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Abstract

We present here a study of Clar covering polynomials (aka Zhang-Zhang or

ZZ polynomials) for a family of structural derivatives of hexagonal benzenoids

O (n1, n2, n3) with some of its corners removed. This family consists of 64 dis-

tinct structures. The ZZ polynomials of structures in this family are interrelated

by a network of 192 algebraic recurrence relations. Symmetry considerations allow

us to reduce the studied network to 96 recurrence relations involving 36 symmetry-

distinct structures. Equations defining 25 of these structures are purely algebraic

and can be completely solved. The ZZ polynomials of the remaining 11 structures,

interrelated by 15 recurrence relations, are characterized in terms of generating

function for one of these structures, e.g., O (n1, n2, n3). The presented result is not

fully satisfactory: one more recurrence relation is missing to find the explicit form

of the generating function for the ZZ polynomials of O (n1, n2, n3). We believe that

the presented results constitute an important step toward finding a closed-form ZZ

polynomial formulas for hexagonal flakes and their derivatives and completing the

theory of Clar covers for hexagonal flakes.

1 Introduction

Characterization of Clar covers [12] of pericondensed polycyclic benzenoids [16] is in

general a challenging and tedious task [2, 18, 19, 23, 25, 31, 35, 39]. The typical research

questions that are usually asked in this context are: (i) Does a benzenoid B permit

any Clar covers? (ii) If yes, how many Clar covers does it permit? (iii) What is the
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maximal number of aromatic sextets (Clar number, Cl) that can be accommodated in B?

(iv) How many Clar structures (Clar covers with Cl aromatic sextets) can be constructed

for B? (v) How many Clar covers with a prespecified number k of aromatic sextets

can be constructed for B for every 0 ≤ k < Cl? (vi) What is the average distribution

of aromatic sextets (local aromaticity) in various hexagons of B? (vii) What is the

distribution of single and double bonds in B? (viii) Are there any regions with fixed

bonds in B? (ix) Are the regions with fixed bonds in B located in such a way that

B is essentially disconnected? (x) How to establish the aforementioned properties of

B in a robust and efficient manner? Answering many of these questions became much

simpler after introducing by Zhang and Zhang the Clar covering polynomial ZZ(B, x)

[34, 36–38], which is nowadays customarily referred to as the Zhang-Zhang polynomial

or more concisely, as the ZZ polynomial [14]. For example, the maximal degree of x

in ZZ(B, x) is equal to Cl, the coefficient in front of xCl denotes the number of Clar

structures, the coefficient in front of x0, c0 ≡ ZZ(B, 0), denotes the number of Kekulé

structures, and the value ZZ(B, 1) reproduces the total number of Clar covers. The

problem of robust determination of ZZ(B, x) was solved by Gutman, Furtula, and Balaban

by proposing an iterative algorithm [17]; this algorithm was further refined and efficiently

implemented by Chou and Witek, first in a form of a on-line ZZCalculator [4,5] and later in

a form of freely-downloadable ZZDecomposer [7–9,40,41]. The latter program, in addition

to the tool for determination of the ZZ polynomials for an arbitrary benzenoid that can

be conveniently defined using a mouse drawing pad, incorporates also various tools for

deriving closed-form formulas for various families of benzenoid structures. In its most

typical depth decomposition mode, ZZDecomposer generates a recurrence relation for an

analyzed benzenoid structure, which relates its ZZ polynomial to the ZZ polynomials of

structurally related benzenoids. In many cases, it is possible to decouple the set of the

resulting recurrence relations and find a closed-form recurrence relation that expresses

the ZZ polynomial of some structured benzenoid Bn in terms of ZZ polynomials of the

isostructural benzenoids Bm with m < n. This strategy has been successfully applied

by us to various families of pericondensed benzenoids, allowing for finding closed-form

formulas for the ZZ polynomials of regular 3-, 4-, and 5-tier benzenoid strips [32, 33],

parallelograms M (m,n) [7], chevrons Ch (k,m, n) [9], prolate rectangles Pr (m,n) [11],

multiple zigzag chains Z (m,n) [27], and their various generalizations [6, 10, 26–30]. A
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successful application of this algorithm to ribbons Rb (k,m, n) will be reported by us

soon. However, there exist two classes of structures, oblate rectangles Or (m,n) and

hexagonal flakes O (k,m, n), which up-to-date almost completely escape the possibility

of their full characterization in terms of closed-form ZZ polynomial formulas. Partial

results for constrained subfamilies of these structures (for example: Or (m, 2), O (2, 2, n),

O (2, 3, n), O (3, 3, n)) have been obtained [3,8], but their extension to general structures

Or (m,n) and O (k,m, n) constitute a real challenge in the theory of ZZ polynomials.

