

Then M2(T ′) < M2(T ) if one of the following conditions holds

(i) d(y) > d(v) and d(x) + d(z) > d(u) + d(w).

(ii) d(y) < d(v) and d(x) + d(z) < d(u) + d(w).

Proof. Since

M2(T )−M2(T ′) = (d(y)− d(v))(d(z) + d(x)− d(w)− 1),

the result is clear.

Lemma 2.10. Let T and T ′ be trees of order n with p pendent vertices which are not

the dumbbell graphs. Suppose that T and T ′ have exactly one vertex of degree more than

2 and exactly two vertices of degree more than 2, respectively; and the other non-pendent

vertices have degree 2. Then we have

(i) M2(D(n; dp
2
e, bp

2
c) < M2(T ).

(ii) M2(D(n; dp
2
e, bp

2
c) < M2(T ′).

Proof. (i) By the definition of T , there exists a vertex v ∈ V (T ) with d(v) ≥ 3. Since T is

not a dumbbell graph, there exists a path amam−1 . . . a1vb1 . . . bl−1bl, such that m, l ≥ 2,

d(bl) = d(am) = 1. Put

T1 = T − {a1v, b1v, bl−1bl−2, bl−1bl}+ {a1bl−1, b1bl−1, vbl−2, vbl}.

Since d(v) ≥ 3, by Lemma 2.9, d(bl) = 1 and the other non-pendent vertices have degree 2.

Hence M2(T1) < M2(T ). We repeat this graft transformation until we get a tree T ∗, such
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that a vertex v in T ∗ is adjacent to p− 1 pendent vertices, and hence T ∗ ∼= D(n; p− 1, 1).

Thus we have

M2(D(n; p− 1, 1)) < · · · < M2(T1) < M2(T ),

and by Corollary 2.7 we obtain that

M2(D(n; dp
2
e, bp

2
c)) ≤M2(D(n; p− 1, 1)) < M2(T ).

(ii) Let {u, v} ⊂ V (T ′), d(u) = r ≥ 3, d(v) = s ≥ 3. We repeatedly use the graft

transformation expressed in Lemma 2.9, on the vertices u and v, until we get D(n; r −

1, s−1). Since T ′ is not a dumbbell graph, M2(D(n; r−1, s−1)) < M2(T ′). By Corollary

2.7 we have

M2(D(n; dp
2
e, bp

2
c)) ≤M2(D(n; r − 1, s− 1)) < M2(T ′),

and the result follows.

3 Graphs with maximum and minimum Zagreb

indices in ζpn

Theorem 3.1. Let G∗1 and G∗2 have maximum Zagreb indices M1 and M2, respectively,

in ζpn, where n ≥ 4 and 0 ≤ p ≤ n− 2. Then

(i) If p = n− 2, then G∗1
∼= G∗2

∼= D(n;n− 3, 1).

(ii) If p 6= n− 2, then G∗1
∼= G∗2

∼= Kp
n−p.

Proof. (i) In this case we know that the class ζn−2
n contains only D(n; r, t), where r+ t =

n − 2. According to Corollary 2.7, for 2 ≤ r ≤ t, we have Mi(D(n; r, t)) < Mi(D(n;n −

3, 1)), i = 1, 2. So G∗1
∼= G∗2

∼= D(n;n− 3, 1).

(ii) If p = 0, then it is clear that G∗1
∼= G∗2

∼= Kn. Thus suppose that p 6= 0, n − 2

and let G1 ∈ ζpn. We partition V (G1) into A ∪ B, where A = {v ∈ G1 | d(v) = 1} and

B = {v ∈ G1 | d(v) ≥ 2}. If u, v ∈ B, uv /∈ E(G1), then by adding an edge between u

and v, we have Mi(G1 + uv) > Mi(G1), i = 1, 2. We continue this process on B, until all

vertices in B become adjacent to each other. In this way we get a graph G2, with a clique

Kn−p of order n− p. If all vertices in A, are not adjacent to one vertex of the Kn−p, then

we apply Lemma 2.6 on G2, so that we get Kp
n−p, which has maximum Zagreb indices in

this class.
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Theorem 3.2. Let G∗1 and G∗2 be the graphs in ζ0
n, with minimum Zagreb indices M1 and

M2, respectively, where n ≥ 4. Then G∗1
∼= G∗2

∼= Cn.

Proof. Let G � Cn and G ∈ ζ0
n. Then G has at least one cycle. If G is unicyclic,

then by Lemma 2.5 we have Mi(Cn) < Mi(G). If G has more than one cycle, then by

removing edges along some cycles of G, we get a unicyclic spanning subgraph G1, such

that Mi(G1) < Mi(G), and by Theorem 2.5 the result follows.

Theorem 3.3. Let G∗1 and G∗2 have minimum Zagreb indices M1 and M2, respectively in

ζ1
n, where n ≥ 4. Then there exsits 3 ≤ k ≤ n− 1 so that, G∗1

∼= F k
n and G∗2

∼= F n−1
n .

Proof. Suppose that G ∈ ζ1
n. Since G has exactly one pendent vertex, G has at least

one cycle. Therefore G has a unicyclic spanning subgraph G1. It is clear that Mi(G1) ≤

Mi(G), and according to Theorem 2.3, we have Mi(F
k
n ) ≤ Mi(G1), i = 1, 2. Also it is

easy to see that 
M1(F k

n ) = 4n+ 2 if 3 ≤ k ≤ n− 1,

M2(F k
n ) = 4n+ 4 if 3 ≤ k ≤ n− 2,

M2(F n−1
n ) = 4n+ 3 if k = n− 1.