The current paper reports an important step toward finding a closed-form formulas

for the hexagonal flakes O (k,m, n). Namely, we have analyzed the network of recurrence

relations obtained for the complete set of structural derivatives of O (k,m, n) obtained

by removing its corners. It turns out that the resulting network is closed and comprises

of 192 recurrence relations interrelating ZZ polynomials of 64 structural derivatives of

O (k,m, n) obtained by removing from it 0, 1, 2, 3, 4, 5, or 6 of its corners. Many of

these derivatives are related by symmetry, which allows us to express the network in form

of 96 recurrence relations for 36 symmetry-distinct structural derivatives of O (k,m, n).

Further, we are able to partially solve the set of recurrence relations for 25 of these

symmetry-distinct derivatives, reducing the original set of 96 recurrence relations to 15

recurrence relations interrelating 11 symmetry-distinct structures. Further solution of

this problem is given in terms of generating functions, which allow to reduce the problem

completely and express ZZ polynomials (or the corresponding generating function) of all

of the derivatives of O (k,m, n) in terms of the generating function for the ZZ polynomials

of O (k,m, n) or in terms of the generating function for the ZZ polynomials of G (k,m, n),

i.e., the derivative of O (k,m, n) obtained by removing its three alternating corners. The

obtained result is not fully satisfactory: a single recurrence relation is missing in the

whole network in order to provide a mean to its complete solution. However, the partial

result obtained here shows that the ZZ polynomials for all of the structural derivatives

of O (k,m, n) obtained by introducing corner defects can be readily obtained once the

ZZ polynomials of O (k,m, n) or G (k,m, n) are known. We believe that this results

constitutes an important step toward developing the complete theory of Clar covers and

ZZ polynomials of hexagonal graphene flakes.
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2 Preliminaries

A benzenoid is a planar hydrocarbon B consisting entirely of fused benzene rings. Every

carbon atom in B forms three σ bonds with its three closest neighbor atoms; the fourth

bond, fulfilling the requirement of tetravalent character of each carbon atom, is either a

localized π bond formed with one of its neighbor carbon atoms or a delocalized aromatic

π sextet involving five other carbon atoms located in the same benzene unit. The ar-

rangement of σ bonds in B is fully and uniquely determined by the topology of B, but

the arrangement of π bonds can be usually decided in many distinct ways. Each of such

arrangements of localized π bonds and delocalized aromatic sextets, resulting in tetrava-

lent character of each carbon atom in B, is referred to as a Clar cover [12]. The maximal

number, Cl, of aromatic sextets that can be accommodated within the benzenoid B is

referred to as the Clar number. The Clar covers with exactly Cl aromatic sextets are

called Clar structures. The Clar covers with k aromatic sextets are referred to as the Clar

covers of order k. Clar covers involving only localized π bonds (i.e., Clar covers of order

0) are called Kekulé structures. Sometimes, the topology of carbon atom connections in

B does not permit for constructing even a single Clar cover; such benzenoids are referred

to as non-Kekuléan. In graph-theoretical context, the theory of Clar covers is often ex-

pressed as a theory of perfect coverings of graphs of an infinite hexagonal lattice. A Clar

cover is a spanning subgraph such that its every component is either K2 or C6, where

K2 corresponds to the localized π bonds and C6 corresponds to the delocalized aromatic

sextets.

A convenient way to enumerate Clar covers for a given benzenoid B is given by a

combinatorial polynomial in a dummy variable x usually referred to as the ZZ polynomial

(aka Zhang-Zhang polynomial or Clar covering polynomial), which is given by

ZZ(B, x) =
Cl∑
k=0

ck x
k. (1)

The ZZ polynomial of B is the most compact source of information about the Clar cov-

ers of B: the order of the ZZ polynomial is equal to the Clar number Cl of B and the

coefficient cCl is the number of Clar structures, the coefficient ck denotes the number

of Clar covers of order k, and the coefficient c0 corresponds to the number of Kekulé

structures of B. It is also easy to see that the total number of Clar covers for B is
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simply given as ZZ(B, 1) and the total number of Kekulé structures for B is simply given

as ZZ(B, 0). The ZZ polynomial of B can be conveniently determined using recursive

decomposition algorithms [4, 7, 17] or can be conveniently computed using interface the-

ory of benzenoids [26, 27, 29, 30]. An useful theoretical tool for determination of the ZZ

polynomials for an arbitrary benzenoid is ZZDecomposer [7, 8]. With this program, one

can conveniently define a benzenoid using a mouse drawing pad and subsequently use the

underlying graph representation of the benzenoid to find its ZZ polynomial, manipulate

its Clar covers, and determine its structural similarity to other, related benzenoids. In its

most typical depth decomposition mode, ZZDecomposer generates a recurrence relation

for an analyzed benzenoid structure, which relates its ZZ polynomial to the ZZ polynomi-

als of structurally related benzenoids and often allows for determination of a closed-form

formulas for the whole family of structures.

3 Definition of the problem

Figure 1. An example of a hexagonal flake O (n1, n2, n3) with n1 = 5, n2 = 7, and
n3 = 4.

In this work, we attempt to determine closed-form ZZ polynomials for a family of struc-

turally related benzenoids obtained from hexagonal graphene flakes O (n1, n2, n3) by in-

troducing corner defects. To be more precise, we start with a hexagonal graphene flake

O (n1, n2, n3) with the indices n1, n2, n3 ≥ 2 (see Fig. 1 for a graphical definition) and we

construct all possible structural derivatives of O (n1, n2, n3) by removing a certain number

(from zero to six) of its corners. The number of the derivative structures of O (n1, n2, n3)

that can be obtained in this way is 64. For each of these 64 structures, one can construct

decomposition pathways (similar to those shown below in Figs. 2 and 3) by selecting a
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bond in one of the remaining corners. The number of decomposition pathways that can

be obtained in this way is 192. The ZZ polynomials for the 64 derivative structures of

O (n1, n2, n3) are not all different owing to high symmetry possessed by these structures.

In fact, the ZZ polynomial of O (n1, n2, n3) is invariant with respect to any permutation

of the parameters n1, n2, and n3. Thus it is possible to identify a subset of 36 derivative

structures, such that every structural derivative is distinct from all the others from the

point of view of symmetry. All these 36 structures together with their labeling scheme

are shown in Fig. 4. The original set of 192 decomposition pathways corresponding to

the 64 derivative structures reduces now to 96 possible decomposition pathways involving

only 36 symmetry-distinct derivatives. These decomposition pathways are symbolically

represented below by Eqs. (10)–(15) in form of the resulting recurrence relations for their

ZZ polynomials.

The members of the family of symmetry-distinct structural derivatives of O (n1, n2, n3)

are closely morphologically and structurally related, so it does not come as a surprise

that their ZZ polynomials are also closely related. In fact, for this family of structures,

it is possible to construct with the help of the ZZDecomposer program [7] and using the

recurrence relation technique described in detail in [4], a set of linear recurrence relations

interrelating their ZZ polynomials. To derive this set, let us consider first a few examples.

Before doing so, let us introduce a notation convention for the ZZ polynomials that will be

used till the end of the current manuscript. Namely, instead of denoting the ZZ polynomial

of a benzenoid B as ZZ(B, x) we will simply write B. In this way, the symbol B denotes

two distinct quantities: the benzenoid B itself and its ZZ polynomial; we believe that

this dichotomy will not cause the reader any practical problems.

Fig. 2 shows that selecting a bond b (denoted in Fig. 2 in blue with a black dot in

its center) in one of the corners of the hexagonal flake O (n1, n2, n3) and assigning it with

single, double, and aromatic character determines also the character of some other bonds

in this structure. In every resulting Clar cover the selected bond b can only assume three

different covering types (single = no covering, double = covering with K2, and aromatic =

covering with C6), so the set of Clar covers of O (n1, n2, n3) is composed of three disjoint

sets of Clar covers: those with single bond b, those with double bond b, and those with

aromatic bond b. Note now that selecting the bond b to be single fixes the character

of all its neighboring bonds, reducing effectively the set of Clar covers of O (n1, n2, n3)
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with a single bond b to the set of all Clar covers of O (n1, n2, n3 − 1). Similar reductions

(to A3 (n1, n2, n3) or A3 (n1, n2, n3 − 1), respectively) happen also for the cases when b is

double or aromatic. Consequently, the number of Clar covers for O (n1, n2, n3) is equal to

the total number of Clar covers for its three derivative substructures, O (n1, n2, n3 − 1),

A3 (n1, n2, n3), and A3 (n1, n2, n3 − 1). Similar relation holds also for the ZZ polynomial of

O (n1, n2, n3), which can be obtained by summing the ZZ polynomials of O (n1, n2, n3 − 1),