The above relations yield that if G∗1 in ζ1
n has minimum first Zagreb index, then there

exists 3 ≤ k ≤ n − 1 such that G∗1
∼= F k

n . In this case G∗1 is not unique. Also if G∗2 has

minimum second Zagreb index in ζ1
n, then G∗2

∼= F n−1
n .

Let G ∈ ζpn, where 2 ≤ p ≤ n− 2, and suppose that G is not a tree. Suppose that T is

a spanning tree of G. We know that Mi(T ) < Mi(G). By removing edges from G to get a

spanning tree, the number of pendent vertices may increase. In this case choose a vertex

v, which is adjacent to at least two pendent paths and d(v) ≥ 3. By applying Lemma 2.4,

we convert these pendent paths to one pendent path. This graft transformation, decreases

the number of pendent vertices and the Zagreb indices. We repeat this transformation,

until we get a tree T ′ with p pendent vertices, such that Mi(T
′) ≤Mi(T ) < Mi(G). So to

determine the graphs with minimum Zagreb indices, we investigate the class χp
n instead

of the class ζpn.

The following Theorem has been proved by Gutman and Kamran Jamil [11, Theorem

4.1]. We prove it in a different way, using the degree sequences of caterpillars with the

minimum first Zagreb index.
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Theorem 3.4. Let the tree T ∗ has minimum first Zagreb index in χp
n, where n ≥ 4 and

2 ≤ p ≤ n− 2. Then T ∗ is isomorphism to the tree T with degree sequence π, where

π = (∆, . . . ,∆︸ ︷︷ ︸
n∆

,∆− 1, . . . ,∆− 1︸ ︷︷ ︸
n−n∆−p

, 1, . . . , 1︸ ︷︷ ︸
p

),

and

∆ =

⌈
p− 2

n− p

⌉
+ 2, n∆ = p(∆− 2)− n(∆− 3)− 2.

Proof. Note that the value of M1 is dependent only on the degree of each vertex and is

independent of the degree of the neighbors of the vertices. Hence if we determine the vertex

degree sequence of the tree which has a minimum M1, then any graph with this degree

sequence has a minimum M1. By Lemma 2.2, for all T ∈ χp
n, there exists T ′ ∈ κpn so that

T and T ′ have same degree sequence. Also, according to Theorem 2.8 all caterpillar with

the degree sequence (∆, . . . ,∆︸ ︷︷ ︸
n∆

,∆− 1, . . . ,∆− 1︸ ︷︷ ︸
n−n∆−p

, 1, . . . , 1︸ ︷︷ ︸
p

) have a minimum first Zagreb

index in κpn. Thus the result follows.

Theorem 3.5. Let T ∗ is a tree in χp
n with minimum second Zagreb index. Then for

n ≥ 4, and p ∈ {2, 3, 4, n− 3, n− 2}, we have T ∗ ∼= D(n; dp
2
e, bp

2
c).

Proof. If p = 2 we let T ∈ χ2
n. It is clear that there is no vertex of degree more than

2 in T . So there are exactly n − 2 vertices of degree 2 and 2 vertices of degree 1 in T .

Therefore χ2
n contains a unique tree Pn. Thus we have T ∗ ∼= Pn

∼= D(n; 1, 1).

If p = 3, then it follows from (1) that n3 = 1. So χ3
n contains only the trees with the

degree sequence π, where

π = (3, 2, . . . , 2︸ ︷︷ ︸
n−p−1

, 1, . . . , 1︸ ︷︷ ︸
p

).

Hence by Lemma 2.10, T ∗ ∼= D(n; 2, 1).

If p = 4, then it follows from (1) that n3 + 2n4 = 2. So χ4
n contains only the trees with

the degree sequences π and π′, where

π = (4, 2, . . . , 2︸ ︷︷ ︸
n−p−1

, 1, . . . , 1︸ ︷︷ ︸
p

), π′ = (3, 3, 2, . . . , 2︸ ︷︷ ︸
n−p−2

, 1, . . . , 1︸ ︷︷ ︸
p

).

Thus by Lemma 2.10, T ∗ ∼= D(n; 2, 2).

If p = n − 2, we know that χn−2
n contains exactly D(n; r, t), where r + t = n − 2.

According to the Corollary 2.7, we have T ∗ ∼= D(n; dp
2
e, bp

2
c).
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If p = n−3, then it is clear that χn−3
n contains only caterpillar graphs. Let T1 ∈ χn−3

n ,

which is not dumbbell graph and t ≥ r (see Figure 3) and

T2 = T1 − {vv1, . . . , vvs}+ {uv1, . . . , uvs}.

Then T2
∼= D(n; r + s, t), and we have

M2(T1)−M2(T2) = s(t− r + 1).

Since t ≥ r and s ≥ 1, M2(T2) < M2(T1). Also by Lemma 2.7, D(n; dp
2
e, bp

2
c) ≤ D(n; r +

s, t). The equality hold if and only if D(n; dp
2
e, bp

2
c) ∼= D(n; r + s, t).

v1 vs

...

u1

ur

...

. . .

wt

w1

v1

vs

...

u1

ur

...

wt

w1
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(Eds.), Bounds in Chemical Graph Theory – Basics , Univ. Kragujevac, Kragujevac,
2017, pp. 67–153.
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