A3 (n1, n2, n3), and A3 (n1, n2, n3 − 1), with the additional condition that the ZZ polyno-

mial of A3 (n1, n2, n3 − 1) should be multiplied by x to account for the additional aromatic

ring shown in Fig. 2 in gray. Similar decompositions can be performed for all the three

symmetry-distinct corners of O (n1, n2, n3), leading to the following general recurrence

relations interrelating the ZZ polynomials of hexagonal graphene flakes O and hexagonal

graphene flakes without a corner Ai

Figure 2. A decomposition of the ZZ polynomial of a hexagonal flake O (n1, n2, n3)
(here, n1 = 5, n2 = 6, and n3 = 3) with respect to the bond located in
one of the corners (denoted in blue with a black dot in its center) results
in a recurrence relation given by Eq. (2), interrelating the ZZ polynomials
of these four structures. This recurrence relation constitutes one single
entry in the network of 96 recurrence relations considered in the current
work (Eqs. (10)–(15)).
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O (n1, n2, n3) = O (n1, n2, n3 − 1) + A3 (n1, n2, n3) + xA3 (n1, n2, n3 − 1) (2)

O (n1, n2, n3) = O (n1, n2 − 1, n3) + A2 (n1, n2, n3) + xA2 (n1, n2 − 1, n3) (3)

O (n1, n2, n3) = O (n1 − 1, n2, n3) + A1 (n1, n2, n3) + xA1 (n1 − 1, n2, n3) (4)

The next example concerns the structure A3 (n1, n2, n3). Since this structure has five

symmetry-distinct corners, it is possible to construct five symmetry-distinct decompo-

sition pathways. These possible recursive decompositions of A3 (n1, n2, n3) are shown

in Fig. 3. All these decomposition pathways allow to express the ZZ polynomial of

A3 (n1, n2, n3) as a sum of ZZ polynomials of its derivative structures, producing five

distinct recurrence relations given by

A3 (n1, n2, n3) = O (n1 − 1, n2, n3) +B2 (n1, n2, n3) + xA1 (n1 − 1, n2, n3) (5)

A3 (n1, n2, n3) = O (n1, n2 − 1, n3) +B1 (n1, n2, n3) + xA2 (n1, n2 − 1, n3) (6)

A3 (n1, n2, n3) = A3 (n1, n2, n3 − 1) +D3 (n1, n2, n3) + xD3 (n1, n2, n3 − 1) (7)

A3 (n1, n2, n3) = A3 (n1, n2 − 1, n3) + C1 (n1, n2, n3) + xC1 (n1, n2 − 1, n3) (8)

A3 (n1, n2, n3) = A3 (n1 − 1, n2, n3) + C2 (n1, n2, n3) + xC2 (n1 − 1, n2, n3) (9)

Similar decomposition process applied to the remaining 33 structures (note that no

decomposition pathway can be derived for L (n1, n2, n3) as this structure has no corners)

produces the remaining 88 recurrence relations. Since the derivations are rather obvious

and can be performed easily by an attentive reader using ZZDecomposer, we do not give

them here. Moreover, since listing the remaining 88 recurrence relations would occupy a

considerable part of this manuscript, we have decided to skip a few steps in the derivation

process and list only an equivalent family of relations that have been obtained by simple

algebraic transformations of the set of the original recurrence relations derived in the same

fashion like Eqs. (2)–(9). This family of 96 equations can be symbolically represented as

-128-



F
ig
u
re

3
.

F
iv

e
d

is
ti

n
ct

co
rn

er
d

ec
om

p
os

it
io

n
p

at
h
w

ay
s

av
ai

la
b

le
fo

r
th

e
st

ru
ct

u
re

A
3

(n
1
,n

2
,n

3
)

le
ad

to
th

e
re

cu
rr

en
ce

re
la

ti
o
n

s
gi

ve
n

in
E

q
s.

(5
)–

(9
).

H
er

e,
n
1

=
4,

n
2

=
6,

an
d
n
3

=
3.

N
ot

e
th

at
th

e
S

,
D

,
a
n

d
R

in
d

ic
at

e
th

e
p

at
h
w

ay
s

w
h

er
e

th
e

b
on

d
is

as
si

gn
ed

as
a

si
n

gl
e

b
on

d
(S

),
a

d
ou

b
le

b
on

d
(D

),
an

d
a

p
ar

t
of

th
e

ar
o
m

a
ti

c
ri

n
g

(R
),

re
sp

ec
ti

ve
ly

.

-129-



O (3, 5, 4)

A
1
 (3, 5, 4) A

2
 (3, 5, 4) A

3
 (3, 5, 4) B1 (3, 5, 4) B 

2 (3, 5, 4)

B 
3 (3, 5, 4) C 

1 (3, 5, 4) C 
2 (3, 5, 4) C 

3 (3, 5, 4) D
1
 (3, 5, 4)

D
2
 (3, 5, 4) D

3
 (3, 5, 4) E

1
 (3, 5, 4) E

2
 (3, 5, 4) E

3
 (3, 5, 4)

F
1

2 (3, 5, 4) F
1

3 (3, 5, 4) F
2

1 (3, 5, 4) F
2

3 (3, 5, 4) F
3

1 (3, 5, 4)

F
3

2 (3, 5, 4) G (3, 5, 4) H
1
 (3, 5, 4) H

2
 (3, 5, 4) H

3
 (3, 5, 4)

I
1
 (3, 5, 4) I

2
 (3, 5, 4) I

3
 (3, 5, 4) J 

1 (3, 5, 4) J 
2 (3, 5, 4)

J 
3 (3, 5, 4) K 

1 (3, 5, 4) K 
2 (3, 5, 4) K 

3 (3, 5, 4) L (3, 5, 4)

Figure 4. All possible derivative structures that can be obtained from a hexagonal
graphene flake O (n1, n2, n3) by removing a certain number (from zero to
six) of its corners. Here, n1 = 3, n2 = 5, and n3 = 4. It might be helpful
to mention that the naming convention is based on subscript indices i
corresponding to a missing corner in the direction of ni and superscript
indices j corresponding to an existing corner in the direction of nj .
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follows

O − Ai = Aj −Bk = Ak −Bj = Ci − Ei = O (i) + xAi (i) (10)

Ai − Cj = Bk − Ej = Di − F j
i = F k

i −Hi = Ai (k) + xCj (k) (11)

Ai −Di = G− Ii = Cj − F j
i = Ck − F k

i = Ai (i) + xDi (i) (12)

Bi − F i
j = Ek −Hj = F i

k − J i = Ik −Ki = Bi (j) + xF i
j (j) (13)

Ci −G = F i
j − Ij = F i

k − Ik = J i −Ki = Ci (i) + xG (i) (14)

Ei − Ii = Hj −Kk = Hk −Kj = Ki − L = Ei (i) + x Ii (i) (15)

where the symbol X without any arguments simply denotes the ZZ polynomial of the

structure X (n1, n2, n3) and the symbol X (l) denotes the ZZ polynomial of the structure

X (n1, n2, n3) with the index nl diminished by 1. The indices i, j, and k in Eqs. (10)–(15)

are always distinct and correspond to all the permutations of the numbers 1, 2, and 3. For

example, the equality between the first and last members of Eq. (10) with the choice of

i = 3 reproduces Eq. (2), and the equality between the first and last members of Eq. (11)

with the choice of i = 3, k = 2, and j = 1 reproduces Eq. (8). Note that the first three

equal signs in Eqs. (10)–(15) correspond to 72 algebraic relations involving structures with

the same set of indices (n1, n2, n3) and only the first and last columns in Eqs. (10)–(15)

correspond to 24 recurrence relations involving structures with different set of indices.

The set of 72 algebraic equations with the same set of indices (n1, n2, n3) in Eqs. (10)–

(15) involves 36 symmetry-distinct structures. This set is linearly dependent; its rank is

25, which allows us to solve it for 25 symmetry-distinct structures. The choice of these

structures is not unique. Here, we decide to give the solution for the ZZ polynomials of

the 25 structures Bi, Ei, F
j
i , Hi, Ii, J

i, Ki and L in terms of the ZZ polynomials of the
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11 structures O, Ai, C
i, Di, and G. The solution is given by

Bi = −O + Aj + Ak (16)

Ei = −O + Ai + Ci (17)

F j
i = −Ai + Cj +Di (18)

Hi = −2Ai + Cj + Ck +Di (19)

Ii = −Ai +Di +G (20)

J i = O − 2Aj − 2Ak + 2Ci +Dj +Dk (21)

Ki = O − 2Aj − 2Ak + Ci +Dj +Dk +G (22)

L = 2O − 2Ai − 2Aj − 2Ak +Di +Dj +Dk + 2G (23)

The indices i, j, and k in Eqs. (16)–(23) are again distinct and correspond to any permu-

tation of the numbers 1, 2, and 3.

Further solution to this problem comes from the analysis of the 15 recurrence relations

O −O (i) = Ai + xAi (i) (24)

Ak − Ak (i) = Cj + xCj (i) (25)

Ai − Ai (i) = Di + xDi (i) (26)

Ci − Ci (i) = G+ xG (i) (27)

interrelating the ZZ polynomials of the 11 structures O, Ai, C
i, Di, and G. The solution to

these equations is sought in form of generating functions GO, GAi, GC
i, GDi, and GG for

the 11 structures X = O,Ai, C
i, Di, and G. The generating function GX ≡ GX (t1, t2, t3)

for the family of structures X (n1, n2, n3) is defined as follows

GX ≡ GX (t1, t2, t3) =
∞∑

n1=1

∞∑
n2=1

∞∑
n3=1

X (n1, n2, n3) t
n1
1 tn2

2 tn3
3 (28)

The generating function here is defined in an extended way that we included the ZZ poly-

nomials of the structures O,Ai, C
i, Di, and G with one or more indices equal to 1. Thus

we have to also extend the definition of the structures. We again start with the hexagonal

flakes O (n1, n2, n3). When one, two, or all of the index equal to 1, O (n1, n2, n3) reduces

to a parallelogram M (n,m), a polyacene, or a single benzene ring, respectively. We

can construct structures Ai, C
i, Di, and G by “removing corners” from a parallelogram,
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a polyacene, or a benzene. We then can analyze ZZ polynomials for these structures by

ZZDecomposer and the relations below are obtained.

O (1, nj, nk) = M (nj, nk) = 2F1

[
−nj,−nk

1
; 1 + x

]
(29)

Ai (1, nj, nk) = M (nj, nk)− (1 + x) (30)

Ak (1, nj, nk) = M (nj − 1, nk) (31)

Ci (1, nj, nk) = M (nj − 1, nk − 1) (32)

Cj (1, nj, nk) = M (nj − 1, nk) (33)

Di (1, nj, nk) =

{
0 nj = nk = 1

M (nj, nk) otherwise
(34)

G (1, nj, nk) = M (nj − 1, nk − 1) (35)

Now, multiplication of both sides of Eqs. (24)–(27) by tni
i t

nj

j tnk
k and summation over

all values of nj, nk ≥ 1 and ni ≥ 2, transforms Eqs. (24)–(27) into the following set of

non-homogeneous linear equations for the functions GO, GAi, GC
i, GDi, and GG

1− ti
ti

GO =
1 + x ti
ti

GAi +
∞∑

nj=1

∞∑
nk=1

[O (1, nj, nk)− Ai (1, nj, nk)] t
nj

j tnk
k (36)

1− ti
ti

GAk =
1 + x ti
ti

GCj +
∞∑

nj=1

∞∑
nk=1

[
Ak (1, nj, nk)− Cj (1, nj, nk)

]
t
nj

j tnk
k (37)

1− ti
ti

GAi =
1 + x ti
ti

GDi +
∞∑

nj=1

∞∑
nk=1

[Ai (1, nj, nk)−Di (1, nj, nk)] t
nj

j tnk
k (38)

1− ti
ti

GCi =
1 + x ti
ti

GG+
∞∑

nj=1

∞∑
nk=1

[
Ci (1, nj, nk)−G (1, nj, nk)

]
t
nj

j tnk
k (39)

From Eqs. (29)–(35), we can obtain the following relations which can be used to evaluate

the double summations in Eqs. (36)–(39)

O (1, nj, nk)− Ai (1, nj, nk) = 1 + x (40)

Ak (1, nj, nk)− Cj (1, nj, nk) = 0 (41)

Ai (1, nj, nk)−Di (1, nj, nk) =

{
1 nj = nk = 1

1 + x otherwise
(42)

Ci (1, nj, nk)−G (1, nj, nk) = 0 (43)

-133-



After substituting these relations into Eqs. (36)–(39) and eliminating redundant terms,

we obtain the following family of non-homogeneous, linear equations interrelating the

functions GO, GAi, GC
i, GDi, and GG

(1− ti) GO − (1 + x ti) GAi =
ti tj tk (1 + x)

(1− tj) (1− tk)
(44)

(1− ti) GAk − (1 + x ti) GC
j = 0 (45)

(1− ti) GAi − (1 + x ti) GDi =
ti tj tk (1 + x)

(1− tj) (1− tk)
− x ti tj tk (46)

(1− ti) GCi − (1 + x ti) GG = 0 (47)

The rank of this system of 11 equations is 10. The solution can be written as follows by

expressing all the other generating functions in terms of the function GO

GAi =
1− ti

1 + x ti
GO − ti tj tk (1 + x)

(1 + x ti) (1− tj) (1− tk)
(48)

GCi =
(1− tj) (1− tk)

(1 + x tj) (1 + x tk)
GO − ti tj tk (1 + x)

(1− ti) (1 + x tj) (1 + x tk)
(49)

GDi =
(1− ti)2

(1 + x ti)
2 GO −

ti tj tk (1 + x) [ti (x− 1) + 2]

(1 + x ti)
2 (1− tj) (1− tk)

+
ti tj tk x

1 + x ti
(50)

GG =
(1− ti) (1− tj) (1− tk)

(1 + x ti) (1 + x tj) (1 + x tk)
GO − ti tj tk (1 + x)

(1 + x ti) (1 + x tj) (1 + x tk)
(51)

or alternatively, by expressing all the other generating functions in terms of the function

GG

GO =
ti tj tk (1 + x)

(1− ti) (1− tj) (1− tk)
+

(1 + x ti) (1 + x tj) (1 + x tk)

(1− ti) (1− tj) (1− tk)
GG (52)

GAi =
(1 + x tj) (1 + x tk)

(1− tj) (1− tk)
GG (53)

GCi =
1 + x ti
1− ti

GG (54)

GDi =
ti tj tk x

1 + x ti
− ti tj tk (1 + x)

(1 + x ti) (1− tj) (1− tk)
+

(1− ti) (1 + x tj) (1 + x tk)

(1 + x ti) (1− tj) (1− tk)
GG (55)
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It is possible by using Eq. (28) together with the following identities

t

1− t
=
∞∑
n=1

tn
1 + x t

1− t
= 1 + (1 + x)

∞∑
n=1

tn

t

1 + x t
= −1

x

∞∑
n=1

(−x)n tn
1− t

1 + x t
= 1 +

(1 + x)

x

∞∑
n=1

(−x)n tn

to expand all the generating functions in Eqs. (48)–(55) into power series and by ap-

propriate sum rearrangements and equating coefficients at both sides of each equation

for identical powers of tn1
1 tn2

2 tn3
3 find explicit formulas for X (n1, n2, n3) as a function of

O (m1,m2,m3) (for Eqs. (48)–(51)) and as a function of G (m1,m2,m3) (for Eqs. (52)–

(55)). These formulas, unfortunately, are often exceedingly complicated and involve mul-

tiple finite summations of O (m1,m2,m3) or G (m1,m2,m3) over various indices mi. The

simplest of these relations obtained by expanding Eq. (54) and given explicitly by

C1 (n1, n2, n3) = G (n1, n2, n3) + (1 + x)

n1−1∑
k=1

G (k, n2, n3) (56)

C2 (n1, n2, n3) = G (n1, n2, n3) + (1 + x)

n2−1∑
k=1

G (n1, k, n3) (57)

C3 (n1, n2, n3) = G (n1, n2, n3) + (1 + x)

n3−1∑
k=1

G (n1, n2, k) (58)

might be useful, but for example the formula relating O (n1, n2, n3) and G (m1,m2,m3)

obtained by expanding Eq. (52) and given explicitly by

O (n1, n2, n3) = G (n1, n2, n3) + (1 + x)3
n1−1∑
k1=1

n2−1∑
k2=1

n3−1∑
k3=1

G (k1, k2, k3) (59)

+ (1 + x)

[
1 +

n1−1∑
k1=1

G (k1, n2, n3) +

n2−1∑
k2=1

G (n1, k2, n3) +

n3−1∑
k3=1

G (n1, n2, k3)

]

+ (1 + x)2
[
n1−1∑
k1=1

n2−1∑
k2=1

G (k1, k2, n3) +

n1−1∑
k1=1

n3−1∑
k3=1

G (k1, n2, k3) +

n2−1∑
k2=1

n3−1∑
k3=1

G (n1, k2, k3)

]

might be of little practical importance due to its complexity. We believe that the explicit

expressions for the ZZ polynomials of the 25 structures Bi, Ei, F
j
i , Hi, Ii, J

i, Ki and

L given by Eqs. (16)–(23) and the implicit expressions for the ZZ polynomials of the

10 structures Ai, C
i, Di, and G given by Eqs. (48)–(51) as a function of the generating

function GO ≡ GO (t1, t2, t3) can be made fully useful and robust only by discovering an
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explicit expression for the last missing tile of the studied here puzzles, the ZZ polynomial

of the hexagonal flakes O (n1, n2, n3) and its associated generating function GO, or al-

ternatively, the ZZ polynomial of the hexagonal flakes without three alternating corners

G (n1, n2, n3) and its associated generating function GG.

4 Conclusion

We have presented a detailed analysis of the recurrence relations involving the ZZ poly-

nomials of a family of structural derivatives of O (n1, n2, n3). The analyzed network of

equations comprises of 192 recurrence relations interrelating the ZZ polynomials of 64

structural derivatives of O (n1, n2, n3) obtained by removing from 0 to 6 of its corners.

Symmetry considerations allow to reduce this family to 96 recurrence relations for 36

symmetry-distinct structural derivatives of O (n1, n2, n3). The solution to this set of

equations is obtained in two steps. First, the explicit expressions for the ZZ polynomials

of the 25 structures Bi, Ei, F
j
i , Hi, Ii, J

i, Ki and L are given by Eqs. (16)–(23) as a func-

tion of the ZZ polynomials of the remaining 11 structures: O, Ai, C
i, Di, and G. Further

solution is given in terms of generating functions. This approach allows to reduce the

problem completely and express the ZZ polynomial generating functions of the remaining

structures (O, Ai, C
i, Di, and G) by a single generating function; the explicit expressions

are given by Eqs. (48)–(51) as a function of the generating function GO ≡ GO (t1, t2, t3)

for the hexagonal flakes O (n1, n2, n3), or by Eqs. (52)–(55) as a function of the generating

function GG ≡ GG (t1, t2, t3) for the derivatives G (n1, n2, n3) obtained by removing the

three alternating corners of O (n1, n2, n3).

The presented here result is not fully satisfactory: a single recurrence relation is missing

in the studied network of recurrence relations in order to provide a mean to its complete

solution. However, the partial result obtained here shows that the ZZ polynomials for all

of the structural derivatives of O (n1, n2, n3) obtained by introducing corner defects can be

readily obtained once the ZZ polynomials of O (n1, n2, n3) or G (n1, n2, n3) are known. We

believe that the presented results constitute an important step toward finding a closed-

form formulas for the hexagonal graphene flakesO (n1, n2, n3) and completing the theory of

Clar covers and ZZ polynomials for hexagonal graphene flakes. The reader should be also

aware that the presented results can be cast in fully functional from only by discovering an

explicit expression for the last missing tile of the studied here puzzles, the ZZ polynomial
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of the hexagonal graphene flakes O (n1, n2, n3) and its associated generating function

GO, or alternatively, the ZZ polynomial of the hexagonal graphene flakes without three

alternating corners G (n1, n2, n3) and its associated generating function GG. Note that

the lowest order coefficient, c0 ≡ K {O (n1, n2, n3)}, in the ZZ polynomial of O (n1, n2, n3),

denoting the number of Kekulé structures of this bezenoid, is given as

K {O (n1, n2, n3)} =

n1−1∏
k=0

(
n2+n3+k

n3

)(
n3+k
n3

) =

n1+n2+n3−1∏
j=0

j!

n2+n3−1∏
j1=n1

j1!

n3+n1−1∏
j2=n2

j2!

n1+n2−1∏
j3=n3

j3!

(60)

This formula was first found by Cyvin [13] as a generalization of earlier results of Woodger

and Everett reported originally by Gordon and Davison [15]. The first formal demonstra-

tion and derivation of this formula was given by Bodroža and collaborators [1] using

extensively a novel method of computing the number of Kekulé structures as a determi-

nant of the path matrix developed by John and Sachs [20–22, 24]. Unfortunately, higher

order generalizations of this formula are not known up to date.

The substitution of Eq. (60) into Eq. (28) with X (n1, n2, n3) = O (n1, n2, n3) eval-

uated at x = 0 can be used to find the generating function for the number of Kekulé

structures of O. This development can lead to a closed form of generating functions for

the number of Kekulé structures for Ai, C
i, Di, and G by using Eqs. (48)–(51). The co-

efficients of tn1
1 tn2

2 tn3
3 in these generating functions indicate the numbers of Kekulé struc-

tures of O (n1, n2, n3), Ai (n1, n2, n3), C
i (n1, n2, n3), Di (n1, n2, n3), and G (n1, n2, n3).

By substituting these numbers into Eqs. (16)–(23) evaluated at x = 0, one can calculate

the numbers of Kekulé structures of the rest of structurally related benzenoids, namely,

Bi (n1, n2, n3), Ei (n1, n2, n3), F
j
i (n1, n2, n3), Hi (n1, n2, n3), Ii (n1, n2, n3), J

i (n1, n2, n3),

Ki (n1, n2, n3) and L (n1, n2, n3). The task of explicit derivation of this formulas is not pur-

sued further in the current paper. We hope that this work will stimulate the community

to efforts leading to achieve this goal.
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